
NASA KSC – Internship Final Report

Kennedy Space Center 1 18/11/2014

Swarmie User Manual: A Rover Used for Multi-agent Swarm
Research

Gilbert Montague

Kennedy Space Center
Physics

Center Innovation Fund (CIF) Swarming Robot Research
Fall Session
18 11 2014

NASA KSC – Internship Final Report

Kennedy Space Center 2 18/11/2014

Swarmie User Manual: A Rover Used for Multi-agent Swarm
Research

Gilbert Montague1
Baldwin Wallace University, Berea, Ohio, 44017, USA

The ability to create multiple functional yet cost effective robots is crucial for conducting swarm-
ing robotics research. The Center Innovation Fund (CIF) swarming robotics project is a collabora-
tion among the KSC Granular Mechanics and Regolith Operations (GMRO) group, the University
of New Mexico Biological Computation Lab, and the NASA Ames Intelligent Robotics Group (IRG)
that uses rovers, dubbed “Swarmies”, as test platforms for genetic search algorithms. This fall, I
assisted in the development of the software modules used on the Swarmies and created this guide to
provide thorough instructions on how to configure your workspace to operate a Swarmie both in
simulation and out in the field.

Nomenclature
Algorithm = a process or set of rules to be followed in calculations or problem-solving operations
Genetic Algorithm = a software algorithm that mimics the process of natural selection
Swarmie = the name of the rover used for the swarming robotics research project
AprilTags = the target detection system chosen for the swarming robotics research project
ROS = Robot Operating System. A set of software libraries used to build robot applications
Gazebo = Free, open source robot simulation software
BASH = Bourne-again shell. A UNIX shell.
GUI = Graphical user interface

I. Introduction
he CIF Swarming Robotics Research Project is a collaboration among the KSC Granular Mechanics and Regolith Oper-
ations (GMRO) group, the University of New Mexico Biological Computation Lab, and the NASA Ames Intelligent

Robotics Group (IRG) and aims to develop genetic software algorithms for a variety of different tasks including robotic
mining. This project focuses on developing autonomous robots that if placed in a foreign environment will be able to learn
the environment and share the data about the terrain to other agents in the swarm. The robots use genetic algorithms to adapt
their behavior in respect to power management and are capable of such tasks as route planning and dynamic navigation. The
Swarmie rover was designed to provide researchers with a cost effective physical test platform to test the genetic algorithms
rather than only relying on computer simulations.

 One of my major tasks this fall was to aid in the development of software used by the Swarmies. I created this
technical document, the Swarmie User Manual, to provide a comprehensive paper that clearly details the configuration process
for a Swarmie rover. This document is designed so that anyone with a basic understanding of electronics and software can
setup and operate a Swarmie.

II. Configuring the ROS workspace
 The Robot Operating System (ROS) was chosen as the underlying framework to handle the individual Swarmie
processes. According to the ROS website, “[ROS] is a collection of tools, libraries, and conventions that aim to simplify the
task of creating complex and robust robot behavior across a wide variety of robotic platforms.”[1] Most notably, ROS provides

1 Undergraduate Student, Department of Physics and Astronomy, Kennedy Space Center, Baldwin Wallace University

T

NASA KSC – Internship Final Report

Kennedy Space Center 3 18/11/2014

a system for small software modules to communicate via a common messaging bus. This functionality was one of the key
selling points for using the ROS framework.
 ROS is optimized for the Linux Operating System and therefore it makes sense that the development and
implementation of the ROS software modules are conducted on a Linux Operating System, specifically Ubuntu 12.04LTS.
The following details how to install and configure a version of ROS (Hydro) on your Ubuntu 12.04LTS Linux developer
workstation.

A. Installing ROS Hydro
 The following is a condensed version of the installation guide from the wiki.ros.org [2]. Please refer to the ROS
website for detailed information regarding ROS installation, configuration, and implementation.
 You will first need to setup your workstation to accept software from packages.ros.org. To do this, open a new
terminal window and enter:

 After that command, enter the following to set up your keys for installing ROS Hydro:

 Now, make sure your Debian package index is up-to-date by entering the following command:

 Finally, install ROS Hydro by entering the following command:

 This will install the full desktop version of ROS Hydro which includes rqt, a QT-based framework for graphical user
interface (GUI) development for ROS. Rqt is used as the primary GUI for operating the Swarmies as it provides an easy to
use interface for inputting commands and parameters.
 Before you can use ROS, you need to initialize rosdep, a tool that enables you to easily install system dependencies
that allow you to run certain core ROS components. To initialize rosdep, enter the following commands in your active terminal
window:

 The final steps of the ROS Hydro installation are setting up your workstation's environment variables so that you can
use all of the packages ROS has to offer. To do this, execute the following commands:

 This will source the correct ROS environment variables automatically every time you start a new BASH session.
This is very convenient when you are using ROS.

