The Affordance Template ROS Package for Robot Task Programming

Stephen Hart' and Paul Dinh? and Kimberly Hambuchen?

Abstract— This paper introduces the Affordance Template
ROS package for quickly programming, adjusting, and execut-
ing robot applications in the ROS RViz environment. This pack-
age extends the capabilities of RViz interactive markers [1] by
allowing an operator to specify multiple end-effector waypoint
locations and grasp poses in object-centric coordinate frames
and to adjust these waypoints in order to meet the run-time
demands of the task (specifically, object scale and location).
The Affordance Template package stores task specifications
in a robot-agnostic XML description format such that it is
trivial to apply a template to a new robot. As such, the
Affordance Template package provides a robot-generic ROS
tool appropriate for building semi-autonomous, manipulation-
based applications. Affordance Templates were developed by
the NASA-JSC DARPA Robotics Challenge (DRC) team and
have since successfully been deployed on multiple platforms
including the NASA Valkyrie and Robonaut 2 humanoids, the
University of Texas Dreamer robot and the Willow Garage
PR2. In this paper, the specification and implementation of the
affordance template package is introduced and demonstrated
through examples for wheel (valve) turning, pick-and-place,
and drill grasping, evincing its utility and flexibility for a wide
variety of robot applications.

I. INTRODUCTION

Recent advances in human-robot interface design have led
to a number of useful tools for interacting with complex
systems, such as humanoid robots. Specifically, the abun-
dance of RGBD and LIDAR devices have resulted in the
development of 3D visualizations of robot environments that
reflect the state of the robot in a virtual space with the
aggregate data delivered by these devices. One such tool is
RViz, which enables seamless use with the Robot Operat-
ing System (ROS) environment while providing extensible
interfaces for both visualization and robot control. While
RViz delivers a significant amount of off-the-shelf situational
awareness to a human supervisor with a point-and-click
interface for teleoperation [1], it does not inherently provide
a standard tool for directing robots to accomplish more com-
plex tasks that require extended sequences of commands. The
Affordance Template framework, briefly introduced in [2],
was developed to provide such task-level structure. This

This work was supported by the DARPA Robotics Challenge and the
NASA Human Robotics Systems project. Special thanks to the UT Austin
HCRL lab, Brown University’s RLAB, and David Lu!! for their support in
this work.

1Stephen Hart is with TRACLabs, Inc. Houston, TX 77058, USA
swhart@traclabs.com

2Paul Dinh is with Oceaneering Space Systems, Houston, TX 77058,
USA paul.dinh@nasa.gov

2Kimberly ~ Hambuchen is with NASA
Center, 2101 NASA Pkwy, Houston, TX
kimberly.a.hambuchen@nasa.gov

Johnson
77058,

Space
USA

paper introduces the corresponding Affordance Template
ROS packag

An affordance describes a place or object in the world
that affords an action by a particular agent. If an area
of the perceived environment affords “sitting,” it is not
that that area is a chair, but rather that it has a surface
upon which that agent could sit, whether it be a chair, a
stool, a rock, or the ground. The concept of affordances
was initially introduced in the psychological literature by
Gibson [3] as a means of describing cognitive structures that
assign functional merit to the environment. It is therefore
conceptually applicable for programming robots, embodied
agents that must perform actions to achieve some discernible
objective, where an operator (or a robot itself) can similarly
assign such functionality to discernible areas in observed
sensor data.

An affordance template is a computational construct that
exists in a graphical 3D immersive environment to provide
human-adjustable robot task goals and parameters in object-
centric coordinate frames. If a template is placed in such
an environment alongside a robot avatar and its aggregate
sensory data, a supervisor can move the template to an appro-
priate location—that which is hypothesized to afford the task
behavior—and adjust the template goals and parameters as
needed according to the perceived current run-time context.
Template parameters capture the key degrees of freedom of
the task in an efficient representation making them useful
tools for shared autonomy between an operator and a robot
and suitable for control over unreliable and/or unknown
networks or in scenarios where degraded communications
persist.

The Affordance Template (AT) package is an attempt to
standardize application programming for robots with one or
more manipulator end-effectors. Unlike the de facto standard
ROS-compatible packages for robot navigation [4], motion
planning [5], computer vision (OpenCV), or 3D perception
(PCL), affordance templates exist on-top of these tools,
integrating such functionality as needed. While the current
release incorporates only the Movelt! package, ongoing work
seeks to extend the framework to robot navigation, both
wheeled and legged, and to integrate it with autonomous
perception to alleviate run-time operator adjustments of RViz
task parameters. These topics, and others, will be discussed
in more detail in Section [VI} In the remainder of the paper,
the current release of the AT package is described along
with some motivating examples showing its utility in various

