
Bifurcation Analysis Using
Rigorous Branch and Bound Methods

Andrew P. Smith and Luis G. Crespo
National Institute of Aerospace

Hampton, Virginia 23666
Email: andrew.smith@nianet.org

luis.g.crespo@nasa.gov

César A. Muñoz
NASA Langley Research Center

Hampton, Virginia 23681
Email: cesar.a.munoz@nasa.gov

Mark H. Lowenberg
Department of Aerospace Engineering

University of Bristol
Bristol BS8 1TR, UK

Email: m.lowenberg@bristol.ac.uk

Abstract—For the study of nonlinear dynamic systems, it is
important to locate the equilibria and bifurcations occurring
within a specified computational domain. This paper proposes a
new approach for solving these problems and compares it to the
numerical continuation method. The new approach is based upon
branch and bound and utilizes rigorous enclosure techniques
to yield outer bounding sets of both the equilibrium and local
bifurcation manifolds. These sets, which comprise the union of
hyper-rectangles, can be made to be as tight as desired. Sufficient
conditions for the existence of equilibrium and bifurcation
points taking the form of algebraic inequality constraints in
the state-parameter space are used to calculate their enclosures
directly. The enclosures for the bifurcation sets can be computed
independently of the equilibrium manifold, and are guaranteed
to contain all solutions within the computational domain. A
further advantage of this method is the ability to compute a
near-maximally sized hyper-rectangle of high dimension centered
at a fixed parameter-state point whose elements are guaranteed
to exclude all bifurcation points. This hyper-rectangle, which
requires a global description of the bifurcation manifold within
the computational domain, cannot be obtained otherwise. A test
case, based on the dynamics of a UAV subject to uncertain center
of gravity location, is used to illustrate the efficacy of the method
by comparing it with numerical continuation and to evaluate its
computational complexity.

I. INTRODUCTION

A state-space representation of an autonomous dynamic
system is given by the set of ordinary differential equations

ẋ1 = f1(x1, . . . , xnx
, p1, . . . , pnp

),

... (1)
ẋnx = fnx(x1, . . . , xnx , p1, . . . , pnp),

where the dot notation indicates differentiation with respect
to time, t, x ∈ Rnx is the state vector, p ∈ Rnp is the
model’s parameter vector, and fi, i = 1, . . . , nx, are in general
nonlinear functions of the indicated arguments.

The equilibria of the system are given by the state-parameter
combinations for which ẋ1, . . . , ẋnx = 0. These pairs will be
denoted as (x̂, p̂). Hence, for a fixed value of p, the equilibria
are given by the solution of a system of nx equations in nx
unknowns. A zero of this system of equations is called an
equilibrium point or fixed point of the dynamic system. The
vector field associated with (1) in the vicinity of an equilibrium
point determines if such a point is locally stable or unstable

[1]. The locus of the equilibrium points is parameterized
by the value of p. Variation in p may change the location,
number, and local stability of equilibrium points. A local
bifurcation occurs when the number of equilibrium points
or their local stability changes due parameter variations. The
range of these variations, which prescribe the computational
domain of interest, will be given by xi ∈ [xi, xi] ⊂ R,
i = 1, . . . , nx, and pj ∈ [p

j
, pj] ⊂ R, j = 1, . . . , np.

Bifurcation analysis is a popular tool for researching the
behaviour of nonlinear dynamic systems, including aircraft
flight dynamics. In this particular application, bifurcation
analysis has been used to study the flight upset tendencies
of aircraft [2], the resilience of control laws to faults, time
delays and uncertainties, and to evaluate the effectiveness and
robustness of control laws as individual gains are varied.

