High Temperature Chemistry at NASA: Hot Topics

N. S. Jacobson NASA Glenn Research Center Cleveland, OH Missouri State University October 23, 2014

Outline of Presentation

- I. High Temperature issues in aircraft engines
 - A. Hot section: Ni and Co based Superalloys
 - B. Oxidation and Corrosion (Durability) at high temperatures
- II. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter
- III. High temperatures in other worlds: Planets close to their stars
- IV. Summary and Questions

Gas turbine engine

Turbine inlet temperatures in the gas path of modern high-performance jet engines can exceed 1650°C

Gas Turbine Materials

- Higher temperature, light weight, strong
- Need to understand every aspect of material
 - Mechanical behavior
 - Chemical behavior
- Materials
 - Colder sections: Ti alloys, Fe alloys
 - Hot sections: Ni- and Co- based superalloys, ceramics (some day!)

Issues in Each Stage of a Modern Turbine

	Typical operating conditions				
Component	Temperature (°C)	Stress (MPa)	Life (hr)	Critical problems	
Blades	900 - 1050	140 - 210	5000	Creep strength, stability, oxidation, hot corrosion, and thermal fatigue	
Vanes	950 - 1100	35 – 70	5000	Thermal fatigue, oxidation, and hotcorrosion	
Disks	400 - 650	420 - 1050	15,000	Low cycle fatigue hot corrosion	
Combustors	850 - 1100	20 – 35	4000	Thermal fatigue oxidation	

Environmental Effects and Coatings Branch

- Chemical interactions of engine materials with the combustion environment
 - Oxygen: Oxidation
 - Water vapor, CO₂
 - Sulfur oxides (SO₂, SO₃)
 - Deposits: Salts, volcanic ash, desert sands
- Chemical reactions at high temperatures
 - Thermodynamics
 - Kinetics

Tools: 1. Burner Rig--Realistically Simulates Turbine Engine and uses Less Fuel

Fuels: Aircraft fuel (high purity kerosene), Diesel Fuel Inject: Sea salt, particulates

Burner Rig

Tools: 2) Thermogravimetric Apparatus (TGA)

Continuous weight change measurements without removing sample and controlled environment

- Flow velocity
- Temperature
- Gas composition

Sensitivity to 100 μ g

Fig. 9

Oxidation of Metals and Ceramics

• Thermodynamics tells us oxides are the most stable

- AI_2O_3 forms as a thin film around metal
- Formation or "growth" rate (kinetics) $\propto t^{1/2}$
 - As film grows, the rate slows
 - Proportionality constant is the parabolic rate constant
- Want thermodynamically stable oxide, low growth rate, not sensitive to other impurities

Thermodynamics and Kinetics

Primary protective oxides at high temperatures: Cr₂O₃, SiO₂, Al₂O₃

What about other Effects?

- Water Vapor
 - $Cr_2O_3 + 2H_2O(g) + 3/2 O_2(g) = 2CrO_2(OH)_2(g)$
 - Removes Cr₂O₃, more forms and is removed
 - Part is gradually vaporized!
 - Limits Cr₂O₃ to ~900°C
- Na impurities (marine environment)
 - Opens SiO₂—more oxygen transport
- Fluxing by molten salts, volcanic ash
 - $Na_2O + SiO_2(s) = Na_2SiO_3(I)$
 - Important area of research!

Re-entry Heat Shields:

Heating for Short Times Atmosphere of Dissociated Gases—N, O

ISS011E11227

Re-entry Heating: Why the Orbiter gets so Hot

- Orbiter begins re-entry at Mach 25 (18,000 mph) in upper atmosphere
- Must slow down on re-entry, tremendous energy must be dissipated
- "Shock waves": Pile-up of gas molecules as vehicle slows

Re-entry Heating: Why the Orbiter gets so Hot

• Blunt body: Shock spreads out and dissipates a lot of heat

• Nose cap and wing leading edges take most the heat: up to 1600°C for short periods (~5 min)

Thermal Protection on the Orbiter: Highest Temperature Materials on Nose Cap and Wing Leading Edges

- Composite of Carbon Fibers in a Carbon Matrix → "Carbon/Carbon"^{CD-97-76505}
- Remarkably effective > 130 flights

Wing Panels Attached with Complex Metal Attachment Hardware Allows for Thermal Expansion and Contraction

Wing Panels Protect Aluminum Wing Structure

Fabrication of Carbon/Carbon Composites

- High Strength Carbon Fibers
 - ~10 µm (0.01 mm) diameter
 - 4000 MPa strength
 - Graphite (crystalline carbon)
- Woven into cloth

Two Dimensional Lay-up of Graphite Cloth

Coated with a 'pre-preg' and pressed into molds

Then a liquid carbon precursor is added to fill porosity: makes carbon matrix

Cross Sectional Views of Carbon/Carbon

- 25X Showing bundles ('tows') of fibers in longitudinal and transverse directions
- Porosity due to incomplete compaction
- Important to distinguish this porosity from oxidation

- SEM Photo shows fibers and matrix
- Rayon Fibers—first generation carbon fibers Perform well in this application
- 'Crenulations' or grooves in fibers: important in oxidation

Carbon/Carbon: The Ideal Aerospace Material

- Lightweight
- Strong: Carbon Fibers even become stronger as temperature is increased
- Drawback?
 - Oxidizes!