B. Creating a workspace
 The following is a condensed version of the installation guide from the wiki.ros.org [3]. Please refer to the ROS
website for detailed information regarding ROS installation, configuration, and implementation.
 The two catkin workspaces for the Swarmie project are rover_onboard_workspace and rover_driver_workspace.
This section will go through the steps to create the rover_onboard_workspace catkin workspace. The steps detailed here are
identical for the rover_driver_workspace catkin workspace. All source code for the workspaces are available upon request.
 First, create and initialize a workspace directory in your home directory by executing the following commands. These
commands will create a rover_onboard_workspace workspace directory and then initialize that directory so that catkin, the
official build system of ROS, can build the workspace.

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu precise main" > /etc/apt/sources.list.d/ros-
latest.list'

$ wget https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -O - | sudo apt-key add -

$ sudo apt-get update

$ sudo apt-get install ros-hydro-desktop-full

$ sudo rosdep init

$ rosdep update

$ echo "source /opt/ros/hydro/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

$ mkdir ~/rover_onboard_workspace

$ cd ~/rover onboard workspace

NASA KSC – Internship Final Report

Kennedy Space Center 4 18/11/2014

With the rover_onboard_workspace initialized, you need to create the packages in the workspace to ensure that

everything in the workspace is linked correctly with ROS. To do this, run the following command in the top level of your
catkin workspace:

Where <package name> is the package you want to add to the workspace and depends# variable is the dependency
you want that package to have. For the Swarmies, you would run the following command and replace the <package name>
variable with the actual package name (rover_onboard_abridge, rover_onboard_health_status, rover_onboard_localization,
etc.)

Then, with all of the packages created, copy and paste the src/ directory into the workspace that contains all of the
source code necessary for the Swarmie modules. Contact information for Swarmie source directories are available in the
References section.

III. Swarmie Software

A. Software Description
 Before building the software, review the following tables and become familiar with what each software package does
and where it is located.

Table 1: rover_onboard_workspace/src/
Package Descriptions

Package Description Executables

rover_onboard_abridge Arduino bridge that publishes data from the
microcontroller as ROS message types.

abridge

rover_onboard_health_status Collects and publishes health and status data
from the onboard computer.

health_status

rover_onboard_localization Notifies Swarmie of its location and attitude in
3D space by reading intertial measurement unit
(IMU) data and global positioning system (GPS)
data.

localization

rover_onboard_mapping Creates and updates real-time maps based on
data collected from the obstacle detection, target
detection, and localization modules.

mapping

rover_onboard_mobility Takes input from the GUI, joystick, or path
planner to move the Swarmie. Also contains the
logic for the random walk routine.

mobility

rover_onboard_obstacle_detection Notifies the Swarmie of obstacles by reading
ultrasonic sensor data. Outputs obstacle data to
the map.

obstacle

rover_onboard_path_planning Sends a real-time path to the Swarmie based on
information from the mission parameters and
mapping module.

path

rover_onboard_target_detection Opens webcam, executes AprilTag target
detection algorithm, and notifies the Swarmie of
targets.

camera, target

#This is an example, do not try to run this:
$ catkin_create_pkg <package_name> [depend1] [depend2] [depend3]

$ cd ~/rover_onboard_workspace

$ catkin_create_pkg <package_name> std_msgs rospy roscpp

NASA KSC – Internship Final Report

Kennedy Space Center 5 18/11/2014

Table 2: rover_driver_workspace/src/

Package Descriptions

Package Description Executables

rover_driver_gazebo_launch Contains the necessary scripts,
executables, and files to launch a
Gazebo session

*.launch files for the simulation rovers

rover_driver_ptp Rqt plugin for point-to-point
functionality.