Conventional bifurcation analysis typically requires compu-
tation of the equilibrium manifold within the computational
domain. In the numerical continuation method [3], state tra-
jectories starting from a grid of initial conditions are computed
via integration. These trajectories are used to identify a stable
equilibrium point on the equilibrium manifold. Numerical
continuation methods reconstruct the equilibrium manifold by
performing a search that starts in this state-parameter point.
This search yields points on the equilibrium manifold along
with the corresponding local stability analysis and bifurcation
points. Numerical continuation methods do not require an
analytical representation of (1) and yield both local and global
bifurcation analyses. However, they are usually restricted to
low-dimensional parameters, e.g., np ≤ 2, and yield results
that might be incomplete, e.g., they might miss unconnected
branches of the equilibrium manifold and their corresponding
bifurcation points.

This paper proposes a new approach for outer bounding
the equilibrium and local bifurcation manifolds of (1) within
a fixed computational domain. The approach is based upon
branch and bound and utilizes rigorous enclosure techniques
based on interval arithmetic and the Bernstein polynomial
basis. While the method is restricted to cases in which (1) is
available analytically, it renders solutions that are both correct
and complete, i.e., it will not miss any point of the equilibrium
and bifurcation manifolds within the computational domain.

The organization of the paper is as follows: A set of

sufficient conditions for identifying and classifying local bi-
furcation points is presented in Section II. Enclosure methods
are introduced in Section III and theory and methodology of
the branch and bound solver is described in Section IV. The
definition and formulation required to calculate exclusion sets
are provided in Section V. In Section VI the main example is
presented and used to illustrate the performance of the method
and compare it to numerical continuation. The paper concludes
with directions for future work.

II. CATEGORIES OF BIFURCATION

A dynamic system may exhibit both global and local
bifurcations; this paper focuses on the identification and classi-
fication of local bifurcations of (1). These bifurcations, which
require finding the fixed points of the system, linearizing it
at such points, and performing an eigenvalue analysis, lend
themselves more naturally to a branch and bound approach.

In non-degenerate cases, the equilibrium and bifurcation
manifolds of the dynamic system (1) have np and np − 1
degrees of freedom, respectively. For instance, when np = 1,
a few isolated bifurcation points may exist; when np = 2, there
may be bifurcation line segments; when np = 3, there may
be bifurcation surfaces, and so on. In a practical bifurcation
analysis, only a small number of parameters are allowed to
vary simultaneously, since the complexity of characterizing
the bifurcation set increases exponentially with np. The types
of local bifurcations considered here are classified as follows:

A. Steady-State Bifurcations

Consider the order nx Jacobian matrix Jf (x̂, p̂) of f =
(f1, . . . , fnx

) in the system (1). A steady-state bifurcation
arises at (x̂, p̂) wherever Jf (p̂) is singular, i.e., it has a zero
eigenvalue. This category includes pitchfork and saddle-node
bifurcations [1].

B. Hopf Bifurcations

A Hopf bifurcation at (x̂, p̂) occurs when the characteristic
polynomial, det(Jf (x̂, p̂) − zI) = 0, has a conjugate pair of
of complex solutions with zero real part and all other roots
have a negative real part. Each such bifurcation originates a
limit cycle. Let the characteristic polynomial be given by

q(z) = a0z
nx + a1z

nx−1 + . . .+ anx
, (2)

where the coefficients are functions of (x̂, p̂). The associated
Hurwitz matrix, which is order nx and square, is given by

H =

a1 a3 a5 · · · · · ·
a0 a2 a4 · · · · · ·
0 a1 a3 a5 · · ·
0 a0 a2 a4 · · ·
...

...
...

...
. . .

 . (3)

The ith Hurwitz determinant, ∆i, is equal to the determinant
of the ith principal minor of H .

Theorem 1 (Routh-Hurwitz, cf. [4]): All the roots of q are
in the left-hand half-plane if and only if

∆nx
(p) > 0, . . . , ∆1(p) > 0. (4)

Theorem 2 (cf. [4]): Let a0 > 0. Then q has a pair of distinct
roots, iω and −iω, on the imaginary axis and all other roots
are in the left-hand half-plane if and only if anx

(p) > 0 and

∆nx−1(p) = 0, ∆nx−2(p) > 0, . . . , ∆1(p) > 0. (5)

The criteria of Theorem 2 may be used to detect Hopf
bifurcations.

