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The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS)
defines the concept of sense and avoid for remote pilots as “the capability of a UAS to
remain well clear from and avoid collisions with other airborne traffic.” Hence, a rigorous
definition of well clear is fundamental to any separation assurance concept for the inte-
gration of UAS into civil airspace. This paper presents a family of well-clear boundary
models based on the TCAS II Resolution Advisory logic. For these models, algorithms
that predict well-clear violations along aircraft current trajectories are provided. These
algorithms are analogous to conflict detection algorithms but instead of predicting loss of
separation, they predict whether well-clear violations will occur during a given lookahead
time interval. Analytical techniques are used to study the properties and relationships
satisfied by the models.

Nomenclature

D Horizontal distance parameter
DTHR, TTHR Horizontal distance and time thresholds
dcpa Distance at closest point of approach
ε Numerical parameter whose value is ±1
s,v Two-dimensional aircraft state, i.e., position and velocity
sz, vz Vertical aircraft state, i.e., altitude and vertical speed
tvar Time variable
τ , τmod TCAS II tau and modified tau
tcpa Time to closest point of approach
tep Time to entry point
tcoa Time to co-altitude
ZTHR, TCOA Vertical distance and time thresholds
Subscripts
o, i Ownship and intruder information of a position or velocity vector
x, y, z Northern, eastern, and altitude component of a position or velocity vector
Acronyms
CAT Collision Avoidance Threshold
NAS National Airspace System
NMAC Near Mid-Air Collision
RA Resolution Advisory
SAA Sense and Avoid
SST Self-Separation Threshold
SSV Self-Separation Volume
TCAS Traffic Alerting and Collision Avoidance System
TCPA Time to Closest Point of Approach
UAS Unmanned Aircraft Systems
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I. Introduction

One of the major challenges of integrating Unmanned Aircraft Systems (UAS) into the airspace system
is the lack of an on-board pilot to comply with the legal requirement that pilots see and avoid other aircraft
in their vicinity. To address this challenge, the final report of the FAA-sponsored Sense and Avoid (SAA)
Workshop for Unmanned Aircraft Systems [2] defines the concept of sense and avoid for remote UAS pilots
as “the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic.” Under
this definition, a rigorous definition of well clear becomes fundamental to any sense and avoid concept that
involves UAS.

NASA’s Unmanned Aircraft Systems Integration in the National Airspace System (UAS in the NAS)
project aims at conducting research towards the integration of civil UAS into non-segregated airspace op-
erations. As part of this project, NASA has developed a sense and avoid concept for UAS that extends
the concept outlined by the SAA Workshop [1]. The NASA concept includes a volume, namely the Self
Separation Volume (SSV), located between the Collision Avoidance Threshold (CAT), defined by collision
avoidance systems, and the Self-Separation Threshold (SST), defined by self-separation systems [2]. The SSV
represents a well-clear boundary where aircraft inside the SSV are considered to be in well-clear violation.
This volume is intended to be large enough to avoid safety concerns for controllers and see-and-avoid pilots,
but small enough to avoid disruptions to traffic flow. A key characteristic of NASA’s concept is that the
SSV is a conservative extension of the CAT defined by the Traffic Alerting and Collision Avoidance System
(TCAS).

TCAS is a family of airborne devices that are designed to reduce the risk of mid-air collisions between
aircraft equipped with operating transponders [10]. TCAS II, the current generation of TCAS devices,
is mandated in the US for aircraft with greater than 30 seats or a maximum takeoff weight greater than
33,000 pounds. Although it is not required, TCAS II is also installed on many turbine-powered general
aviation aircraft. Version 7.0 is the current operationally-mandated version of TCAS II, and Version 7.1
has been standardized [8]. In contrast to TCAS I, the first generation of TCAS devices, TCAS II provides
resolution advisories (RAs). RAs are visual and vocalized alerts that direct pilots to maintain or increase
vertical separation with intruders that are considered collision threats. TCAS II resolution advisories can
be corrective or preventive depending on whether the pilot is expected to change or maintain the aircraft’s
current vertical speed. Corrective RAs are particularly disruptive to the air traffic system since they may
cause drastic evasive maneuvers. For this reason, they are intended as a last resort maneuver when all other
means of separation have failed.

