A decade of volcanic observations from Aura and the A-Train

Simon Carn

Dept of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, USA

Currently at: National Museum of Natural History, Smithsonian Institution, Washington DC, USA

Volcano team: Nick Krotkov, Kai Yang, Arlin Krueger, Eric Hughes, Jun Wang, Verity Flower, Jennifer Telling
Volcanic SO_2 clouds measured by TOMS

1978-2005

TOMS: Total Ozone Mapping Spectrometer

- Low sensitivity
- Low spatial resolution
- No altitude information
- No ‘monitoring’ capability
Pre-Aura view of global volcanic SO$_2$ emissions

A time-averaged inventory of subaerial volcanic sulfur emissions

R.J. Andres and A.D. Kasgnoc
Institute of Northern Engineering, University of Alaska Fairbanks

Abstract. A time-averaged inventory of subaerial volcanic sulfur (S) emissions was compiled primarily for the use of global S and sulfate modelers. This inventory relies upon the 25-year history of S, primarily sulfur dioxide (SO$_2$), measurements at volcanoes. Subaerial volcanic SO$_2$ emissions indicate a 13 Tg/a SO$_2$ time-averaged flux, based upon an early 1970s to 1997 time frame. When considering other S species present in volcanic emissions, a time-averaged inventory of subaerial volcanic S fluxes is 10.4 Tg/a S. These time-averaged fluxes are conservative minimum fluxes since they rely upon actual measurements. The temporal, spatial, and chemical inhomogeneities inherent to this system gave higher S fluxes in specific years. Despite its relatively small proportion in the atmospheric S cycle, the temporal and spatial distribution of volcanic S emissions provide disproportionate effects at local, regional, and global scales. This work contributes to the Global Emissions Inventory Activity.

• Volcanic S emission inventories ‘static’ and used ground-based data

Motivation:
• Climate impact of volcanic emissions
• Global fluxes of other volatile species
• Field sites for volcanic gas studies

[Graf et al., 1997; Andres & Kasgnoc, 1998; Halmer et al., 2002; Smith et al., 2011]
• SO₂ emissions in Ecuador and Colombia from Tungurahua, Reventador, Galeras and Huila volcanoes
• Volcanic emissions from Ubinas volcano (Peru) drift over Ilo region in 2006-2007
• Upgraded sulfur capture technology at Ilo reduces SO₂ emissions
• Shut-down of La Oroya smelter in mid-2009; reduction expected
Volcanic SO$_2$ emissions inventories are inaccurate

• OMI measurements indicate deficiencies in current ‘bottom up’ volcanic SO$_2$ emission inventories used in CTMs

REMOTE model simulation of annual mean SO$_2$ columns over Indonesia [Pfeffer et al., ACP, 2006]
Identification of global volcanic SO$_2$ sources

- SO$_2$ index defined using OMI ozone algorithm residuals (sensitive to SO$_2$)
- Rank top 1000 values of SO$_2$ index on each day (lat 65°S – 80°N)
- Locate active volcanoes within 50 km radius of these OMI pixels (using modified Smithsonian Global Volcanism Program database)
- Record unique volcanic sources for each day
- Repeat for each day of OMI measurements (>3200 from Sep 2004 – Dec 2013)
Persistent volcanic SO$_2$ sources (2004-2013; ~3200 days)

<table>
<thead>
<tr>
<th>Volcano</th>
<th>SO$_2$ flux (t/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etna</td>
<td>4000</td>
</tr>
<tr>
<td>Bagana</td>
<td>3300</td>
</tr>
<tr>
<td>Lascar</td>
<td>2400</td>
</tr>
<tr>
<td>Ruiz</td>
<td>1900</td>
</tr>
<tr>
<td>Sakura-jima</td>
<td>1900</td>
</tr>
<tr>
<td>Manam</td>
<td>920</td>
</tr>
<tr>
<td>Yasur</td>
<td>900</td>
</tr>
<tr>
<td>Kilauea</td>
<td>800</td>
</tr>
<tr>
<td>Masaya</td>
<td>790</td>
</tr>
<tr>
<td>Stromboli</td>
<td>730</td>
</tr>
</tbody>
</table>

[Andres and Kasgnoc, 1998]
Most persistent volcanic SO$_2$ sources in 2013

- POPOCATEPETL
- NYIRAGONGO
- AMBRYM
- RUIZ
- TURRIALBA
- KLIUCHEVSKOI
- ULAWUN
- IJEN
- DUKONO
- BAGANA
- GAUA
- COPAHUE
- TUNGURAHUA
- YASUR
- HUILA
- KIZIMEN
- MANAM
- KERINCI
- TENGGER_CALDERA
- SHIVELUCH
- SANTIAGUITO
- KARYMSKY
- LEWOTOTOI
- GALERAS
- SUWANOSE-JIMA
- SAKURA-JIMA
- ETNA