III. ENCLOSURE METHODS

In order to determine the behavior of a nonlinear function
fi : Rnx → R over interval ranges for variables and parame-
ters, techniques are required that, given such a function, enable
the construction of an interval-valued function Fi : IRnx →
IR, where IR denotes the set of closed non-empty real
intervals, such that ∀X ∈ IRnx , x ∈ X =⇒ fi(x) ∈ Fi(X).

A. Interval Arithmetic

A natural interval extension for a real-valued function
may be obtained by taking a particular symbolic represen-
tation and replacing each of the component operators and
functions (chiefly elementary operations and logarithmic and
trigonometric functions) by their interval equivalents. Basic
definitions for such interval operators are given in terms of the
interval endpoints, for example, if a = [a, a],b = [b, b] ∈ IR,
then a + b = [a+ b, a+ b].

These operational definitions obey inclusion isotonicity, i.e.,
if a1,b1 ∈ IR with a1 ⊆ a and b1 ⊆ b, then a1 ◦b1 ⊆ a◦b,
if a1 ◦ b1 is defined. However, some relations known to be
true in R are not valid in IR, e.g., the distributive law. Instead
there is the weaker subdistributive law

a · (b + c) ⊆ ab + ac for a,b, c ∈ IR.

Interval extensions for non-trivial functions can therefore
exhibit a significant amount of excess width, which is caused
by each separate occurrence of the same variable being treated
as if it were an independent variable. This phenomenon is
known as the dependency problem. As a result, the perfor-
mance of an interval algorithm is characterized not just by
its speed and correctness, but also the quality of the result
in terms of minimizing such excess width. A straightforward
adaption of an algorithm designed for floating-point arithmetic
is therefore usually unsuitable, and customized algorithms may
be used instead.

Numerous software implementations of interval arithmetic
exist for C++, MATLAB, and for other programming en-
vironments. In this work, the C++ library filib++ [5] is
used, which utilizes floating point rounding modes to deliver
rigorous interval results. Further operator definitions and an
introduction to interval arithmetic are given in [6].

B. Bernstein Expansion

High-quality interval enclosures of multivariate polynomial
functions can be computed by rewriting the polynomial in
terms of the Bernstein basis with respect to a particular set
of variable ranges, instead of in the usual power form. The

interval hull of the coefficients of such an expansion, the so-
called Bernstein coefficients, provide an enclosure which is in
general tighter than that provided by interval arithmetic, and
exhibits superior convergence. A detailed description and an
efficient representation scheme for sparse polynomials may
be found in [7]. A formally-verified treatment of Bernstein
polynomials is given in [8]. Bernstein expansion has previ-
ously been applied to the stability and bifurcation analysis of
bivariate polynomial dynamic systems [9].

IV. A GENERIC BRANCH AND BOUND SOLVER

Branch and bound is a computation scheme for problems
commonly specified over a domain consisting of a Cartesian
product of intervals, i.e., a hyper-rectangle, referred to here
as a box. This starting domain is recursively subdivided into
sub-boxes, typically by performing a bisection of one of the
component intervals. Over each box, rigorous enclosures for
the range of a real-valued function may be computed by
employing a suitable enclosure method. Whereas sub-boxes
that are proven not to contain a solution to the problem are
discarded, those that might contain a solution are subdivided
further, resulting in tighter function enclosures.

The solution to many problems can be given as a guar-
anteed outer approximation of the exact solution set within
the computational starting domain. Here, a paving for a
solution consists of the union of not necessarily disjoint boxes,
with each box possibly containing part of the exact solution.
This collection of boxes can be progressively refined until a
terminally small size for a sub-box is reached.