The core of the TCAS II RA logic is a test that checks distance and time variables for the horizontal
and vertical dimensions against a set of pre-defined threshold values. To ensure interoperability between
NASA’s SSA concept and TCAS, the mathematical definition of the volume SSV is based on the TCAS II
Resolution Advisory Logic [5]. The definition of SSV follows the same logic, but uses different thresholds
that conservatively extends the collision avoidance threshold provided by TCAS.

This paper generalizes the definitions of the well-clear boundary provided in [5]. In particular, it presents
a family of well-clear boundary models based on different, but related, time variables. Formal techniques
are used to study properties of these models such as symmetry, local-convexity, and inclusion. For each
one of these models, an algorithm is provided that computes the time interval during which aircraft are not
well clear assuming that they continue along their current trajectories. These detection algorithms assume
the availability of accurate state vector information for the two aircraft. These algorithms completely and
correctly characterize all encounter geometries that will cause a well-clear violation within a given lookahead
time, assuming linear aircraft trajectories.

The formal development presented in this paper is part of the NASA’s Airborne Coordinated Resolution
and Detection (ACCoRD) mathematical framework, which is electronically available from http://shemesh.

larc.nasa.gov/people/cam/ACCoRD. All theorems in this paper have been formally verified in the Prototype
Verification System (PVS) [7], an automated theorem prover.
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II. Distance and Time Variables

Distance and time variables are important elements of any separation assurance concept. These variables
are functions over the aircraft current states which are compared against distance and time thresholds. Many
conflict detection and resolution systems rely on the time of closest point of approach and the distance at
that time as their main time and distance variables [4]. This section describes some additional distance and
time variables that are particularly relevant to the definition of a well-clear boundary model.

This paper assumes that accurate aircraft surveillance information is available as horizontal and vertical
components in a three-dimensional (3-D) airspace. Letters in bold-face denote two-dimensional (2-D)
vectors. Vector operations such as addition, subtraction, scalar multiplication, dot product, i.e., s · v ≡
sxvx + syvy, the square of a vector, i.e., s2 ≡ s · s, and the norm of a vector, i.e., ‖s‖ ≡

√
s2, are defined in

a 2-D Euclidean geometry. Furthermore, the expression v⊥ denotes the 2-D right perpendicular of v, i.e.,
v⊥ ≡ (vy,−vx), and 0 denotes the 2-D vector whose components are 0, i.e., 0 ≡ (0, 0).

The mathematical models presented in this paper consider two aircraft referred to as the ownship and
the intruder aircraft. For the ownship, the current horizontal position and velocity are denoted so and vo,
respectively. Its altitude and vertical speed are denoted soz and voz, respectively. Similarly, the horizontal
position and velocity of the intruder aircraft are denoted si and vi, respectively, and its vertical altitude
and speed are denoted siz and viz, respectively. As it simplifies the mathematical development, this paper
uses a relative coordinate system where the intruder is static at the center of the coordinate system. In this
relative system, s = so − si and v = vo − vi represent the horizontal relative position and velocity of the
aircraft, respectively. Furthermore, sz = soz − siz and vz = voz − viz represent the vertical relative position
and speed of the aircraft, respectively.

Assuming constant relative horizontal velocity v, the horizontal range between the aircraft at any time
t is given by

r(t) ≡ ‖s + tv‖ =
√

s2 + 2t(s · v) + t2v2. (1)

The time of horizontal closest point of approach, denoted tcpa, is the time t that satisfies ṙ(t) = 0, i.e.,
t = − s·v

v2 . The dot product s · v characterizes whether the aircraft are horizontally diverging, i.e., s · v > 0,
or horizontally converging, i.e., s · v < 0. By convention, tcpa is defined as 0 when v = 0. Hence, tcpa is
formally defined as

tcpa(s,v) ≡

− s·v
v2 if v 6= 0,

0 otherwise.
(2)

It is noted that tcpa(s,v) > 0 when the aircraft are horizontally converging, tcpa(s,v) < 0 when the aircraft
are horizontally diverging, and tcpa(s,v) = 0 when the aircraft are neither converging or diverging. The
distance at time of closest point of approach is defined as

dcpa(s,v) ≡ r(tcpa(s,v)) = ‖s + tcpa(s,v)v‖. (3)

In the vertical dimension, assuming constant relative vertical speed, the relative altitude between the
aircraft at any time t is given by

rz(t) ≡ |sz + tvz|. (4)

The time to co-altitude tcoa is the time t that satisfies rz(t) = 0, i.e, t = sz
vz

. Similar to the horizontal
case, the product szvz characterizes whether the aircraft are vertically diverging, i.e., szvz > 0, or vertically
converging, i.e., szvz < 0. This paper defines time to co-altitude as −1 when the aircraft are not vertically
converging. Therefore,

tcoa(sz, vz) ≡

− szvz if szvz < 0,

−1 otherwise.
(5)

Formula (5) is well defined since szvz < 0 implies that vz 6= 0.

