

Changes in Global Tropospheric OH Expected as a Result of Climate Change Over the Last Several Decades

Julie M. Nicely¹, R. J. Salawitch¹, T. Canty¹, A. R. Douglass², B. N. Duncan², C. Lang³, Q. Liang², L. D. Oman², J. M. Rodriguez², R. S. Stolarski³, S. Strode^{2,4}, D. W. Waugh³ ¹University of Maryland, College Park, Md; ²NASA Goddard Space Flight Center, Greenbelt, Md; ³Johns Hopkins University, Baltimore, Md; ⁴Universities Space Research Association, Columbia, Md

2. Methods for estimating changes in OH ^{TROP}				4. Future plans for refining estimates of ΔΟΗ ^{TROP}		
 Model OH Initial modern-day conditions for OH are taken from a time-slice run of GEOS CCM using 2005 emissions Monthly mean mixing ratios of OH and related species are provided on a 144 longitude, 91 latitude, 72 pressure level grid Changes in OH due to H₂O, overhead O₃ and tropical widening are found from analysis of initial OH field 	MERRA of AIS 40 Mining Fairs v. Time	Overhead O ₃ • Total column O ₃ trends were obtained from the NASA merged O ₃ data set, consisting of measurements from SBUV, TOMS, and Aura OMI instruments • We then use our photolysis code to estimate the impact on J(O ₃) → O(¹ D) of decreasing initial GEOS CCM overhead O ₃ columns by amount suggested by the NASA product • OH ^{TROP} is assumed to change by the square root of J(O ₃) → O(¹ D) Defre Gel Q, there series, reative to 1955, ToteJ/CMI/SBU0 ************************************	 Widespread evidence for expansion of the latitudinal circulation system (e.g. Seidel <i>et al.</i>, 2008) CCMs forced by CHGs cannot reproduce extent of tropical widening (Johanson and Fu, 2009) Allen et al. (2012) have suggested 	Improve Estimate of d(OH ^{TROP}) / d(H ₂ O) • Reaction rates from recent runs of GEOS CCM are archived for reactions such as: H ₂ O + O('D) > 2OH • Using these reaction rates we will determine the proportion of OH that is produced via reaction with H ₂ O • The determined scaling factor would be used to calculate a new ΔOH ^{TROP} based on the H ₂ O trends • Estimate time- and pressure-varying values of d(OH ^{TROP}) / d(H ₂ O) • Evaluate discrepancies between MERRA and AIRS H ₂ O trends	 Evaluate CH₄/OH Feedback We will use a box model (details below) to probe relationship between CH₄ and OH^{TROP} and its dependence on NO_x Box Model We will use the Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC) box model (provided by Mathele Yans) with chemical mechanistic information taken from the Master Chemical Mechanism, MCM v3.2 (Jenkin <i>et al.</i>, 1997; Saunders <i>et al.</i>, 2003) via website http:// mcm.leeds.ac.uk/MCM. Using the MCM, we have the capability to consider: the degradation of up to 135 VOCs the influence of J(O¹D) and J(NO₂) on OH chemistry the impact of NO_x on methane oxidation 	Assessing OH ^{TROP} in CCMs • Through our involvement with the IGAC / SPARC Chemistry-Climate Model Initiative, we have requested: 1. hourly, instantaneous output from participating CCMs 1 day/season, 1 year/decade 2. archival of all species, reaction rates, J-values, and physical parameters relevant to OH chemistry 3. this output for both the REF-C1 (hindcast) and REF-C2 (future) runs • We plan to assess the causes of differences between OH in the CCMs • Use of the box model enables us to distinguish between OH differences due to <i>chemical</i>
	 OH^{TROP} is assumed to follow the square root of the change in H₂O using a steady-state assumption We plan to refine the effect of changing H₂O on OH^{TROP} by examining reaction rates from archived runs of GEOS CCM 		tropospheric O ₃ and BC are responsible • We simulate tropical expansion by increasing OH near the tropical boundary by a factor representative of 2° widening/decade (globally)	Propagate Uncertainties • Calculate uncertainties in AIRS and MERRA H_2O and NASA O_3 product	 Evaluate standard deviation in average fraction of OH production occurring via H₂O + O(¹D) Estimate uncertainty in the box model evaluation of d(OH^{TROP}) / d(CH₄) 	 mechanism and those due to differences in OH precursors We can also use this output to predict future trends in OH^{TMOP}, based on CH₄, H₂O, and overhead O₃ from the future CCM runs