The tool used in this work, Kodiak, is a software package
in C++ which facilitates formally-verified branch and bound
computation. It allows for the implementation of several types
of branch and bound algorithm using generic routines. Con-
straints may be formulated as Boolean expressions of pred-
icates involving one or more nonlinear functions, which are
represented symbolically, and relational operators. There are
specific instantiations of the generic algorithm for optimiza-
tion problems, systems of nonlinear equations, and Boolean
problems. The two main enclosure methods currently available
for nonlinear functions are interval arithmetic and Bernstein
expansion. Input functions are currently written in software
and can be symbolically manipulated, e.g., symbolic partial
differentiation can be performed.

A formal verification of a related algorithm was presented in
[10]. A similar algorithm for systems of polynomial equations,
utilizing the Bernstein expansion, was given in [11].

A. Systems of Nonlinear Equations (Equilibrium Sets)

One of the main instantiations of the generic branch and
bound algorithm is an algorithm for paving the equilibrium
manifold of (1), given by all the pairs (x̂, p̂). Following the
notation of (1), let nx real-valued functions fi, i = 1, . . . , nx,
in the variables x1, . . . , xnx and parameters p1, . . . , pnp , and a
box Z := [x1, x1]× . . .× [xnx

, xnx]× [p
1
, p1]× . . .× [p

np
, pnp

]

in IRnx+np be given. In general, the solution set S := {x ∈
Rnx , p ∈ Rnp : fi(x, p) = 0, i = 1, . . . , nx} cannot be

described algebraically. Instead a paving S∗, a union of boxes
with S∗ ⊇ S ∩ Z, is computed.

In non-degenerate cases for which p is fixed (np = 0), zero
or more point solutions may exist, and the paving consists of
one or more boxes of terminal width enclosing each individual
solution. For underdetermined systems where np > 0, the
paving consists of many boxes; those intersecting the boundary
of S should be of terminal width. The interpretation of the
paving is that it is proven that no solutions in Z\S∗ can exist,
but only that solutions in S∗ possibly exist — the algorithm is
sound with respect to the exclusion of solutions, but complete
with respect to their inclusion.

In outline, the processing of a sub-box Z∗ deriving from Z
proceeds as follows:

1) Compute enclosures for ranges of each fi over Z∗, using
the methods in Section III. As soon as an i is found for
which 0 6∈ fi(Z

∗), one can be sure that the box does
not admit a solution, and discard it. Otherwise, proceed:

2) If Z∗ is of terminal width, place it into the final paving
S∗. Otherwise, proceed:

3) Choose a variable or parameter in which to perform a
subdivision. Various heuristics are available, e.g. round-
robin, widest interval, use of partial derivatives.

4) Bisect (branch) Z∗ into two sub-boxes, by bisecting
the corresponding variable or parameter interval, and
recurse.

This algorithm can be used to compute a paving for the
equilibrium set of (1).

B. Bifurcation Sets

The above algorithm can be extended to compute a paving
for the bifurcation set (steady-state and Hopf bifurcations) of
(1) directly, without first needing to determine the equilibrium
set. To this end, proceed as follows. First, the Jacobian,
the coefficients of the characteristic polynomial (2), and the
determinants of the Hurwitz matrix (3) are computed symbol-
ically. The substitution of these expressions into the sufficient
conditions for bifurcation yields a set of inequality constraints.
Recall that these constraints are anx

(x̂, p̂) = 0 for a steady-
state bifurcation, and anx

(x̂, p̂) > 0 and (5) for a Hopf
bifurcation. Note that the exact state-parameter points at which
the constraints are to be evaluated are unknown (i.e., we will
only have their enclosure).

A system of equations consisting of the equality conditions
for equilibrium and the extra constraints representing each type
of bifurcation can then be solved. A box may either not contain
either type of bifurcation point (in which case it is discarded),
it may possibly contain only a steady-state bifurcation, it may
possibly contain only a Hopf bifurcation, or it may possibly
contain both.

For non-degenerate problems, the resultant paving for the
bifurcation set is a subset of the paving for the equilibrium set.
The bifurcation set itself has one fewer degree of freedom.