II.A. Horizontal Time Variables

A (horizontal) time variable is a function that maps a relative horizontal position and velocity into a real
number. This real number is negative when the aircraft are horizontally diverging. When the real number is
non-negative, this number represents a time that, in a separation assurance logic, is intended to be compared
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against a time threshold. In this paper, the time threshold is called TTHR. An example of a time variable
that is used in conflict detection logics is tcpa [4].

The time variable used in earlier versions of the TCAS detection logic is called tau, denoted τ [8]. Tau
estimates tcpa, but is less demanding on sensor and surveillance technology than tcpa. Indeed, τ is simply

defined as range over closure rate, where closure rate is the negative of the range rate, i.e., τ = − r(0)ṙ(0) =

− ‖s‖s·v
‖s‖

= − s2

s·v . This paper defines τ as −1 when the aircraft are not horizontally converging. Formally,

τ(s,v) ≡

− s2

s·v if s · v < 0,

−1 otherwise.
(6)

For a limited number of scenarios, the values of τ and tcpa coincide. However, in most scenarios, the value
of τ tends toward infinity as the aircraft approach the closest point of approach. In general, τ is a good
approximation of tcpa, but only for large values. For that reason, TCAS II uses a modified variant of τ called
modified tau, denoted τmod [8]. Modified tau provides a better estimation of tcpa and has a more regular
behavior than τ in the proximity of the closest point of approach. In [3], modified tau is defined such that

τmod = − r(0)
2−DTHR2
ṙ(0) = DTHR2−s2

s·v . Similar to τ , τmod is defined as -1 when the aircraft are not horizontally
converging, i.e.,

τmod(s,v) ≡

 DTHR2−s2
s·v if s · v < 0,

−1 otherwise.
(7)

The definition of τmod in Formula (7) depends on DTHR, which is a horizontal distance threshold. This
threshold is called DMOD in the TCAS II RA logic and its actual value depends on a sensitivity level based
on the ownship’s altitude [8].

In [6], a time variable called time to entry point, denoted tep, is proposed. Time to entry point is defined
as the time to loss of horizontal separation with respect to DTHR assuming straight-line aircraft trajectories.
Similar to tcpa, tep decreases linearly over time. Time to entry point is formally defined as

tep(s,v) ≡

Θ(s,v, DTHR,−1) if s · v < 0 and ∆(s,v, DTHR) ≥ 0,

−1 otherwise,
(8)

where

Θ(s,v, D, ε) ≡
−s · v + ε

√
∆(s,v, D)

v2
, (9)

∆(s,v, D) ≡ D2v2 − (s · v⊥)2. (10)

The function Θ is only defined when v 6= 0 and ∆(s,v, D) ≥ 0. In this case, it computes the times when the
aircraft will lose separation, if ε = −1, or regain separation, if ε = 1, with respect to D. When the aircraft
are not horizontally converging or ∆(s,v, DTHR) < 0, time to entry point is defined as -1. Formula (8) is well
defined since the condition s · v < 0 guarantees that v 6= 0.

II.B. Properties of Horizontal Time Variables

A useful property of a time variable is symmetry. A time variable tvar is said to be symmetric if and only for
all s,v,

tvar(s,v) = tvar(−s,−v). (11)

Symmetry guarantees that in a pairwise scenario both the ownship and intruder aircraft computes the
same value for the time variable. Hence, checking a symmetric time variable against a given time threshold
returns the same Boolean value for both aircraft.

Theorem 1. The time variables tcpa, τ , τmod, and tep are symmetric.
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It is possible to define time variables that are not symmetric. For instance, a time variable that com-
putes the first time when the intruder aircraft enters an elliptical area aligned to the ownship trajectory
is not symmetric for every scenario. However, any time variable can be transformed into a symmetric
one by using min and max operators. For instance, the time variables min(tvar(s,v), tvar(−s,−v)) and
max(tvar(s,v), tvar(−s,−v)) are symmetric for any time variable tvar.