Number of days with detected SO$_2$ degassing

Average SO$_2$ Index
SO$_2$ emission rate estimation from satellite data

$Q_{meas} = \left[\frac{\nu M}{L} \right]$

- $M = \text{SO}_2$ mass in pixel (kg)
- $\nu = \text{wind speed (m s}^{-1})$
- $L = \text{length of plume (m)}$
- $Q = \text{SO}_2$ flux (kg s$^{-1}$)

- Similar approach used to estimate smoke and NO$_2$ emissions from fires [Ichoku and Kaufman, 2005; Mebust et al., 2011]
- Note that asymmetry of OMI pixel affects plume detection
- Chemistry correction [Mebust et al., 2011] can be applied if SO$_2$ lifetime is known

$Q_{meas} = Q_{init} \tau t_c^{-1} \left[1 - \exp(-\tau^{-1} t_c) \right]$

$t_c = L \nu^{-1}$

Estimated SO$_2$ fluxes (2004-2013; ~3200 days)

- New volcanic SO$_2$ emissions database for CTMs
- Jun Wang’s talk (Tuesday)

<table>
<thead>
<tr>
<th>Volcano</th>
<th>SO$_2$ flux (t/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambrym</td>
<td>32800</td>
</tr>
<tr>
<td>Popocatepetl</td>
<td>13000</td>
</tr>
<tr>
<td>Etna</td>
<td>5500</td>
</tr>
<tr>
<td>Nyiragongo</td>
<td>3280</td>
</tr>
<tr>
<td>Miyake-jima</td>
<td>3000</td>
</tr>
</tbody>
</table>

[Oppenheimer et al., 2011]
Validation with ground-based SO$_2$ measurements

- Good agreement with long-term, ground-based datasets

Chemistry correction:
$\sim20\%$ for $\tau_{SO2} = 2$ hrs

Sporadic
Continuous (NOVAC; Galle et al., 2010)
Soufrière Hills volcano (Montserrat) eruption, May 2006

~0.2 Tg SO$_2$

Contact: Simon Carn [scarn@nasa.gov]

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Carn et al., 2007; Prata et al., 2007

~0.2 Tg SO₂

Aura/OMI - 05/21/2006 17:40-19:25 UT

Mass: 195.725 kt; Area: 1400753 km²; SO₂ max: 32.71 DU at lon: -74.40 lat: 11.42

Normalised SO₂ column

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/22/2006 16:48-20:08 UT

Mass: 188.536 kt; Area: 1890299 km²; SO₂ max: 23.66 DU at lon: -61.33 lat: 14.47

Normalised SO₂ column

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Mass: 171.187 kt; Area: 2410000 km²; SO₂ max: 19.89 DU at lon: -93.38 lat: 13.66

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/24/2006 16:33-21:35 UT

Mass: 159.341 kt; Area: 2532097 km²; SO₂ max: 20.18 DU at lon: -107.02 lat: 12.14

Normalised SO₂ column

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/25/2006 14:03-22:18 UT

Mass: 168.052 kt; Area: 3126612 km²; SO₂ max: 18.41 DU at lon: -114.18 lat: 13.47

Normalised SO₂ column

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

[Image of map showing SO2 plume]

Mass: 146.936 kt; Area: 346,804 km²; SO₂ max: 12.14 DU at lon: -121.13 lat: 13.78

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Carn et al., 2007; Prata et al., 2007

~0.2 Tg SO₂
Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/28/2006 00:22-22:50 UT

Mass: 108.896 kt; Area: 2279174 km²; SO₂ max: 8.11 DU at lon: -135.54 lat: 13.82

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Carn et al., 2007; Prata et al., 2007

~0.2 Tg SO₂

Aura/OMI - 05/29/2006 01:07-23:33 UT

Mass: 98.493 kt; Area: 1701411 km²; SO₂ max: 6.22 DU at lon: -145.52 lat: 12.46

Contact: Simon Carn (scarn@uab.ac.uk)
Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/30/2006 00:11-22:37 UT

Mass: 107,076 kt; Area: 203,425 km²; SO₂ max: 6.74 DU at lon: -146.34 lat: 13.83

Normalised SO₂ column

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 05/31/2006 00:54-23:21 UT

Mass: 96.573 kt; Area: 2063998 km²; SO₂ max: 6.10 DU at lon: -156.59 lat: 11.76

Normalised SO₂ column

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 06/02/2006 00:00-24:00 UT

Mass: 92.692 kt; Area: 2247222 km²; SO₂ max: 5.54 DU at lon: -165.01 lat: 9.94

Normalised SO₂ column

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 06/03/2006 00:41-04:04 UT

Mass: 82.835 kt; Area: 2209377 km²; SO₂ max: 3.85 DU at lon: -175.63 lat: 9.17

Normalised SO₂ column

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Aura/OMI - 06/04/2006 01:25-06:23 UT

Mass: 79.103 kt; Area: 2352265 km²; SO₂ max: 3.01 DU at lon: 155.20 lat: 11.69

Normalised SO₂ column

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

Carn et al., 2007; Prata et al., 2007

~0.2 Tg SO₂

Mass: 54.517 kt; Area: 1986410 km²; SO₂ max: 2.67 DU at lon: 138.03 lat: 5.65

Normalised SO₂ column

[Carn et al., 2007; Prata et al., 2007]
Soufrière Hills volcano (Montserrat) eruption, May 2006