The paving of the solution set will be given as a union of
boxes. Membership in the corresponding outer bounding set
can be determined by checking whether any given point is a

member of any of the sub-boxes comprising the paving. The
separation between any given state-parameter point and the
bifurcation manifold can be safely underestimated by finding
the minimum distance between the point and the center of all
sub-boxes after half of each sub-box’s diagonal is subtracted.

V. GUARANTEED EXCLUSION BOXES

The algorithm for paving bifurcation sets also enables the
calculation of a box in Z of near-maximal size not containing
any bifurcation point. Denote by z0 = [x, p] ∈ Rnx+np

an arbitrary point in the state-parameter domain Z outside
the bifurcation manifold B. The m-scaled infinity norm is
instrumental for calculating the desired box. For a vector
m ∈ Rnx+np with positive components, the m-scaled infinity
norm of a ∈ Rnx+np is defined as ‖a‖∞m = maxk{|ak|/mk}.
The vector m, called the aspect vector, is set to half of
the positive diagonal of Z. The desired box is given by
Z†(z0,m, r) = {z : z0 − rm ≤ z ≤ z0 + rm}, where the
inequalities apply componentwise and the worst-case perturba-
tion radius is specified as r = minz{‖z−z0‖∞m : z ∈ B∩Z}.

A value of z at which the minimum of r occurs, z̃, is the
worst-case state-parameter combination associated with z0 and
m. Instead of trying to solve the optimization problem for
r, the bifurcation set paving algorithm is used to generate a
sequence of increasingly-close inner bounding boxes for Z†, as
well as a paving for z̃. These bounding boxes are centered on
z0, which is chosen to be a point on the equilibrium manifold
S. The radius r measures the separation between z0 (which
could be chosen to to build a linear approximation to (1)
for control design purposes), and the region of Z where the
open-loop dynamics are qualitatively different from those at z0
(thus, where a controller designed for the linear approximation
will not perform well). Furthermore, the computational effort
required to generate a close inner bounding box for Z† is
typically much lower than that for generating a paving for B.
This enables the consideration of dynamic systems for which
nx + np exceeds the feasible limit for the computation of a
whole paving.

VI. EXAMPLE: NASA GTM LONGITUDINAL DYNAMICS

Bifurcation analysis is a popular tool for researching the be-
havior of nonlinear dynamic systems, including aircraft flight
dynamics. The example below studies the dynamics of the
Generic Transport Model (GTM). The GTM is a mathematical
representation of the AirStar vehicle, a 5.5% dynamically
scaled remotely-operated twin-engine jet airliner developed by
the NASA Langley Research Center. A high-fidelity model
of the vehicle, using nonlinear aerodynamic models extracted
from wind tunnel and system identification experiments for
conditions extending beyond the normal flight envelope, is
available. This example problem focuses on the dependence
of longitudinal dynamics on variations in the location of the
aicraft’s center of gravity (CG). Such variations might, in
general, result from fuel consumption, structural damage, load
shifts, and uncertainty.

A. Mathematical Model

The open-loop aircraft dynamics is given by

θ̇ = q,

α̇ = q +
g cos(θ − α)

V
− L+ Tx sin(α)− Tz cos(α)

(m1 +m2)V
,

V̇ = −g sin(θ − α) +
Tx cos(α) + Tz sin(α)−D

m1 +m2
,

q̇ = [M + Tm − dx(Tz +D sin(α) + L cos(α))−
dz(Tx −D cos(α) + L sin(α))] /γ,

where γ = 0.2564(m1+m2)+m1m2(dx2+dz2)/(m1+m2).
The state x comprises α (attack angle), V (velocity), θ (pitch
angle), and q (pitch rate), while the parameter p contains δe
(elevator deflection), δth (throttle input), m2 (supplemental
mass), dx (offset in the location of the CG relative to a nominal
location in the longitudinal axis), and dz (offset in the location
of the CG relative to a nominal location in the z-direction in
body axes). The lift, drag, and pitching moments are given
by L = ρV 2SCL(δe, α, q)/2, D = ρV 2SCD(δe, α, q)/2, and
M = ρV 2ScCm(δe, α, q)/2, where c is the mean aerodynamic
chord, ρ is the air density, S is the planform area, and
the non-dimensional terms CL, CD, and Cm are polynomial
functions of their arguments given in [12]. Likewise, the thrust
components Tx, Tz , and Tm are given by cubic polynomial
functions of δth. The values of the parameters not specified in
this paper are available in [12].