Ihttps://github.com/swhart115/affordance_
templates, Currently available for both Hydro and Indigo ROS
releases.

https://github.com/swhart115/affordance_templates
https://github.com/swhart115/affordance_templates

Fig. 1. A wheel-turning AT instantiated for the Valkyrie robot. Each end-
effector visualization shows a different waypoint for the robot (pre-grasp,
grasp, turn-goal, etc.) at the specified grasp pose (open, closed), and in
the coordinate frame of the white wheel at the center. These waypoints
have an order that allow the operator to step forward or backward along
the trajectory, or to “play-through” the full sequence till the end. The
entire template can be moved in RViz by the 6-DOF controls shown, or
individual waypoints can be adjusted by right-clicking on the hand to expose
corresponding controls.

manipulation demonstrations.

II. RELATED WORK

J.J. Gibson initially proposed the “theory of affordances,”
suggesting that organisms perceive their environment in
terms of their ability to interact with it [3]. It is thus a natural
area of study for embodied learning agents. Applying this
theory to robotics, researchers have examined how a robot
can learn affordances for pushing and grasping objects [6],
tool use [7], and navigation [8]. More generally, various re-
searchers have modeled affordances probabilistically in terms
of likely effect of robot behavior [9], as planning operators
that can be used in extended sequences of manipulation
tasks [10], or in collections that can be acquired through in-
trinsically motivated reinforcement learning [11], [12]. This
work focuses on computationally modeling affordances and
is interesting from a theoretical perspective, but automatic
recognition of a robot’s affordances remains an area of
ongoing research. The affordance templates introduced in
this paper follow a more pragmatic approach that takes
inspiration from the theory, but provides a human-in-the-loop
solution: allow an operator to assess a robot’s environment
through its sensor data and assign affordances manually to
bootstrap application and task programming.

A number of large-scale projects have focused on building
rich and general application tools and libraries so that
developers do not always have to start from scratch to
integrate functionality developed by the community. In par-
ticular, Matlab Robotics Toolkit [13], Microsoft Robotics
Developer’s Studio [14], BRICS [15], ROS [16], YARP [17],
and OPRoS [18] have supported a variety of cross-language
and cross-platform tools that promote building libraries of
functionality and the best practices of component-based
software design. These projects often include GUI tools to
manage and configure deployed components. ROSCo [19],
in conjunction with SMACH [20] provide ROS-based util-

(c) (@

Fig. 2. Placing a wheel-turning AT in RViz for use with the Valkyrie robot.

ities for developing and deploying ROS-based hierarchical
applications, but are limited in their ability to modify task
structure at run-time. Robot Task Commander (RTC), pro-
vides a similar IDE for application development for use
with multiple middlewares, but development still requires
a certain amount of expert, domain knowledge [21]. These
utilities largely remain engineering tools, more useful for a
priori application development, not flexible tools that allow
non-experts to program or adjust applications on-line. Such
an approach suggests a more shared level of programming
where the robot can provide a level of expertise (either pre-
programmed or acquired through experience) for decision-
making or to handle more of the fine-details of a task,
alleviating the load on the operator.

Shared autonomy approaches to robotic operation have
become favored methods owing to the desired semi-
autonomous nature of many systems. Pitzer et al. describe
a shared autonomy system in which a human operator
assists a robot with manipulation tasks by perceiving and
detecting objects in the robot’s environment [22]. Witzig
et al. demonstrate a shared autonomy approach to grasp
planning in which the human operator provides contextual
information that the robot cannot perceive [23]. Shared
autonomy grasping has been demonstrated with RViz in-
teractive markers by Gossow et al. [1]; however, the most
interaction the human has with the system is either adjusting
single-grasp locations or confirming a location is acceptable.
Both the MIT and IHMC DRC teams used similar methods
to the AT framework. MIT developed the Object Template
Description Format to direct their user interface [24]. This
format provides a representation suitable for use by a human
in the shared control of the ATLAS robot. The human
operator uses this format to perform “affordance fitting” on
their interface, which can also be done autonomously by the
robot using its perceptual data. Interactivity is flexible for the
operator, providing different levels of shared control. IHMC

Fig. 3.

Valkyrie turning a valve using a wheel-turning template.

used a “coactive design” approach that integrates with their
visualization tool [25]. This approach provides a similar user
interface to ATs to allow for shared autonomy by combining
human perception of visualized data and robot planning of
mobility and grasping. However, neither of these methods
provide a level of adjustment and interactivity that the AT
framework can provide, which increases the flexibility of
both human operation and robot task activity, nor are they
provided as general purposes tool that are readily available
for use with other robots (at this point). However, the MIT
and IHMC approaches demonstrate a convergence of user
interface methods for shared autonomy between human and
robots that make the contribution of an open-source tool such
as the Affordance Template ROS package timely.