No volcanic SO$_2$ cloud of similar size tracked for more than 7 days by TOMS
New insights into volcanic SO$_2$ plume dispersion

OMI SO$_2$
Kasatochi eruption, Aug 2008

- New constraints on SO$_2$ lifetime in UTLS
- Improve sulfur chemistry scheme in CTMs

[Krotkov et al., JGR, 2010; Wang et al., ACP, 2013]
CALIPSO 'first light' - 7 June 2006

Stratospheric aerosol

OMI SO₂ – 7 June 2006
A-Train data for February 2014 Kelut eruption

Color Enhanced Infrared Imagery (11μm)

Aqua MODIS (02/13/2014 – 18:10 UTC)

MODIS image courtesy of NOAA/CIMSS
A-Train data for February 2014 Kelut eruption

Credit: S.A. Cam, Michigan Tech (scarn@mtu.edu)

Kristiansen et al., GRL, in prep.
Direct retrieval of SO$_2$ altitude from UV radiances

- SO$_2$ altitude directly retrieved from hyperspectral UV radiances
- Validate with CALIPSO, MLS
- Critical for climate impact, aviation hazards and CTM source term

SO$_2$ altitude retrievals for 2008 Kasatochi eruption

[Yang et al., JGR, 2010]
UV satellite volcanic SO$_2$ inventory (1978 – 2014)

333 eruptions; 94 Tg total SO$_2$; mean 0.28 Tg; 1σ = 1.3 Tg

~6 eruptions/yr (1979-2004); ~19 eruptions/yr (2004-2014)

El Chichòn

Pinatubo

Nabro
Stratospheric AOD and the global warming ‘hiatus’

- Vernier et al., GRL, 2011
- Solomon et al., Science, 2011
- Santer et al., Nature Geosci., 2014

Increase linked to influence of tropical volcanic eruptions.
Increase in tropical stratospheric AOD since 2000

- Eruptions filtered using Volcanic Explosivity Index (VEI)
- VEI not a good proxy for climate impact (i.e., SO$_2$ emissions)
- VEI no longer needed -> use satellite observations

Santer et al., Nature Geosci. [2014]
Volcanic SO$_2$ and stratospheric aerosol since 2002

Carn et al., in prep.
MFDOAS-OMI comparison

MLDP0 model data from Environment Canada, Montreal

Spinei et al., JGR [2010]
Extreme SO$_2$ columns in volcanic clouds

- SO$_2$ in fresh eruption clouds – highest trace gas columns measured
- Challenge to validate extreme SO$_2$ column amounts – UAVs, balloons?
- More volc. SO$_2$ validation needed in general
- Complex radiative transfer (ash, hydrometeors)
Request from Icelandic Meteorological Office: ‘We are getting very nice OMI images of the SO₂ rich eruption cloud from the Holuhraun eruption. Could you help us to set up a way of turning the OMI observations into daily SO₂ mass and daily SO₂ emission rates? It's possible this eruption will last weeks or months and so we need such a technique to be automated and fast.’

OMI SO₂ data used in: U.S., Mexico, Guatemala, El Salvador, Costa Rica, Montserrat, Ecuador, Colombia, Peru, Chile, New Zealand, Vanuatu, Indonesia, Papua New Guinea, Philippines, DR Congo, Ethiopia, Russia, France
Summary

• Science contributions and applications of Aura/OMI SO₂
 – Identification of new volcanic and anthropogenic SO₂ sources
 – Updated volcanic SO₂ emissions inventory
 – Effect of small volcanic eruptions on climate
 – Radiative forcing of volcanic sulfate aerosol
 – Volcanic aerosol enhancement of lightning activity
 – Cloud seeding by volcanic aerosol downwind of volcanoes
 – Lifetime of SO₂ in upper troposphere and lower stratosphere
 – Sulfur gas scavenging in eruption columns
 – Improving sulfur chemistry in CTMs
 – Volcanic plume tracking for aviation hazard mitigation
 – Detection of eruptions in remote regions

• Future developments in satellite SO₂ observations
 – Improved spatial resolution (e.g., TROPOMI) -> better monitoring capability
 – Direct assimilation of volcanic SO₂ observations into CTMs
Thanks to:
the Aura Science and OMI SIPS Teams
NASA for support from the Aura Validation program, Aura Science Team, ACMAP program, MEaSUREs program

Ambrym volcano (Vanuatu) – one of the strongest SO$_2$ sources on Earth
Aura (2004-)
OMI - SO₂, NO₂, BrO
TES - SO₂
MLS - strat. SO₂, HCl

CloudSat (2006-)
CPR (radar) – precipitation, hydrometeors

Aqua (2002-)
MODIS - SO₂, ash, sulfate
AIRS - UTLS SO₂, ash

The A-Train

CALIPSO (2006-)

OMPS, VIIRS, CrIS - SO₂, ash

Volcanic CO₂?