The fixed mass of the aircraft, m1, is 18 kg; the supplemen-
tal mass m2 might vary. The nominal values of the parameters
are δ̄e = 5.368 deg (i.e., elevator deflection required for
horizontal flight at maximum throttle input), δ̄th = 1, m̄2 = 5
kg, d̄x = 0, d̄z = 0. The ranges of x and p used in the
analyses that follow are α ∈ [−11.5, 103] deg, θ ∈ [−86, 86]
deg, V ∈ [1, 200] m/s, q = 0 deg/s, δe ∈ [−10, 20] deg,
δth ∈ [0, 1], m2 ∈ [0, 5] kg, dx, dz ∈ [−0.15, 0.2] m.

B. Example Problems

Parameters that are not allowed to vary in any particular
problem take on their nominal values. Numerical continuation
was performed using the Dynamical Systems Toolbox [13],
which implements the Fortran AUTO code [14] in the MAT-
LAB environment. A 2.4 GHz Intel i5 PC with 4 Gb of RAM
was used. The times given are for computation alone, and do
not reflect the additional modeling effort and time required
of the user, in order to generate a suitable set of starting
solutions. Even an expert may easily miss some solutions that
are necessary in order not to miss any branches. The branch
and bound pavings were computed using Kodiak on a 3 GHz
Intel Xeon PC with 4 Gb of RAM.

1) Single-parameter varying, 5D paving: In the first anal-
ysis, only dx is allowed to vary. In this setting, pavings for
the equilibrium surface and bifurcation points are computed,
and are compared with the solution obtained via numerical
continuation. The graphs of the 2D projections of the con-
tinuation solution and pavings are presented in Figure 1; the
numbers of boxes in each paving category are listed in the key.

−0.1 −0.05 0 0.05 0.1 0.15 0.2
−1.5

−1

−0.5

0

0.5

1

1.5

dx (m)

θ
(r

ad
)

limit points

Hopf bifurcation

unstable equilibria
(dashed line)

stable equilibria
(solid lines)

(a) θ, numerical continuation

−0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

dx (m)

α
(r

ad
)

Hopf bifurcation

llimit points

(b) α, numerical continuation

−0.1 −0.05 0 0.05 0.1 0.15 0.2
0

20

40

60

80

100

120

140

160

180

200

dx (m)

V
 (

m
/s

)

limit points

Hopf bifurcation

(c) V , numerical continuation

(d) θ, branch and bound (e) α, branch and bound (f) V , branch and bound

Fig. 1. Single-parameter varying: results of numerical continuation compared with paving projections with respect to each variable and dx.

The agreement in the results of both methods is apparent. The
numerical continuation solution was computed in 0.4 s. At the
depicted resolution, the paving for the equilibrium set required
4,700,699 bisections and took 44 min 45 s. The bifurcation
pavings, however, being much smaller, only required 139,793
bisections and took 1 min 49 s. It is seen that the system
remains stable for all positive values of dx, i.e., where the
CG is ahead of its nominal position. This is expected, as static
stability varies with CG variation, forward positions increasing
the stability margin and aft positions reducing it. Here, stability
is seen to be marginal at the nominal CG position: a very small
negative value of dx induces a fold bifurcation (at V ≈ 105
m/s) and stability is lost. It is evident, therefore, that high
thrust values which induce nose-up moments act to reduce
static stability (pitch stiffness). The equilibria remain unstable
until the Hopf bifurcation at dx ≈ −0.091 m. Whilst solutions
are stable again at more negative dx values, they represent a
very deep stall condition at extremely high angle of attack. In
practice, where lateral-directional effects are also modeled, it is
likely that these equilibria may translate into a spin condition.
Note that the polynomial approximations to the aerodynamic
data were not weighted for accuracy at such high angles of
attack, so that the model realism is degraded here.