I1II. AFFORDANCE TEMPLATES

This section describes the Affordance Template framework
and details the components within. Figures [T3] provide a
motivating example for the framework in which a wheel-
turning template (Figure [I) is registered to the NASA-JSC
Valkyrie robot’s sensory data in order to have it turn a
valve. In Figure 2(a)] the NASA-JSC Valkyrie robot is shown
standing in front of a valve. In (b), the RViz display window
shows the robot avatar and the point cloud data received
from Valkyrie’s head-mounted Ensenso sensor. From this
view, an operator can clearly identify the valve in the robot’s
workspace, and can manually register the wheel template to
the location of the valve, as seen in (c), adjusting its size as
necessary via a slider in a custom RViz panel (not shown).
Additionally, the wheel template allows the operator to use
RViz interactive markers to adjust the hand pre-grasp, grasp,
and turn-goal waypoint locations (shown as different colored
end-effector overlays, and defined in the coordinate frame
of the wheel). When the goal locations are set, as in (d),
the corresponding robot arm trajectories can be viewed in
RViz to provide user feedback on what the robot’s movement
will look like, if a path is found. These trajectories are
computed using Movelt! When the operator is satisfied with
the displayed trajectories the RViz panel can be used to
execute these trajectories—one or multiple waypoints at a
time, forwards or backwards. Figure [3| shows Valkyrie using
the template to turn a valve.

A. Structure

The structure of an affordance template is shown in
Figure [4(a)l Each affordance template, a € A, is a directed

acyclic graph of display objects, Oy, and ordered sequences
of end-effector waypoints, W,., expressed in coordinate
frames defined by the display objects. Each sequence of
waypoints represents a set of end-effector configurations that,
when followed, achieve the AT’s intended task. For each
template there must be one object 0,00t € Oopj, desig-
nated the “root” object of the template, with a coordinate
frame "°Y°*F.,., expressed in the robot frame, and some
set (possibly empty) of child objects arranged in a tree
structure descending from that root object. As the root object
is defined such that it has no incoming edges, each a forms a
rooted tree. Every wp € W, also has a single parent object
in O,p; and corresponding Cartesian pose (°*pp, °% Ryyp)
expressed in the coordinate frame of this parent object. Each
display object may also have a shape associated with it. In
practice, this shape can be a primitive shape such as a box or
cylinder, or a mesh shape in the form of an STL or Collada
model.

The relationship between display objects and waypoints in
a thus described represents the core structure of the AT. The
details about object scales, template location, and how the
end-effector waypoints map to specific robot control groups
must be determined upon instantiation of each template.
Specifically, each end-effector waypoint, wp, has an abstract
ID associated with it (for convenience chosen to be in the set
of natural numbers N), that represents its corresponding robot
end-effector, a sequence ID, and a grasp pose. For example,
if a particular template is to be applied to a bi-manual system,
such as Valkyrie, the waypoints in that template are assigned
an end-effector ID of “0” or “1”, the former mapping to
the robot’s left hand, the latter to its right. The grasp poses
will similarly map to common configurations such as “hand
closed” or “hand open.” In Figure [A(a)] each waypoint is
labeled as Wp<ce_id>:<seq_id>, Where <ee_id> is the end-
effector ID, and <seq-td> is the ID of that waypoint in
the ordered sequence for that end-effector. When enabling a
robot to be used in the AT framework, a robot configuration
file (as described below) needs to be constructed that defines
the mappings between abstract IDs and the end-effector
groups and grasp poses.

(@ (b)

Fig. 4. Diagram (a) shows the generic structure of ATs. Diagram (b) shows
the template scaling methodology.

Afford : Affordance RViz AT
‘ordance Templ » ZMa. [Rrviz)
Templates Server N ”1 Panel RViz
X
Movelt!
ROS Interface
Robot ‘Afford Robot
Control Template || Config Operator
Library Library
System

Robot Side Operator Side

Fig. 5. The AT implementation architecture. Dark, labeled arrows indicate
network communication (ROS or ZMQ), light arrows indicate code or
operator interfaces.

Finally, a key advantage of the affordance template
methodology is that parameters can be scaled at run time
to allow the more intuitive ability of overlaying objects
onto (possibly variable) shapes in the robot’s environment.
Scaled parameters include the sizes of display objects and
the distance between these objects and their children. A
template, such as the wheel template introduced in Figure |1}
can be scaled and positioned by the operator to allow it
to be used for a large class of turning tasks with minimal
effort. The strategy for scaling is shown in Figure [4(b)] As
the operator adjusts the overall scale s,;; of an object, the
magnitude of the vector pointing to the coordinate frame of
any waypoint expressed in the frame of that object, °%J Puwp» 18
scaled accordingly. This strategy is used to adjust the location
of child display objects, as well as waypoint goals, when the
parent object is scaled.