Figure 1 shows a graph of time vs. τ , tep, τmod, and tcpa for an initial scenario where the ownship
and intruder aircraft are located at (0 nmi,−3.25 nmi) and (−6.25 nmi, 0.25 nmi), respectively, flying at
co-altitude, the ownship ground speed is 150 kts, heading 53o, and the intruder ground speed is 350 kts,
heading 90o.a In this scenario, the distance threshold DTHR used in the definition of τmod and tep is 1 nmi.
This scenario illustrates that while tep, τmod, and tcpa decrease over time, the time variable τ decreases up
to some point, but then it abruptly increases in the vicinity of the closest point of approach. Moreover,
when these time variables are checked against a time threshold TTHR, represented by the horizontal line at
30 seconds, the time variable tep crosses the time threshold first, followed by τmod, tcpa, and τ , in that order.
Interestingly, this property holds for any converging scenario and any choice of threshold values.
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Figure 1: Time vs. τ , tcpa, τmod, tep

Theorem 2. Let s,v be such that s · v < 0, ‖s‖ > DTHR, and dcpa(s,v) ≤ DTHR, i.e., the aircraft are
horizontally converging, outside the distance threshold DTHR, and their distance at time of closest point of
approach is less of equal than DTHR, the following inequalities hold

tep(s,v) ≤ τmod(s,v) ≤ tcpa(s,v) ≤ τ(s,v). (12)

aAircraft headings are measured in true north clockwise convention, i.e., 0o points to the north and degrees are positive in
clockwise direction.
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III. A Family of Well-Clear Boundary Models

A well-clear boundary specifies the set of aircraft states that are considered to be in well-clear violation.
Following the TCAS detection logic, the well-clear boundary models in this paper are specified by a logical
condition that simultaneously checks horizontal and vertical violations. A horizontal violation occurs if the
current range is less than a given horizontal distance threshold DTHR. A horizontal violation also occurs if
distance at time of closest point of approach is less than DTHR and a given time variable tvar is less than a
given time threshold TTHR. In the vertical dimension, a similar comparison is made. Vertical well clear is
violated if the relative altitude is less than a given altitude threshold ZTHR or if the time to co-altitude is less
than a given vertical time threshold TCOA. The distinct and altitude thresholds are considered to be positive
numbers, i.e., DTHR > 0 and ZTHR > 0. The time thresholds are considered to be non-negative, i.e., TTHR ≥ 0
and TCOA ≥ 0. Formally, this well-clear violation condition can be denoted as follows.

WCVtvar(s, sz,v, vz) ≡ Horizontal WCVtvar(s,v) and

Vertical WCV(sz, vz),
(13)

where
Horizontal WCVtvar(s,v) ≡ ‖s‖ ≤ DTHR or

(dcpa(s,v) ≤ DTHR and 0 ≤ tvar(s,v) ≤ TTHR),

Vertical WCV(sz, vz) ≡ |sz| ≤ ZTHR or 0 ≤ tcoa(sz, vz) ≤ TCOA.

The logical condition WCVtvar defines a family of well-clear boundary models where tvar can be instanti-
ated with any time variable and DTHR, TTHR, ZTHR, and TCOA are set to threshold values of interest. The fact
that the time thresholds TTHR and TCOA can be zero allows for the definition of well-clear boundary models
that do not depend on time thresholds. For instance, when TTHR = 0 and TCOA = 0, WCVtcpa specifies the loss
of separation condition for a cylindrical volume of radius DTHR and half-height ZTHR around one of the aircraft.
Indeed, in this case, WCVtcpa is logically equivalent to the logical condition ‖s‖ ≤ DTHR and |sz| ≤ ZTHR.

The TCAS II RA core logic, provided in [5], is obtained by WCVτmod
, where DTHR, TTHR, ZTHR, and

TCOA are set to the TCAS II thresholds DMOD, TAU, ZTHR, and TAU, respectively. The actual values
of these thresholds are given in a table indexed by sensitivity levels based on the ownship’s altitude [8]. In
the TCAS II RA logic, the logical condition dcpa(s,v) ≤ DTHR in the horizontal check is called horizontal
miss-distance filter and, in that condition, DTHR is set to the miss-horizontal distance threshold HMD, which
is equal to DMOD. The well-clear boundary model defined in [6] is obtained by WCVtep , where TCOA = TTHR.