2) Two-parameter varying, 6D paving: Now both δe and
dx are permitted to vary simultaneously. Some of the graphs
of the 2D projections of the continuation solution and pavings
for the bifurcation surfaces are presented in Figure 2. The
loci of limit point and Hopf bifurcations in the parameter
space delimit regions of stable and unstable behavior for the

system. For both pavings, 7,000,167 bisections were required
and the computation took 116 min 46 s. In the parameter space,
two separate branches of each bifurcation type can clearly be
identified. The first runs with numerical continuation produced
three of these branches after a total computation time of 15.8
s. The missing branch (the Hopf branch to the right) was only
identified after checking with the paving; the extra runs took
an additional 1.3 s. The paving for the left-most limit point
branch where δe ≈ 0.1 rad terminates where the corresponding
value of θ moves outside the search domain.

3) Five-parameter varying, 9D paving: guaranteed exclu-
sion box: It is desired to compute the near-maximal state-
parameter box of fixed proportions (set to be the same as
the overall state-parameter domain) centered on a point in
the equilibrium manifold not containing any bifurcation of
the considered types. Here δ̄th = 0.2 is taken, for which
δ̄e = 3.561 deg, and the other nominal parameter values are
unchanged. These values correspond to horizontal flight. This
problem, in which the bifurcation volume is four-dimensional,
makes numerical continuation methods inapplicable.

The value of r is searched for by considering progressively
larger boxes until the paving of the bifurcation manifold is
no longer empty. Recall that obtaining a non-empty paving
does not guarantee the existence of a bifurcation point. Empty
pavings with r = 0.06 (after 3,195 bisections and 3.2 s) and
r = 0.12 (after 415,293 bisections and 7 min 43 s) were
found. The latter proves that no bifucations of the considered
types can exist in the box given by ranges of x and p as
follows: α ∈ [−5.09, 8.66] deg, θ ∈ [−8.52, 12.10] deg,
V ∈ [40.40, 64.27] m/s, q = 0 deg/s, δe ∈ [1.77, 5.36] deg,

(a) α vs. dx, branch and bound

−0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

dx (m)

δ e (
ra

d)

Limit point
bifurcations

Hopf bifurcations

(b) δe vs. dx, numerical continuation (c) δe vs. dx, branch and bound

Fig. 2. Two-parameter varying: results of numerical continuation compared with paving projections with respect to α, δe, or dx.

δth ∈ [0.14, 0.26], m2 ∈ [4.7, 5] kg, dx, dz ∈ [−0.021, 0.021]
m. Further investigations strongly suggest that the worst-case
peturbation radius for this equilibrium point is less than 0.17.

VII. CONCLUSION

There are two main advantages of the proposed branch and
bound techniques for bifurcation analysis. Firstly, rigorous
enclosure methods are employed and the entirety of the
computational domain is considered, meaning that all branches
of the equilibrium or bifurcation manifolds therein are guar-
anteed to be included; empty pavings may be considered
equivalent to proofs. Secondly, statements can be made about
the bifurcation set directly, without needing to compute the
whole equilibrium manifold. Depending on the desired quality
(fine or coarse) of the paving, the computational effort may
be considerable, even for problems of moderate size (where
nx + np ≤ 10). This effort increases exponentially with
respect to the number of degrees of freedom in the paving,
e.g., pavings for points are less intensive than pavings for
line segments. The computed pavings can be used in concert
with numerical continuation methods, either at the beginning,
to compute guaranteed starting domains, or at the end, to
formally verify the completeness of a solution. The guaranteed
exclusion boxes can be computed much more quickly, since,
if successful, the branch and bound method yields an empty
paving. Therefore this particular technique is applicable for
higher-dimensional problems in which many parameters are
permitted to vary simultaneously.