B. Implementation Architecture

The implementation of the AT package is structured as
seen in Figure [5] An affordance template server ROS node
loads the available templates and robot configurations stored
in libraries on disk, and sends this information to a custom
RViz panel over ZeroMQ (ZMQ) [26] using JSON data
structure From the RViz panel, an operator can choose
which template they want to use and for what robot. This
information is sent back to the server accordingly, which then
instantiates a new template as a Python class, running as a
separate process within the ROS node. This instantiated class
uses the mappings defined in the robot configuration file to
display RViz interactive markers for the display objects and
robot end-effectors at the locations and in the configurations
defined by the template. This process is what allows the
instantiation of the wheel-turning AT shown in Figure |1 to
display the white wheel at the center and the displays of
Valkyrie’s hands in the open and closed configurations at

2The decision to use ZeroMQ as the transport layer between “robot-side”
and “operator-side” was made to provide a simple, but robust protocol,
more flexible than ROS service calls, appropriate for use with degraded or
unreliable networks (such as seen during the DARPA Robotics Challenge),
or with multi-master ROS environments.

the specified waypoint locations (for grasping and turning
the wheel).

Once the template is instantiated in RViz, the operator
can then interact with it, moving it to the desired location,
scaling any display objects as necessary, and adjusting the
locations of the end-effector waypoints. When configured
satisfactorily, Movelt! generated JointTrajectory mes-
sages are computed and sent to the robot in order to follow
the waypoint trajectories at the operator’s discretion (from
the panel to the server to the template). If the operator
wishes to modify template or robot configuration parameters,
updated information can be sent back to the server to be
stored in the libraries for future use. The next sections discuss
the structure of the robot configuration and AT files that are
stored in the libraries.

C. Affordance Template Description Format

Affordance templates are stored in the AT library using
a custom Affordance Template Description Format (ATDF)
meant to provide a similar XML syntax as the Universal
Robot Description Format (URDF), heavily used by the ROS
community, and the Semantic Robot Description Format
(SRDF), used by the Movelt! package. The syntax should
be familiar to ROS users and relatively easy to parse, both
manually and programmatically.

Every ATDF file starts with the name of the template and
an image for display in the RViz panel:

<affordance_template name="Wheel" image="wheel.png">

Next follows the description of display object and end-
effector waypoints. Every object must have a unique name,
geometry, origin, and controls element. If no
parent element is provided (referring to the name of a
different display object) element, the origin is taken to be
with respect to the root AT coordinate frame as specified
in the robot configuration file (defined below). If a parent
is given, the origin will be in the coordinate frame of that
object. The geometry element is identical to that in the
URDF syntax and can encode primitive shapes such as cubes,
spheres, and cylinders, or meshes. The controls element is
a 6-DOF binary specification defining which dimensions the
operator can adjust the object along in the RViz window.
For example, if only translation controls are desired, the
rpy values would be set to “0 0 0” and orientation controls
would not be provided to the operator for the corresponding
object in RViz. The following example shows the display
object for the wheel template. It uses a Collada-format mesh
(torus.dae) that is pitched 90 degrees, and allows full 6-
DOF position/orientation controls. The scale factor is useful
to appropriately scale the size of the IM controls, specifically
for clutter reduction in the RViz window.
<display_objects>
<display_object name="wheel">
<geometry>
<mesh>
<filename="torus.dae"/>
<scale="1.0 1.0 1.0"/>

</mesh>
</geometry>

<origin xyz="0 0 0" rpy="0 1.57 0"/>
<controls xyz="1 1 1" rpy="1 1 1" scale="0.3"/>
</display_object>
</display_objects>

Any number of display objects are acceptable for each
template, in whatever tree-based relationship specified. There
must be one object that has no parent (the root object), and
thus is defined in the root frame of the template.

End-Effector waypoints are defined similarly. Multiple
different waypoint trajectories can be stored in the ATDF
for each template, distinguished by the name tag. The first
one is displayed by default, though the operator can switch
between them using a right-click context menu.

<end_effector_waypoints name="Right Turn">
<end_effector_waypoint>
<end_effector="0"/>
<id="o0"/>
<pose_group="0"/>
<display_object="wheel"/>
<origin xyz="0.0 0.3 -0.1"
<controls xyz="1 1 1" rpy="0 1 1"
</end_effector_waypoint>
<end_effector_waypoint>
<end_effector="0"/>
<id="1"/>
<pose_group="0"/>
<display_object="wheel"/>
<origin xyz="0.0 0.2 -0.1"
<controls xyz="1 1 1" rpy="0 1 1"
</end_effector_waypoint>

rpy="0 -1.57 0"/>
scale="0.25"/>

rpy="0 -1.57 0"/>
scale="0.25"/>

</end_effector_waypoints>

The end-effector ID that will be mapped to the specific
robot group is defined by the end effector tag. The
sequence ID for each waypoint is defined by the id tag.
The configuration (i.e., hand closed, hand open) is de-
fined by the pose_group tag. The display object that the
waypoint’s location is defined with respect to is defined
as display.object. The origin and controls tags
capture similar information as for the display objects.