Henceforth, the well-clear models specified by WCVτ , WCVτmod
, WCVtcpa , and WCVtep will be referred

to as WC TAU, WC TAUMOD, WC TCPA, and WC TEP, respectively. The rest of this section studies
properties and relations satisfied by these models.

III.A. Symmetry

A well-clear boundary model specified by WCVtvar , for a given time variable tvar, is symmetric if and only if

WCVtvar(s, sz,v, vz) = WCVtvar(−s,−sz,−v,−vz). (14)

In other words, in a symmetric well-clear boundary model both the ownship and intruder aircraft have the
same perception of being well clear or not.

Theorem 3 (Symmetry). If tvar is symmetric, the well-clear boundary model specified by WCVtvar is sym-
metric. Hence, by Theorem 1, the well-clear boundary models WC TAU, WC TAUMOD, WC TCPA, and
WC TEP are symmetric for any choice of threshold values DTHR, TTHR, ZTHR, and TCOA.

III.B. Inclusion

Figures 2-5 illustrate the violation areas for the well-clear boundary models WC TAU, WC TAUMOD,
WC TCPA, and WC TEP for the scenario of Figure 1. The threshold values used in this scenario are
DTHR = 1 nmi, TTHR = TCOA = 30 s, and ZTHR = 475 ft. The violation areas in these figures are similar to the
conflict contours proposed in [9]. The points in these areas represent future locations of the ownship where
a well-clear violation will occur assuming that the intruder aircraft continues its current trajectory and the
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ownship either continues its current trajectory or instantaneously changes its direction but keeps its ground
speed.

Figure 6 overlays the violation areas for the four boundary models. This figure illustrates that for
a common set of threshold values, the violation area of WC TAU is included in the violation area of
WC TCPA, which is included in the violation area of WC TAUMOD, which is included in the violation
area of WC TEP. Theorem 4 below states that this inclusion property always holds for any encounter
geometry and choice of common threshold values. Theorem 4 is a consequence of Theorem 2.

Theorem 4 (Inclusion). For all s, sz,v, vz and choice of threshold values DTHR, TTHR, ZTHR, and TCOA, the
following implications hold

(i) WCVτ (s, sz,v, vz) =⇒ WCVtcpa(s, sz,v, vz),

(ii) WCVtcpa(s, sz,v, vz) =⇒ WCVτmod
(s, sz,v, vz), and

(iii) WCVτmod
(s, sz,v, vz) =⇒ WCVtep(s, sz,v, vz).

A key consequence of Theorem 4 is that of the four well-clear boundary models, WC TEP provides the
most conservative safety margins in terms of having the largest violation area and the earliest time whereby
a well-clear violation is defined to occur. The remaining models can be ordered from most conservative to
least conservative as WC TAUMOD,WC TCPA, and WC TAU.

III.C. Local Convexity

As illustrated by Figures 2-5, the violation areas are not geometrically convex. However, Figures 3-5 show
that from the point of view of the ownship, any ray that points towards the violation area has only one
intersecting segment. This property is referred to as local convexity. It can be verified by inspection of
Figure 2 that this property does not always hold in the case of WC TAU. A formal definition of local
convexity follows.

Definition 1 (Local convexity). A well-clear boundary model specified by WCVtvar , for a given time variable
tvar, is locally convex if and only if there are no times 0 ≤ t1 ≤ t2 ≤ t3 ≤ T such that

1. the aircraft are not well clear at time t1, i.e., WCVtvar(s + t1v, sz + t1vz,v, vz),

2. the aircraft are well clear at time t2, i.e., ¬WCVtvar(s + t2v, sz + t2vz,v, vz), and

3. the aircraft not well clear at time t3, i.e., WCVtvar(s + t3v, sz + t3vz,v, vz).

Thus, a well-clear boundary model is locally convex if for any ownship straight-line trajectory there is at
most one time interval where the aircraft are not well clear.

Theorem 5. For any choice of threshold values, the well-clear boundary models WC TCPA, WC TAUMOD,
and WC TEP are locally convex.

As illustrated by Figure 2, the well-clear boundary model WC TAU is not locally convex for all choices
of threshold values. In particular, it can be seen in Figure 1, assuming straight-line trajectories, that for the
same encounter scenario the aircraft will have a well-clear violation at 91 s, 7 seconds later they will be well
clear, and 7 seconds after being well clear, they will have another well-clear violation.