In the future, the method will be tested on a wider range of
aircraft models, with additional dynamics or design parame-
ters. Numerous planned improvements to the Kodiak software
tool, including additional enclosure methods and improved
heuristics, may further extend the range of problems that can
be solved.

ACKNOWLEDGMENT

Funding of the first author’s research under NASA Cooper-
ative Agreement NNL09AA00A is gratefully acknowledged.
Collaboration between NIA and the University of Bristol was
supported by Royal Society International Exchanges Scheme
grant no. IE121367.

REFERENCES

[1] H. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
[2] S. J. Gill, M. H. Lowenberg, S. A. Neild, B. Krauskopf, G. Puyou,

and E. Coetzee, “Upset dynamics of an airliner model: A nonlinear
bifurcation analysis,” Journal of Aircraft, vol. 50, no. 6, pp. 1832–1842,
2013.

[3] E. L. Allgower and K. Georg, Numerical Continuation Methods, ser.
Computational Mathematics. Springer-Verlag, 1980.

[4] M. El Kahoui and A. Weber, “Deciding Hopf bifurcations by quantifier
elimination in a software-component architecture,” J. Symbolic Compu-
tation, vol. 30, pp. 161–179, 2000.

[5] M. Lerch, G. Tischler, J. Wolff von Gudenberg, W. Hofschuster, and
W. Krämer, “filib++, a fast interval library supporting containment
computations,” ACM Trans. on Mathematical Software, vol. 32, no. 2,
pp. 299–324, 2006.

[6] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis. Philadelphia: SIAM, 2009.

[7] A. P. Smith, “Fast construction of constant bound functions for sparse
polynomials,” J. Global Optimization, vol. 43, no. 2–3, pp. 445–458,
2009.

[8] C. Muñoz and A. Narkawicz, “Formalization of a representation of
Bernstein polynomials and applications to global optimization,” Journal
of Automated Reasoning, vol. 51, no. 2, pp. 151–196, August 2013.
[Online]. Available: http://dx.doi.org/10.1007/s10817-012-9256-3

[9] A. Sadrpour, L. G. Crespo, and S. P. Kenny, “Analysis of nonlinear
systems via Bernstein expansions,” in AIAA Guidance, Navigation, and
Control (GNC) Conference. American Institute of Aeronautics and
Astronautics, August 2013.

[10] A. Narkawicz and C. Muñoz, “A formally verified generic branching
algorithm for global optimization,” in Fifth Working Conference on Ver-
ified Software: Theories, Tools and Experiments (VSTTE), ser. Lecture
Notes in Computer Science, E. Cohen and A. Rybalchenko, Eds., vol.
8164, 2014, pp. 326–343.

[11] J. Garloff and A. P. Smith, “Investigation of a subdivision based
algorithm for solving systems of polynomial equations,” J. of Nonlinear
Analysis: Series A Theory and Methods, vol. 47, no. 1, pp. 167–178,
2001.

[12] A. Chakraborty, P. Seiler, and G. J. Balas, “Nonlinear region of at-
traction analysis for flight control verification and validation,” Control
Engineering Practice, vol. 19, pp. 335–345, 2011.

[13] E. Coetzee, B. Krauskopf, and M. Lowenberg, “The Dynamical Sys-
tems Toolbox: Integrating AUTO into Matlab,” in 16th U.S. Na-
tional Congress of Theoretical and Applied Mechanics. U.S. Na-
tional Congress of Theoretical and Applied Mechanics, 2010, paper
USNCTAM2010-827.

[14] E. J. Doedel and E. Oldeman Bart, AUTO-07P: Continuation and
Bifurcation Software for Ordinary Differential Equations, January
2012. [Online]. Available: http://sourceforge.net/projects/auto-07p/files/
auto07p/