D. Robot Configuration File

To instantiate an AT for a particular robot, a simple YAML
configuration file is required to map the abstract declarations
of the robot-generic template defined in the ATDF to the
specific exigencies of each robot. This ensures that specific
end-effectors (e.g. left or right hands) will be mapped to the
appropriate template waypoints and that the template will
exist in the appropriate robot base coordinate system. This
configuration file provides the name of the robot, the name of
the automatically generated Movelt! configuration package
(generated through the Movelt! “setup wizard”), and some
basic information about the robot that needs to be determined
for use with the AT package. This information includes the
root offset from the robot’s base frame to where any AT is
first placed, transformation coordinates to align the robot’s
end-effectors with the abstract AT end-effector frames (i.e.,
such that hands are oriented appropriately), and mappings
between the abstract template end-effector labels and the
corresponding end-effector group names. For example, the
YAML config file for Robonaut 2 is as follows:

robot_name: r2
moveit_config_package:
frame_id: r2/robot_base
root_offset: [0.4,0,-0.2,3.14,0,0]
end_effector_map:
- name: left_hand
id: 0
pose_offset: [0,0,0,1.57,0,0]
- name: right_hand
id: 1
pose_offset: [0,0,0,-1.57,0,0]
end_effector_pose_map:

r2_moveit_config

— name: Right Hand Open
group: right_hand
id: 0

— name: Right Hand Close
group: right_hand
id: 1

- name: Right Hand Point
group: right_hand
id: 2

In this example, end_effector.map is used to map
the abstract end-effector labeled “0” in the ATDF will
to the R2 Movelt! group left_hand. Correspondingly,
end-effector “1” will be mapped to right_hand. These
group names must be defined in the generated SRDF file
created by the Movelt! setup process. Each group also has
a pose_offset field necessary to re-orient the command
and display of the end-effectors into the robot-agnostic AT
frame convention. Similarly, end_effector_pose_map is
used to map the abstract AT end-effector pose identifiers of
the ATDF to poses stored in the SRDF. For example, the
stored pose Right Hand Close for end-effector group
right_hand is here mapped to the AT ID “2”. Additional
pose mappings are stored in this file as well, but omitted
for reasons of space. When configuring a new robot for
use with the AT package, the developer must determine
the appropriate settings for these values. In the future, an
automatic “wizard” tool could be useful, but has not been
developed at this point.

IV. RVIZ INTERFACE

Two complimentary methods are provided to create, mod-
ify, or interact with ATs in order to execute task behavior on
a robot: a custom RViz panel and context-menus available
for each template after it has been instantiated.

A. Affordance Template Panel

Figure [6] shows the RViz Affordance Template panel. In
the main RViz window, the Dreamer robot is shown with
a pick-and-place AT. Basic information about AT server
connectivity is shown in the right-side panel, along with
which templates have been initiated. Multiple instances of
any template can be instantiated at any given time. In this
panel, the operator can also delete existing templates. A
second hidden tab in the top section allows the operator
to assign robots to the ATs, as well as to change and save
parameters of that robot’s configuration YAML (Section [IT[-]
D). The lower half of this panel shows the AT library. To
instantiate a new template, the operator need only select an

icon from this list and the corresponding template appears
in the RViz window for the appropriate robot. Shown are
templates for a door handle, the R2 ISS Taskboard (discussed
in more detail in Section and pick-and-place.

Fig. 6. Dreamer in RViz with a pick-and-place template, and the AT panel
on the right.

Other tabs in the bottom half of the panel are seen for
scaling objects (as described in Section [[II-A) or managing
the end-effector waypoint trajectory of the template. The
operator has the option of commanding the robot to move
through these trajectories any number of steps at a time
in any direction, or for de-coupling the commands to the
end-effectors (so that they can be run in conjunction or in
isolation), if desired. For considerations of space, explicit
images of these panels are omitted.

B. Context Menus

Right-clicking on display objects or waypoints in the main
RViz window provides the operator a number of useful
features, including the following.

o Hide/Show Controls: To reduce clutter in the RViz en-
vironment, the operator has the option of not displaying
the controls at all times. Exposure of the controls is used
occasionally for placing the template in the appropriate
location or for fine-tuning end-effector positions.

o Add/Delete/Move Waypoints: The operator has op-
tions to add waypoints to the existing end-effector
trajectory (either before or after existing goals), delete
waypoints, or swap the sequence order of any pair of
waypoints.

o Change Grasp Pose: For waypoints, the operator
has the option to alter which stored grasp pose is
commanded at each waypoint. All poses available in
the robot’s SRDF file are provided as options.

o Save Modifications: The operator can save any
changes to the template back to the AT library for future
use.

o Change Trajectory: This options lets the operator
choose which of multiple trajectories associated with

a template is displayed at any given time.