Theorem 6. For some choices of threshold values, the well-clear boundary model WC TAU is not locally
convex.

IV. Well-Clear Violation Detection Algorithms

A conflict detection algorithm checks whether or not a loss of separation is predicted to occur within
a given period of time. Similarly, it is possible to design detection algorithms of well-clear violations for a
given well-clear model. This section presents analytical formulations of such well-clear violation detection
algoritms for WC TAUMOD, WC TCPA, and WC TEP. In particular, the functions detection WCVτmod

,
detection WCVtcpa

and detection WCVtep are defined. These functions take as inputs the relative horizontal

12 of 15

American Institute of Aeronautics and Astronautics



and vertical states of the aircraft and a lookahead time interval [B, T ], with 0 ≤ B < T , and return an interval
of violation for WCVτmod

, WCVtcpa , and WCVtep , respectively. Assuming accurate vector information and
constant velocities, it has been formally proved that these functions correctly and completely characterize
the aircraft states that lead to a well-clear violation, within the lookahead time interval, for their respective
models,

To define an algorithm detection WCVtvar for a given time variable tvar, it is necessary to define functions
that detect time intervals of violation for the horizontal and vertical dimension. Since the vertical check
Vertical WCV (Formula (13)) is independent of tvar, the algorithm that computes the time interval for a
vertical well-clear violation is the same for any definition in the family of WCVtvar models. Formula (15)
specifies an algorithm for detecting such vertical well-clear violations. The function detection VWCV has as
inputs a relative vertical state and a lookahead time interval [B, T ]. It returns a time interval within [B, T ]
when a vertical well-clear violation will occur. The interval is empty if no such violation occurs.

detection VWCV(sz, vz, B, T ) ≡
if vz = 0 and |sz| ≤ ZTHR then [B, T ]

elsif vz = 0 then [T,B]

else let [t1, t2] = vertical entry exit(sz, vz) in

if T < t1 or t2 < B then [T,B]

else [max(B, t1),min(T, t2)]

endif

endif,

(15)

where

vertical entry exit(sz, vz) ≡
let H = max(ZTHR, TCOA |vz|) in

[
−sign(vz)H − sz

vz
,

sign(vz)ZTHR− sz
vz

],

(16)

The horizontal check Horizontal WCVtvar (Formula (13)) depends on actual definition of the time variable
tvar. Hence, a horizontal detection algorithm for each particular definition of tvar is necessary. Formula (17),
Formula (18), and Formula (19) specify horizontal detection algorithms for WC TAUMOD, WC TCPA,
and WC TEP, respectively. The functions specified by these formulas have as inputs a relative horizontal
state and a lookahead time T . They return a time interval within [B, T ] when a horizontal well-clear violation
for their respective model will occur. The interval is empty if no such violation occurs.

detection HWCVτmod
(s,v, T ) ≡

let a = v2,

b = 2 (s · v) + TTHRv2,

c = s2 + TTHR (s · v)− DTHR2 in

if a = 0 and ‖s‖ ≤ DTHR then [0, T ]

elsif ‖s‖ ≤ DTHR then [0,min(T,Θ(s,v, DTHR, 1))]

elsif s · v ≥ 0 or b2 − 4ac < 0 then [T, 0]

else let t =
−b−

√
b2 − 4ac

2a
in

if ∆(s,v, DTHR) ≥ 0 and t ≤ T then

[max(0, t),min(T,Θ(s,v, DTHR, 1))]

else [T, 0]

endif

endif.

(17)
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detection HWCVtcpa
(s,v, T ) ≡

if ‖v‖ = 0 and ‖s‖ ≤ DTHR then [0, T ]

elsif ‖v‖ = 0 then [T, 0]

elsif ‖s‖ ≤ DTHR then [0,min(T,Θ(s,v, DTHR, 1))]

elsif s · v > 0 then [T, 0]

elsif ‖s + tcpa(s,v)v‖ > DTHR then [T, 0]

elsif ∆(s,v, DTHR) < 0 and tcpa(s,v)− TTHR > T then [T, 0]

elsif ∆(s,v, DTHR) < 0 then

[max(0, tcpa(s,v)− TTHR),min(T, tcpa(s,v))]

else let tmin = min(Θ(s,v, DTHR,−1), tcpa(s,v)− TTHR) in

if tmin > T then [T, 0]

else [max(0, tmin),min(T,Θ(s,v, DTHR, 1))]

endif

endif.