Oxidation Protection of Carbon/Carbon

- Oxidation is the major barrier to widespread application of carbon/carbon
- Need to select adherent, oxidation resistant coating material that does not react with carbon
- Many years of research and development
 - Oxides
 - Metals/alloys
 - SiC
- SiC: the best choice

arbon

Oxidation Protection of Carbon/Carbon

- Chemical reaction: "Conversion Coating"
- Si(vapor) + C = SiC Controlled exposure in powder pack leads to 1 mm thick coating. In pack of Al₂O₃, SiC, Si

Drawback of SiC coating on Carbon/Carbon Thermal expansion mismatch \Rightarrow Cracking

Carbon/Carbon

• On cooling from processing temperature, SiC (CTE = 5×10^{-6} /K) shrinks faster than C/C (CTE = 1×10^{-6} /K)

- Tensile stresses develop in SiC \Rightarrow SiC factures/cracks
- Cracks may serve as pathways for oxidation
- High temperature glasses are applied, which flow at higher temperatures and seal cracks
 - Silica and sodium silicate with SiC particles
 - Surprisingly effective for the short duration of re-entry

The Columbia Tragedy: Damaged RCC

National Aeronautics and Space Administration

The Columbia Disaster: February 1, 2003 Shedding from External Fuel Tank Damaged Left Wing *Tragically Showed How Important RCC is to the Orbiter*

The Columbia Disaster

- Many large teams at NASA and other organizations involved in determining cause of accident
- Impact damage of RCC panel led to entry of hot re-entry gases, melted wing structure, and brought vehicle down

Recovered Pieces of RCC Provided Clues to Cause of Accident

Brought to hanger at Kennedy Space Center

National Aeronautics and Space Administration Attachment Hardware in Wing Leading Edge Structure

Alloy	Use	Maximum Service Temperature (°C)	~MP (°C)
AI 2024	Wing spar	NA	650
A286	Spar attachment fitting	815	1370
IN718	Clevis, spanner beam	980	1370
IN601	Spar insulation foil	1090	1370

Proposed Breach Location and Plasma Flow Based on Results of Deposit Analysis

Oxidation Morphology helped with interpretation of fragments Unique appearance of remaining Fibers

- Laboratory oxidation of uncoated carbon/carbon
- Oxidation Morphology: Fibers thinner and pointed

Figure 13.—Electron micrograph of exposed fibers from sample 1860B.

- Edge of recovered fragment from Columbia
- Pointed fibers indicated burning when vehicle broke-up
- Flat fracture surfaces indicated fracture on impact with ground

Oxidation Pattern: Tells which fragments formed on Impact with Ground and which Burned During Break-up

In Memoriam . . .

Dramatic Changes in Implemented for Shuttle Operation after the Accident

- Careful examination of RCC immediately after lift-off. Camera extends on boom to photograph regions of each panel
- Careful examination of RCC before re-entry
- Extensive NDE (Non-Destructive Evaluation) examination of RCC panels on ground—before installation and on-vehicle
 - Development of novel thermography techniques(relates changes in thermal conductivity to structure) for on-vehicle examination of RCC
- Development of repair methods
- Successful missions through the last flight of the fleet

Chemistry on Other Worlds

Venus

Exoplanets

What is the atmosphere of Venus like?

2.3 µm image from Galileo flyby

What we once thought...

What we now know... 92 bar Primary CO₂, small amount of SO₂, N₂ Sulfuric acid clouds Lots of volcanic activity

Interactions of Venusian Atmosphere with Fresh volcanic Rock

- $CaCO_3 + SiO_2 = CaSiO_3 + CO_2(g)$
 - Can create large $CO_2(g)$ pressure
 - Thought to 'buffer' $CO_2(g)$ pressure at surface of Venus
 - Now unlikely as not a true 'buffer'
- $3FeS_2 + 16CO_2(g) = Fe_3O_4 + 6SO_2(g) + 16CO(g)$
 - Pyrite likely present on Venus surface
 - Reaction may 'buffer' $SO_2(g)$

NASA Glenn Extreme Environments Chamber

Close duplication of Venus atmosphere 92 bar 450°C CO_2 SO_2 N_2 Ar Traces of CO, CO₂, HCI, HF

Current studies: Examine a variety of mineral interactions with this environment

Exoplanets: Planets outside our Solar System

- Confirmed discoveries:
 - 1988—First discovery,
 confirmed 2002
 - 2009—300
 - 2010—453
 - exoplanets.org (2014)--1516
- Most commonly found by transitd method
- Hot, rocky Exoplanets
 - Short orbital periods
 - Tidally locked/strongly irradiated
 - CoRot-7b, Kepler 10b, 55 Cnc e
 - Very hot!

National Aeronautics and Space Administration

Atmospheres of Hot, Rocky Exoplanets CoRoT-7b, Kepler 10b, 55 Cnc e (55 Cancri)

- Estimated densities suggest BSE (basic silicate earth: SiO₂-MgO-FeO-CaO) or moon-like compositions
- Inorganic vapors above lava oceans—molten silicates (Fegley)
- Major species are Na(g), SiO(g), Mg(g)
 - Fractionating as they move to the cold side
 - Can also form silicate 'clouds'
- Grant with MSU (Reed, Cornelison), Wash U (Fegley), and NASA (Jacobson, Costa).

Simulate these atmospheres in a Knudsen Cell

- Typically 1 cm diameter x 1 cm high with a 1 mm orifice
- Near equilibrium established in cell
- Vapor effusing from orifice forms a molecular beam which can be analyzed with a mass spectrometer (standard method from high temperture chemistry)

Vapors above Olivine: (Mg, Fe) silicate

- Primary constituent of the earth's mantle—may be a major part of exoplanets as well
- Vapor species are Fe(g), SiO(g), Mg(g), O(g), O₂(g)
- Vapor pressure vs T

 Atmosphere of Fe(g), SiO(g), MgO(g)! Need specialized spectroscopic methods to confirm or refute this...

Conclusions: Hot Topics at NASA

- Hot section of Aircraft turbines
- Re-entry shields of the Space Shuttle Orbiter
- High temperature chemistry and physics on Venus and planets beyond our solar system