Rover PTP (RQT GUI)

rover_driver_rqt_mcp Mission control rqt plugin. It is the GUI
for connecting to a Swarmie and
inputing mission parameters.

Rover MCP (RQT GUI)

rover_driver_rqt_motor Rqt plugin for maunal teleoperation of
a Swarmie

joystick_driver, Rover Motor (RQT
GUI)

rover_driver_world_state Keeps track of the number of found
tags and the universal map

world_state

B. Software Build
 As stated before, the src/ directories for the Swarmie research project can be obtained by contacting one of the
researchers listed in the References section. After acquiring the src/ directories, copy them into their respective workspaces.
Once copied over, execute the following commands to build the workspaces. Note that since the Swarmie project uses more
than one catkin workspace, they must be “chained” together to work as intended and thus it is imperative that the
chronological order of the following commands are kept.

 For your convenience, you should update the last few lines of your ~/.bashrc file with the following lines. This will
source the necessary environment variables automatically every time you start a new BASH session. Remember to source
your ~/.bashrc file after making the changes. Add these lines to your ~/.bashrc file:

IV. Gazebo Robot Simulator
 The following is a condensed version of the installation guide from the gazebosim.org [4]. Please refer to the
Gazebo website for detailed information regarding Gazebo installation, configuration, and implementation.
 Gazebo is a free, open source robot simulator that is widely used in the robotics community and is the simulator of
choice for the Swarmie project. Similar to the ROS Hyrdo installation, you must first setup your workstation to accept
software from packages.osrfoundation.org. In a terminal window, run the following:

$ cd ~/rover_onboard_workspace/

$ catkin_make

$ source rover_onboard_workspace/devel/setup.bash

$ cd ~/rover_driver_workspace

$ catkin_make

$ cd ~/rover_onboard_workspace/

$ catkin_make

$ sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu `lsb_release -cs` main" >
/etc/apt/sources.list.d/gazebo-latest.list'

source /opt/ros/hydro/setup.bash
source ~/rover_driver_workspace/devel/setup.bash
source ~/rover_onboard_workspace/devel/setup.bash

NASA KSC – Internship Final Report

Kennedy Space Center 6 18/11/2014

Setup your keys.

Install Gazebo.

 With Gazebo successfully installed, add the following line to your ~/.bashrc file:

A. rover_misc_workspace and Inserting Models into Gazebo
 The directory rover_misc_workspace is aptly named because it contains all of the miscellaneous directories and
files necessary for the Swarmie project and most notably contains all of the Gazebo model files. To make sure that Gazebo
knows where to “look” for the model files, add this line to your ~/.bashrc file:

 You will need to change USER to the username of the machine you are on. This addition will allow you to insert
the correct models into Gazebo.

V. Workflow Automation
 The majority of testing using the simulation requires a significant amount of time starting various processes and
inserting the correct models into Gazebo. Since the majority of the time testing in the simulation should be spent conducting
tests and not setup, several BASH scripts were created to automate the more tedious tasks.

A. software_load
 The software_load script is a program that will automatically load the necessary software onto a Swarmie. This
script is located in the rover_misc_workspace workspace in the rover_scripts directory. To invoke the script, enter the
following commands:

Where the USERNAME and HOSTNAME arguments are your current workstation's username and hostname and

SWARMIE USERNAME and SWARMIE HOSTNAME are the username and hostname of the Swarmie you are loading
the software onto. Contact the developers for Swarmie username and hostname information.

B. driver_launch
 Similarly, the driver_launch script is found in the rover_misc_workspace workspace in the rover_scripts directory.
Also, driver_launch, as the name alludes to, should be located and executed from the laptop driver station. To invoke the
script, execute the following commands:

$ sudo apt-get update
$ sudo apt-get install gazebo4

$ cd ~/rover_misc_workspace/src/rover_scripts/

$ chmod +x driver_launch.sh

$./driver_launch

source /usr/share/gazebo-1.9/setup.sh

export GAZEBO_MODEL_PATH=/home/USER/rover_misc_workspace/src/gazebo/models

$ cd ~/rover_misc_workspace/src/rover_scripts/

$ chmod +x software_load.sh

$./software_load [USERNAME] [HOSTNAME] [SWARMIE USERNAME] [SWARMIE HOSTNAME]

$ wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -

NASA KSC – Internship Final Report

Kennedy Space Center 7 18/11/2014

 This script will automatically start the necessary driverStation processes to operate a Swarmie for physical field
trials and testing. Specifically, it will launch a roscore session, rqt, rover_driver_world_state, and ask if you would like to
use the joystick to teleoperate the Swarmie.