V. EXAMPLES

This section briefly explores a number of motivating
examples demonstrating some key features of the AT package
and how they apply to different robots and contexts.

A. Movelt! Integration

Manual placement of an AT in a location does not ex-
plicitly determine if the corresponding waypoint trajectory
is within the workspace of the robot, nor does it generate
or show the path the robot would follow to achieve that
trajectory. To these ends, the Movelt! motion planning library
was integrated into the AT package to provide both of
these capabilities inherently. In general, any motion plan-
ning library could be used for these purposes, but Movelt!
provides an off-the-shelf solution that is widely used by the
ROS community. Figure [7] shows the wheel-turning template
instantiated for R2. The Movelt!-generated path from the
robot’s current location through the first two waypoints
(for each arm’s sequence) is overlaid in purple. From the
control panel, the operator can choose how many waypoint
steps “ahead” in each sequence are planned, displayed, and
executed at a time. Integrating Movelt! quickly allows an
operator to gain introspection on the achievability of the task
at hand.

B. Robot Generalization

Because each template stores only abstract information
about a task, a robot configuration YAML description (Sec-
tion is required to instantiate the template for a given
context. Figure B] shows a drill AT instantiated for the R2,
Valkyrie, and Dreamer systems. If the trajectory stored in the
ATDEF is suitable for a given robot “off-the-shelf,” no further
programming is necessary, only than manual registration of
the template onto the robot’s 3D data. If a robot-specific

Fig. 7. Visualization of incremental path demonstrated when using the
wheel turning AT with the R2 system. The Movelt! generated path is display
between the robot’s current position and the first end-effector waypoint for
each arm. The wheel template has been overlaid on top of the RGBD data
observed by the robot showing a green valve in its workspace.

() (®) (©

Fig. 8. A drill grasping AT instantiated for R2, Valkyrie, and Dreamer.

trajectory is needed, the operator is free to expose the
individual waypoint controls, modify a stored trajectory as
needed, and save the modified template for future use.

C. Object Scaling

With the scaling procedure discussed in Section [[lI-A] the
wheel template can be used in different run-time contexts.
Figure 9] shows this template (instantiated for R2) in an array
of sizes. The size of the template was adjusted using a slider
in the “Object Scaling” tab in the bottom half of the RViz
AT panel (Figure[6), which was generated automatically from
the ATDF definition.

(@ (b)

Fig. 9. The wheel turning template scaled to smaller and larger sizes.

D. Multi-Trajectory Storage

Figure [T0] shows three waypoint trajectories stored in
the ISS Taskboard AT. The taskboard represents a set of
canonical manipulation tasks (switches, buttons, handles,
etc.) present on the ISS that is used for R2 development
and practice as the robot’s operators learn how to control
a humanoid robot in space. Each of the three trajectories
shown in the figure displays stored waypoints for pushing
a different button. As there are dozens of different tasks on
the taskboard, it is natural to allow the single taskboard AT
to store strategies for achieving these tasks, as opposed to
storing many separate templates in the library. In this manner,
an operator can choose from the AT context menu which task
to perform at any given time.

VI. ONGOING WORK

The AT framework follows a supervisory control paradigm
of Plan, Teach, Monitor, Intervene, and Learn (PTMIL) [27].
Currently, the framework supports only the TMI steps of
this paradigm as it only allows the supervisor to place a
template in an appropriate location, adjust certain parameters,

and execute the resulting plan on the robot, intervening if
necessary. Currently, the framework is being extended along
multiple dimensions.

o Planning: Integration of motion planning tools such
as Movelt! allows an extra level of verification, intel-
ligence, and visualization for the supervisor concern-
ing the robot’s expected motion for accomplishing the
goal(s) of the AT. Additional uses of robot planning
could also be used to eliminate the necessity for the
supervisor to set all task parameters, as is currently nec-
essary, or to chain ATs together to accomplish multiple
extended behaviors (e.g. walk up to an object, pick it
up, use it for some purpose).

o Learning: Either in the absence of, or in conjunction
with, more sophisticated planning techniques, ATs could
monitor the parameter values over the course of multiple
executions of a task and provide statistical feedback on
whether those values are likely to lead to task success.
The metric of success could be supervised (let the
supervisor indicate task outcome after execution) or
unsupervised depending on the task’s requirements.