(18)

detection HWCVtep(s,v, T ) ≡
if ‖v‖ = 0 and ‖s‖ ≤ DTHR then [0, T ]

elsif ‖v‖ = 0 then [T, 0]

elsif ‖s‖ ≤ DTHR then [0,min(T,Θ(s,v, DTHR, 1))]

elsif s · v > 0 then [T, 0]

elsif ∆(s,v, DTHR) < 0 or Θ((s,v, DTHR,−1)− TTHR > T then [T, 0]

else [(max(0,Θ(s,v, DTHR,−1)− TTHR),min(T,Θ(s,v, DTHR, 1))]

endif.

(19)

Given a definition of Horizontal WCVtvar , Formula 20 specifies a function that computes a time interval
of violation for WCVtvar . The function detection WCVtvar has as inputs a relative state and a lookahead
time interval [B, T ]. It returns a time interval [tin, tout] when a violation of WCVtvar will occur. The interval
is empty if no such violation occurs. Theorem 7 states that detection WCVtvar completely characterizes the
relative aircraft states that lead to a well-clear violation of WCVtvar , for tvar one of τmod, tcpa, or tep, within
a lookahead time interval [B, T ] and assuming straight-line trajectories for both aircraft.

detection WCVtvar(s, sz,v, vz, B, T ) ≡
let [t1, t2] = detection VWCV(sz, vz, B, T ) in

if t1 > t2 then [T,B]

elsif t1 = t2 and Horizontal WCVtvar(s + t1v,v) then [t1, t1]

elsif t1 = t2 then [T,B]

else let [tin, tout] = detection HWCVtvar(s + t1v,v, t2 − t1) in

[tin + t1, tout + t1]

endif.

(20)

Theorem 7. Let tvar be one of τmod, tcpa, or tep. The function detection WCVtvar is a correct and complete
detection algorithm for WCVtvar , i.e., for all relative states s, sz,v, vz, time interval [B, T ], with 0 ≤ B < T ,
and t ∈ [B, T ], WCVtvar(s + tv, sz + tvz,v, vz) holds if and only if t ∈ [tin, tout], where

[tin, tout] = detection WCVtvar(s, sz,v, vz, B, T ).
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V. Conclusion

A family of well-clear boundary models is presented. This family generalizes the TCAS II Resolution
Logic with different possible definition of horizontal time variables including tau, modified tau, time to
closest point of approach, and time to entry point. Analytical techniques are used to study the properties
of this model. For instance, it has been formally proved that the well-clear model based on time to entry
point is more conservative than tau, modified tau, and time to closest point of approach for any scenario
and any common choice of threshold values. Furthermore, it is shown that all the models in this family are
symmetric, i.e., the ownship and intruder aircraft have the same perception of being well-clear or not at any
moment in time. Except for the model based on tau, all the models are locally convex meaning that there
is at most one interval of time when the aircraft are not well-clear, assuming straight-line trajectories.

Detection algorithms for a family of well-clear boundary models are proposed which compute the time
interval of violation within a given lookahead time interval. These algorithms could be used in the imple-
mentation of airborne and ground capabilities that allow UAS pilots to avoid encounter scenarios that are
not well clear.

The mathematical development presented in this paper has been mechanically verified in the Prototype
Verification System (PVS) [7]. This level of rigor is justified by the safety-critical nature of the well-clear
concept in the integration of Unmanned Aerial Vehicles into the National Aerospace System.
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1Maŕıa Consiglio, James Chamberlain, César Muñoz, and Keith Hoffler. Concept of integration for UAS operations in the
NAS. In Proceedings of 28th International Congress of the Aeronautical Sciences, ICAS 2012, Brisbane, Australia, 2012.

2FAA Sponsored Sense and Avoid Workshop. Sense and avoid (SAA) for Unmanned Aircraft Systems (UAS), October
2009.

3Jonathan Hammer. Horizontal miss distance filter system for suppressing false resolution alerts, October 1996. U.S.
Patent 5,566,074.

4James Kuchar and Lee Yang. A review of conflict detection and resolution modeling methods. IEEE Transactions on
Intelligent Transportation Systems, 1(4):179–189, December 2000.
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