C. rover_driver_gazebo_launch
 The script rover_driver_gazebo_launch is located in the rover_driver_workspace workspace under the
rover_driver_gazebo_launch directory and is responsible for starting up everything you need to conduct test simulations in
Gazebo. To invoke the script, enter the following commands in your terminal window:

 The script will first prompt you to choose the AprilTag distribution you would like to implement for your test.
AprilTags, the tag detection system developed by researchers at the University of Michigan, are used to simulate resources
such as water or minerals [5]. They are used both in simulation and out in the field.

Table 3: AprilTag Distribution Descriptions

Uniform Spawns n number of randomly distributed single AprilTags (where n is a positive integer value
determined by user input).

Clustered Spawns four randomly distributed groups of 64 AprilTags.

PowerLaw Spawns one pile of 64 AprilTags, four piles of 16 AprilTags, 16 piles of four AprilTags, and 64
single AprilTags

 After inputting the desired AprilTag distribution, you will be prompted for the name of the rover you wish to spawn
first. To avoid unexpected results, the script will not let you proceed until you have entered a valid Swarmie name and that
the Swarmie model file exists in rover_misc_workspace/src/gazebo/models. The script will then ask you how many
obstacles you would like for your simulation. The obstacles are blocks that are 25 centimeters cubed and are randomly
distributed throughout the simulation.
 With the correct name, obstacle, and tag variables set, the script will then start a roscore session and the software
modules associated with the Swarmie you chose to insert first. After that, it will then prompt for how many more Swarmies
you would like in your simulation and what their names should be. Similarly to the first Swarmie, the script will start the
necessary software for each selected Swarmie. If you do not wish to add any additional Swarmies, simply input a “0”.
 The script, after starting the Swarmie processes, will start a Gazebo session, an rqt session, and
rover_driver_world_state and wait for the user to select where to insert the first rover and any additional rovers you chose
to add.
 Finally, after spawning the Swarmies, the script will spawn the AprilTags and obstacles into the simulation
environment and wait for the user to press “q” to close all of the processes started by the script. At this point, the user can
use rqt to control the Swarmie(s) in the simulation environment.

$ cd ~/rover_driver_workspace/src/rover_driver_gazebo_launch/src

$ chmod +x rover_driver_gazebo_launch.sh

$./rover_driver_gazebo_launch.sh

NASA KSC – Internship Final Report

Kennedy Space Center 8 18/11/2014

VI. Graphical User Interface
 The GUI used to control the Swarmies is rqt. Figure 1 is a screenshot of a typical rqt session while operating one
rover.

1 2

3

4 5

Figure 1: A screenshot of the rqt graphical user interface used to operate the Swarmies. Essentially, the command
center, the rqt GUI is where the user can monitor a Swarmie’s camera feed, (window 1), monitor the world map,
(window 2) input commands and mission parameters to the Swarmie, (window 3), manually teleoperate the Swarmie,
(window 4), and also monitor the published message topics (window 5).

NASA KSC – Internship Final Report

Kennedy Space Center 9 18/11/2014

A. Parameters
 The following table describes the parameters generated by the genetic algorithm. The parameters can be sent to the
Swarmie by entering them into the rqt plugin rover_mcp and clicking the “Send Parameters” button.

Parameter Description

Travel Give-up Percent chance Swarmie will give up travelling in this time slice

Search Give-up Percent chance the Swarmie will give up the search and return home

Battery Recharge Percent chance the Swarmie gives up the search to return home to recharge its batteries

Uninformed Correlation Window of degrees the Swarmie will choose from when moving towards a target

Informed Correlation Exponential decay rate at which the Swarmie's search pattern decays into the walking
search pattern

Site Fidelity Percent chance that a Swarmie who just found a target will come back to this target to
gather more data

Pheromone Laying Percent chance a Swarmie who just found a target will lay pheromones on the way home

Pheromone Following Percent chance a Swarmie will follow a pheromone trail when found

VII. Operating in the Field
 One of the primary goals of this Swarmie project is to test the software and genetic algorithms on actual physical
rovers. The process of the physical trial setup is as follows:

1. Plug the router into a power source and wait for the network to come up.
2. Turn on the Swarmie(s).
3. Wait for the GPS to lock on the Swarmie(s). A small red light emitting diode (LED) on the GPS module on the

microcontroller board will start blinking when it has a successful connection. If there is no lock after three
minutes, push the reset button on the microcontroller.