o Perceptual Registration: Rather than relying on the
supervisor to register templates with sensor data (as in
Figure [2), autonomous point cloud registration tech-
niques such as ICP could be used. The robot could
monitor its environment and provide guesses about
likely affordances, initiating corresponding ATs with
pre-adjusted parameter settings in RViz accordingly.

o Navigation & Mobility Tasks: The AT package
as described supports only manipulation-based tasks.
Extending the AT package to allow locomotion-based
templates (e.g. walking up stairs, driving through a
cluttered environment) would be desirable to unify mo-
bility and manipulation in the same application frame-
work. Incorporation of the ROS Navigation Stack [4]
is currently being investigated as it provides advanced
mapping and mobility tools. Applying such templates
to multi-legged locomotion is also desirable, though
potentially more challenging.

o Force-Based Tasks: Currently, existing ATs only allow
the supervisor to set spatial parameters. However, force-
or contact-based goals (e.g. apply a force along an axis
of a certain magnitude, turn the wheel with a desired
torque) could also be set in the framework. Such specifi-
cations will ultimately be necessary for guiding a robot
to accomplish sophisticated manipulation tasks in real-
world contexts. The visualization of these parameters
in a 3D spatial environment is an interesting problem
on its own terms, and currently various approaches are
under investigation.

Although some of these extensions individually may require
significant research contributions, the AT framework pro-
vides an efficient representation for aggregating this func-
tionality together in a unified structure. By keeping the
supervisor “in the loop” and phasing in more autonomy as
appropriate—whether in terms of planning, perception, or

(2) (b) (©

Fig. 10. Three different stored trajectories for pushing (different) buttons
on the ISS Taskboard.

learning—the framework supports multiple levels of inter-
vention that can ensure task success in multiple contexts.

VII. CONCLUSION

This paper introduces the Affordance Template ROS
package for creating, executing, and supervising task-level
applications on manipulation-based robotic systems. The
package provides a robot-generic framework suitable for
use in position-based tasks, though flexible enough to be
modified easily to meet the demands of specific contexts.
Although the package has clear limitations, it provides a core
library in which further extensions can be made as described
in Section While the current implementation provides a
set of tools that various members of the community are con-
verging on, such as 3D tools for placing and adjusting robot
end-effector goals amidst overlaid RGBD sensor data and a
robot avatar, visualization of robot trajectories in anticipation
of commanded movement, object-centric coordinate frame
goal definitions (cf. [25], [24]), the AT package provides
the first open-source ROS package that is, by construction,
applicable to multiple robots, easily extensible to new tasks,
and built using common tools such as RViz interactive
markers and Movelt! A common toolkit for robot application
development will greatly progress robot task development in
the community, while mitigating redundant development by
various groups in the field. By choosing a ROS grounding
for the package, it is also the hope that the package will be
familiar and easy to use to prevent a steep learning curve for
new users.

REFERENCES

[1] D. Gossow, A. Leeper, D. Hershberger, and M. T. Ciocarlie, “Inter-
active markers: 3-D user interfaces for ros applications [ros topics],”
IEEE Robotics & Automation Magazine, vol. 18, no. 4, pp. 14-15,
2011.

[2] S. Hart, P. Dinh, and K. Hambuchen, “Affordance templates for shared
robot control,” in Artificial Intelligence and Human-Robot Interaction,
AAAI Fall Symposium Series, Arlington, VA. USA, November 2014.

[3] J. J. Gibson, “The theory of affordances,” in Perceiving, acting and
knowing: toward an ecological psychology. Hillsdale, NJ: Lawrence
Erlbaum Associates Publishers, 1977, pp. 67-82.

[4] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The office marathon: Robust navigation in an indoor office environ-
ment,” in International Conference on Robotics and Automation, 2010.

[5] I. A. Sucan and S. Chitta. Movelt! [Online]. Available: http:
//moveit.ros.org

[6] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini, “Learning
about objects through action: Initial steps towards artificial cognition,”
in [EEE International Conference on Robotics and Automation, Taipei,
May 2003.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

A. Stoytchev, “Toward learning the binding affordances of objects:
A behavior-grounded approach,” in Proceedings of the AAAI Spring
Symposium on Developmental Robotics, Stanford University, 2005.
J. Modayil and B. Kupiers, “Autonomous development of a grounded
object ontology by a learning robot,” in Proceedings of the Twenty-
Second Conference on Artificial Intelligence (AAAI-07), 2007.

E. Sahin, M. Cakmak, M. Dogar, E. Ugur, and G. Ugoluk, “To afford
of not to afford: A formalization of affordances toward affordance-
based robot control,” Adaptive Behavior, vol. 4, no. 15, pp. 447472,
2007.

