

......

A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

Dr. Rubén Del Rosario, P.E.

Project Manager Fixed Wing Project NASA Fundamental Aeronautics Program

Turbine Engine Technology Symposium Strategic Visions Workshop Dayton, OH September 11, 2014 www.nasa.gov

- Future Challenges of Commercial Aviation
- The NASA Fixed Wing (FW) Project
- Why Hybrid Electric Propulsion?
- NASA Fixed Wing Perspective on Enabling Hybrid Electric Propulsion for Commercial Transport Aircraft
- NASA Fixed Wing Investments in Hybrid Electric Propulsion
- Concluding Remarks

Why is aviation so important?

The air transportation system is critical to U.S. economic vitality

\$1.3 TRILLION TOTAL U.S. ECONOMIC ACTIVITY (civil and general aviation, 2009)

5.2% OF TOTAL U.S. GROSS DOMESTIC PRODUCT (GDP) (civil and general aviation, 2009)

What do emerging global trends reveal?

China and India are growing economically at unprecedented rates.

Asia-Pacific will have the largest middle class.

The world will be predominantly urban.

Revolutionary technology development and adoption are accelerating.

Source: National Intelligence Council

Why are these trends important?

They drive global demand for air travel...

They drive expanding competition for high-tech manufacturing...

They drive "leapfrog" adoption of new technology and infrastructure...

They drive resource use, costs, constraints, and impacts...

They drive need for alternative energy technologies...

How Do These Trends Affect Aviation?

NASA

Three mega-drivers emerge

Emissions reduction roadmap

Severe energy and climate issues create enormous affordability and sustainability challenges

Revolutions in automation, information and communication technologies enable opportunity for safety critical autonomous systems

The NASA Fixed Wing Project

Explore and Develop Technologies and Concepts for Improved Energy Efficiency and Environmental Compatibility for Sustained Growth of Commercial Aviation

- Early stage exploration and initial development of game-changing technologies and concepts for fixed wing vehicles and propulsion systems
- Commercial focus, but dual use with military
- Along with Environmentally Responsible Aviation (ERA) project focused on subsonic commercial transport vehicles
- Research vision guided by vehicle performance metrics developed for reducing noise, emissions, and fuel burn

N+3 Advanced Vehicle Concept Studies Summary

Advances required on multiple fronts...

NASA Fixed Wing Project Research Themes

Based on Goal-Driven Advanced Concept Studies

Hybrid Electric Propulsion for Commercial Transports

- The hybrid-electric promise cleaner, quieter, conserves energy, less atmospheric heat release, more reliable
- Gen N+3/N+4 advanced concept studies have identified promising aircraft and propulsion systems
- Electric-based propulsion systems for commercial aircraft will enable national environmental and fuel burn reduction goals to be met
- Industry roadmaps acknowledge shift toward electric technologies
- Recent successes in development of all-electric GA aircraft and UAVs
- Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures
- NASA can help accelerate key technologies in collaboration with other Government agencies, industry, and academia
- Research aligned with new NASA Aeronautics strategic R&T thrusts

Benefits Estimated From Advanced Concept Studies

Boeing SUGAR

(baseline Boeing 737, 2008 tech)

- ~60% fuel burn reduction
- ~53% energy use reduction
- 77-87% reduction in NOx
- 24-31 EPNdB cum noise reduction

NASA N3-X

(baseline Boeing 777-200)

- ~63% energy use reduction
- ~90% NOx reduction
- 32-64 EPNdB cum noise reduction

Possible Future Electric-Based Transport Aircraft

Concepts can use either non-cryogenic ambient temp or cryogenic superconducting technologies

Boeing-GE "SUGAR-Volt" Hybrid Electric Propulsion

ESAero ECO-150 and Dual-Use Split-Wing Turboelectric Configuration

	ECO-150 (3-3)	DU-Civil (2-3-2)	737-700 (3-3)
TOGW	139,700	142,400	154,500
Propulsion Wt ("dry")	28,350	27,820	10,430
Payload*	30,000	30,000	24,000
Fuel*	28,900	28,900	46,612
Seat-Mile/ Gal	121	118	65
Motor hp/lb	2.46	Gen hp/lb	4.30

* At 3440 nm range

NASA N3X Turboelectric Distributed Propulsion

Low velocity core exhaust reduces les with noise. treestream inlets drive superconducting generators.

Electric power from generators distributed to multiple motor-driven propulsors. center-bouy wake.

Many small fans give a large total fan area fan and very high er & fi рy effective bypass ratio anname.

gest

Hybrid Electric Propulsion (HEP) Systems for Aviation

What is needed?

- Conceptual designs of aircraft and propulsion systems
- Higher power density generators and motors
- Flight-weight power system architectures and simulations
- Higher energy density energy storage systems (non-NASA)
- Extensive ground and flight testing

NASA FW HEP Technology Roadmap

MW Size Motors

NASA FW HEP Technology Areas

Technical Areas and Approaches

Propulsion System Conceptual Design

- Reference hybrid electric propulsion system(s) for component maturation established
- Key technologies identified

High Power Density Motors and Generators

- Superconducting and non-cryo tchnologies
- Explore conventional and non-conventional topologies
- Integrate novel thermal management
- Develop advanced component materials

Flight-Weight Power System and Electronics

- High power electric grid architecture, modeling and simulation tools
- High voltage power electronics, transmission, and protection
- Lightweight power transmission materials
- Control systems for distributed propulsion

Integrated Subsystem Testing

- Component interactions validate performance and matching at steady-state and transient operation
- Validate control methodologies
- Validation experiments, system demos, flight tests

Gas turbinebattery hybrid

Superconducting turboelectric distributed propulsion

Fixed Wing Project Fundamental Aeronautics Program

NASA FW HEP Recent Activities

Recent Activities

Superconducting Motors

- Cryocoolers, superconducting wire, power management components, AC loss analysis and motor design
- AML, U of Houston, Creare, MTECH, Hypertech
- Fully superconducting subscale motor test in 2017

High Power Density, Non-cryogenic Motors

- Boeing SUGAR concept
- Initiating new NRA efforts leading to 1MW scale non-cryo motor test in 2019

Distributed Propulsion

- NASA N3-X, ESAero ES-150 concepts
- AirVolt and Hybrid AirVolt test stands

Power Management

- Propulsion Electric Grid Simulator
- RR, GE contracts for high-power electrical grid architecture, voltage, and components for turboelectric aircraft

Other Related NASA Activities

- GA-scale distributed electric propulsion concept validation leading to flight demo
- Electric-based propulsion for rotorcraft
- Design competitions targeting small electric aircraft
- Coordinating research activities across several OGAs AF; Navy - NAVSEA, Electric Ships Office, NPS; Army; DOE-LLNL; NASA

The Way Forward

- Conceptual designs and trade studies for electric-based concepts
- Tech development and demonstration for N+3 MW class aircraft
- Development of core technologies, i.e., turbine coupled motors, propulsion integration modeling, power architectures, power electronics, thermal management, flight controls
- Multi-platform (turbo-, hybrid-, all-electric) technology testbeds
 - Fully superconducting motor
 - 8 hp/lb (2x SOA) non-cryogenic electric motors
 - 2x power density increase for power electronics
 - Performance and control system verification for distributed electric propulsion at kW scale
- Development of multi-scale modeling and simulation tools
- Focus on future large regional jets and single-aisle twin (Boeing 737class) aircraft for greatest impact on fuel burn, noise and emissions