4. Start up the driverStation laptop and connect to the wireless network.
5. Invoke the aforementioned driver_launch script located in the rover_misc_workspace workspace and in the

rover_scripts directory. This will start roscore, rqt, and world_state.
6. Each Swarmie must have its own instance of Rover Driver MCP open in rqt to operate. Opening additional rqt

windows for the camera feed and map are recommended but not necessary.
7. Secure Shell (SSH) into a Swarmie and invoke the rover_onboard_node_launch.sh script located in the home

directory of the Swarmie. This will automatically start all of the necessary onboard nodes for the Swarmie. Repeat
this step for each Swarmie you have on.

8. After the test, kill off all of the onboard processes and quit out of the processes started by the driver_launch script.
9. Make sure to completely power off the Swarmies before putting them away.

 Eventually, when the team is past the development and debugging stages of the project, the onboard processes will
start automatically when the Swarmie is powered on, eliminating the need for the SSH connection. For now, the onboard
processes are started manually to aid in the development process.

VIII. Other Work
 In addition to writing this high level users guide, I was responsible for a variety of other software development and
hardware tasks on the Swarmie project this fall. I wrote the majority of the BASH scripts that automated the workflow
including the script that starts up a trial run in Gazebo. I also integrated the C version of the AprilTag library into the
onboard software which reduced the central processing unit (CPU) usage of the target detection software module by almost
half. I was involved in making physical modifications to the Swarmies including adding a felt deck under the ultrasonic
sensors to filter the ground noise to the ultrasonic sensors and thus reducing the number of false positive obstacle detections.
I was heavily involved in other aspects of the onboard software development including testing and debugging the software
in the Gazebo simulation and in the physical Swarmie rovers. I am very grateful to have had such a supportive team that
provided me with tasks that were crucial to the success of the project and not just “busy work”. I feel very privileged to
have had worked on important software and hardware tasks that I believe will benefit mankind.

NASA KSC – Internship Final Report

Kennedy Space Center 10 18/11/2014

IX. Conclusion
 When operating any piece of equipment, a comprehensive guide is necessary to limit confusion and reduce the
learning curve as much as possible. This Swarmie User Manual provides a complete and informative guide to successfully
setup and run a group of virtual and physical Swarmies. The detailed instructions, annotated pictures, informative tables, and
helpful hints provide the reader with a useful tool set to begin operating their rover swarm with minimal difficulty. This will
reduce the precious time spent setting up the Swarmies and allow more time to focus on the ground-breaking research being
conducted.

Acknowledgements
 I would like to thank the team members who have mentored me during my internship: Cheryle Mako, Kurt Leucht,
Lien Moore, Matt Nugent, and Karl Stolleis. They have been fantastic mentors to me and I consider them all lifelong
colleagues and friends. I would also like to thank the folks in the Launch Control Center (LCC): Adam Niev, Kelvin Ruiz,
Allan Villorin, Michael McDonough, and Leandro James for putting up with my calls for an escort into and out of the LCC.
Finally, thank you to all the people over at the Operations Support Building II (OSB II) especially Mr. Greg Clements, Caylyne
Shelton, and Michael Duffy.

References
[1] “Robot Operating System,” http://www.ros.org/about-ros/, retrieved 11/2014
[2] “Ubuntu install of ROS Hydro,” http://wiki.ros.org/hydro/Installation/Ubuntu, retrieved 11/2014
[3] “Creating a workspace for catkin” http://wiki.ros.org/catkin/Tutorials/create_a_workspace/, retrieved 11/2014
[4] “Download and Install Gazebo,” http://gazebosim.org/tutorials?tut=install, retrieved 11/2014
[5] Olson, E. AprilTag: A robust and flexible visual fiducial system. Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 3400-3407.

A. Developer Contact Information

Kurt W. Leucht
Command and Control Software Developer
NASA Control and Data Systems
Kurt.Leucht@nasa.gov

Karl Stolleis
University of New Mexico

stolleis@unm.edu