N. Kriiger, J. Piater, F. Worgotter, C. Geib, R. Petrick, M. Steedman,
A. Ude, T. Asfour, D. Kraft, D. Omrcen, B. Hommel, A. Agostino,
D. Kragic, J. Eklundh, V. Kruger, and R. Dillmann, “A formal
definition of object action complexes and examples at different levels
of the process hierarchy,” http://www.paco-plus.org, 2009.

S. Hart and R. Grupen, “Intrinsically motivated affordance learning,”
in 2009 Workshop on Approaches to Sensorimotor Learning on Hu-
manoids at the IEEE Conference on Robots and Automation (ICRA),
Kobe, Japan, 2009.

——, “Intrinsically motivated affordance discovery and modeling,” in
Intrinsically Motivated Learning in Natural and Artificial Systems,
G. Baldassarre and M. Mirolli, Eds. Springer Berlin Heidelberg,
2013, pp. 279-300.

P. I. Corke, Robotics, Vision & Control: Fundamental Algorithms in
Matlab. Springer, 2011.

Microsoft Co., “Microsoft ~ robotics developers
http://msdn.microsoft.com/en-us/robotics/, 2008.

H. Bruyninckx, M. Klotzbiicher, N. Hochgeschwender, G. Kraet-
zschmar, L. Gherardi, and D. Brugali, “The BRICS component
model: A model-based development paradigm for complex robotics
software systems,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, ser. SAC ’13. New York,
NY, USA: ACM, 2013, pp. 1758-1764. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480693

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

G. Metta, P. Fitzpatrick, and L. Natale, “YARP: yet another robot
platform,” Int. Journal on Advanced Robotics Systems, Special Issue
on Software Development and Integration in Robotics, March 2006.
C. Jang, S.-I. Lee, S.-W. Jung, B. Song, R. Kim, S. Kim, and C.-
H. Lee, “OPRoS: A new component-based robot software platform,”
ETRI journal, vol. 32, no. 5, pp. 646-656, 2010.

H. Nguyen, M. Ciocarlie, J. Hsiao, and C. C. Kemp, “ROS Comman-
der (ROSCo): Behavior creation for home robots,” in Proceedings of
the IEEE Conference on Robotics and Automation (ICRA). ICRA,
2013.

J. Bohren and S. Cousins, “The smach high-level executive,” Robotics
& Automation Magazine, IEEE, vol. 17, no. 4, pp. 18-20, 2010.

S. Hart, P. Dinh, J. Yamokoski, B. Wightman, and N. Radford,
“Robot Task Commander: A framework and IDE for robot application
development,” in International Conference on Intelligent Robots and
Systems (IROS). Chicago, IL. USA: IEEE/RSJ, September 2014.

B. Pitzer, M. Styer, C. Bersch, C. DuHadway, and J. Becker, “Towards
perceptual shared autonomy for robotic mobile manipulation,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, May 2011, pp. 6245-6251.

T. Witzig, J. Zollner, D. Pangercic, S. Osentoski, R. Jakel, and R. Dill-
mann, “Context aware shared autonomy for robotic manipulation
tasks,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, Nov 2013, pp. 5686-5693.

M. Fallon, S. Kuindersma, S. Karumanchi, M. Antone, T. Schnei-
der, H. Dai, C. Perez D’Arpino, R. Deits, M. DiCicco, D. Fourie,
T. Koolen, P. Marion, M. Posa, A. Valenzuela, K.-T. Yu, J. Shah,
K. Iagnemma, R. Tedrake, and S. Teller, “Affordance-based Perception
and Whole-body Planning in the DARPA Robotics Challenge,” MIT,
Cambridge, MA, Tech. Rep. MIT-CSAIL-TR-2014-003, 2014.

T. Koolen and J. Smith, “Summary of Team IHMC’s Virtual Robotics
Challenge Entry,” in IEEE-RAS International Conference on Hu-
manoid Robots. Atlanta, Georgia: IEEE-RAS, 2013.

iMatix Corporation. (2007) ZeroMQ: Distributed Computing Made
Simple. [Online]. Available: http://zeromq.org

T. B. Sheridan, Telerobotics, Automation, and Human Supervisory
Control. The MIT Press, 1992.

studio,”

http://moveit.ros.org
http://moveit.ros.org
http://doi.acm.org/10.1145/2480362.2480693
http://zeromq.org

	INTRODUCTION
	RELATED WORK
	AFFORDANCE TEMPLATES
	Structure
	Implementation Architecture
	Affordance Template Description Format
	Robot Configuration File

	RViz INTERFACE
	Affordance Template Panel
	Context Menus

	Examples
	MoveIt! Integration
	Robot Generalization
	Object Scaling
	Multi-Trajectory Storage

	ONGOING WORK
	CONCLUSION
	REFERENCES
	References

