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Motivation

• Turbine engine materials require long lifetimes at 
elevated temperatures

• Ceramic matrix composites (CMCs) offer 
substantial benefits

– Limited by water vapor attack

• Environmental barrier coatings (EBCs) are 
necessary to protect the underlying ceramic

• Candidate materials are limited 
– Need to be thin, stable and durable

• Traditional processing methods may not be able 
to meet the requirements

– Plasma Spray-Physical Vapor Deposition (PS-PVD)
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Plasma Spray - Physical Vapor Deposition (PS-PVD)

• Bridges the gap between plasma 
spray and vapor phase methods

– Variable microstructure 
– Multilayer coatings with a single 

deposition

• Low pressure (70-1400 Pa)
High power (>100 kW)

– Temperatures 6,000-10,000K

• High throughput1
– 0.5 m2 area, 10 m layer in < 60s

• Material incorporated into gas stream
– Non line-of-sight deposition

• Attractive for a range of applications
– Solid oxide fuel cells, gas sensors, 

etc. 20 m
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PS-PVD Diagnostics

Optical Spectrometer
• Data collected in-situ
• Emission lines measured and 

tracked
– Plasma gases and feedstock

• Conditions can be optimized for 
maximum vaporization

Plasma temperature measurement
• Boltzmann distribution
• Assumes local thermal 

equilibrium
• Intensities of Ar I lines were 

used
– 40 lines measured
– 516 - 968 nm range

Optical fiber
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• Intensities of Ar I lines were 

used
– 40 lines measured
– 516 - 968 nm range



Yb2Si2O7: As-Deposited

• Yb2Si2O7 (Yb-disilicate) has been considered as a 
potential next-generation EBC

• Deposited using PS-PVD processing (~115 m)
– Air plasma sprayed silicon bond coat (~75 m)
– SiC/SiC substrate

• Splat-like deposition with large porosity 
distribution

• Backscatter shows some localized variation in Si 
content

– Bright regions are Si-deficient
– Dark regions are Si-rich

• XRD shows coatings are fully disilicate after heat 
treating

– Isothermal exposure to water vapor at 1316C for 
500 hours shows little crystallographic change

Yb-disilicate

Silicon50 m

500 hours at 1316C
90% H2O/O2

100 hours at 1316C
90% H2O/O2



Single Layer Yb-disilicate EBCs
• High heat flux testing showed increased degradation of Yb-silicate coatings

• Coatings tested in air and in a steam environment from 1400-1500C
– Yb-disilicate was stable in air with some sintering and delamination at the bond coat
– Steam environment testing resulted in significant porosity at the surface due to the formation of Si-

hydroxide

• Although Yb-disilicate has some desirable properties as an EBC, its silica activity may still 
be too high for temperatures required for advanced engine components.
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HfO2

ZrO2 [YSZ]
2(Lu2O3) · 3(ZrO2)
2(Y2O3) · 3(ZrO2)
3(Yb2O3) · 5(Al2O3)
3(Y2O3) · 5(Al2O3) (yttrium-
aluminum-garnet)
Lu2O3 · SiO2

Yb2O3 · SiO2

Y2O3 · SiO2

Al2O3 · TiO2

2(Lu2O3) · 3(HfO2)
Lu2O3 · 2(SiO2)
Y2O3 · 2(SiO2)
Yb2O3 · 2(SiO2)
Ba(Sr)O · Al2O3 · 2(SiO2) 
(barium-strontium-
aluminosilicate)
SrO · Al2O3 · 2(SiO2) (strontium-
aluminosilicate)

Al2O3

3(Al2O3) · 2(SiO2) (mullite)

TiO2

CaO · 2(Yb2O3) · 3(SiO2)
x(CeO2) · (ZrO2)
SiO2

Cr2O3

Compiled by Jim Smialek in
Review: N. Jacobson et al.
ASM Handbook 13B, 565 (2005)

Best Water Vapor Resistance

Qualitative Ranking of Candidate EBC Materials

If silicon-free oxides can be adapted as EBCs, 
significantly higher stabilities are possible
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Under relevant turbine engine conditions:
Silicon Carbide: J = 0.48 mg/cm2-hr
Y2SiO5 + Y2Si2O7: J = 0.12 mg/cm2-hr
Y2Si2O5 + Y2O3 J  = 2 x 10-4 mg/cm2-hr  (CTE issues)



T/EBC Multilayer Coatings
• Rare earth silicates have some desirable properties for EBCs, but SiO2 activity may still be too 

high for temperatures required for advanced engine components.

• The addition of an oxide layer on the surface shows promise for reducing the temperature of the 
EBC and improving durability.

• Topcoat of rare earth doped t’ ZrO2 provides erosion resistance equaling or surpassing other 
vapor processed coatings

• Columnar microstructure in the topcoat reduces the in-plane modulus to a value of 25-30GPa
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Yb-silicate
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Thermal Conductivity Testing
• In situ measurement
• 8 m pyrometer on the surface and 

backside
• High power CO2 laser high-heat-flux 

system
• Capable up to 315 W/cm2

• Sample approximately 1” in diameter
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3-Layer T/EBC
• Sample surface heated with high heat flux laser

– Provides thermal gradient

• Tested for 10 heating cycles (1 hour each)
– 1470C surface temperature
– 1350C interface temperature
– 1150C backside temperature

• Microstructure showed some changes due to the 
gradient testing

– Doped ZrO2 topcoat sintered
– Yb2Si2O7 EBC layer did not change
– Silicon bond coat showed signs of melting in various 

locations

• Sintering also observed in thermal conductivity 
measurement

– k0: 1.75 W/mK
– k10: 2.15 W/mK

As-deposited

After testing



3-Layer T/EBC
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After testing

• Sample surface heated with high heat flux laser
– Provides thermal gradient
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gradient testing
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– Yb2Si2O7 EBC layer did not change
– Silicon bond coat showed signs of melting in various 

locations

• Sintering also observed in thermal conductivity 
measurement

– k0: 1.75 W/mK
– k10: 2.15 W/mK
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Silicon Infiltration
• Microstructure indicated melting of Si bond coat

– Silicon infiltration of Yb-silicate layer
– Rapid sintering and delamination

• 1370C maximum calculated interface temperature
– Impurities would suppress the melting temperature from 

1410C

• Delamination isolates the top layer oxide and 
increases sintering

Zr Yb Si



Conclusions and Future Work

• PS-PVD processing is a promising technique for depositing next-generation 
thermal and environmental barrier coatings on advanced engine components.

• The addition of a more thermally capable oxide topcoat on RE-silicate materials 
could improve performance as a T/EBC.

• The low melting silicon bond coat is the limiting factor for these coatings with 
surface temperatures approaching 1500C.

• Future T/EBCs will use a more thermally capable bond coat, which should allow 
for thinner coatings and better performance, and will be tested under steam 
conditions and under mechanical loading with thermal gradient.


