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= Evolutionary Mission Trajectory Generator (EMTG)

= Finite-burn low-thrust (FBLT) transcription

= FBLT vs. multiple gravity-assist with low-thrust (MGALT) transcription
= FBLT match point constraint gradient calculation

= Continuous-thrust state transition matrix calculation

= Adaptive-step RK7(8)13M integrator

= FBLT match point time of flight gradient calculation

= Numerical Example

= Summary
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= Automated interplanetary low-thrust mission design tool
= Capalbilities:
- Global optimization of both the flyby sequence and the trajectory
No initial guess required, global search capability provided by monotonic basin
hopping (MBH) algorithm
Works in multiple reference frames (interplanetary, moon tours, Earth orbit, etc)
Integration with SPICE ephemerides
Up-to-date models of launch vehicles, thrusters, power systems
Easy to use graphical user interface

= The purpose of EMTG is to automate almost all of the work so that an analyst can
investigate a wide range of mission options in very little human time

= Computer time is CHEAP. Analyst time is EXPENSIVE
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J. A. Englander, D. H. Ellison, and B. A. Conway, “Global Optimization of Low-Thrust, Multiple-Flyby
Trajectories at Medium and Medium-High Fidelity,” AAS/AIAA Space Flight Mechanics Meeting, Santa
Fe, NM, January 26 - 30 2014.
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p | Description Notes

to Launch epoch

Uso | Magnitude of the outgoing velocity asymptote | first phase only

RA |Right ascension of launch asymptote first phase only

D EC' | Declination of launch asymptote first phase only

TOF' |Phase time of flight N,

my | Phase final mass Np

u Segment control vector one per FBLT segment (3N x N,)

I, |Propulsion system specific impulse only for VSI-capable engines (N x N,)
Voo, |Phase initial excess velocity vector all but the first phase (3N, — 1)

Voo, |Phase final excess velocity vector all phases, except the final phase of a rendezvous (V,)

Table 1: Typical decision vector for a low-thrust mission FBLT mission.

Keplerian propagation

MGALT half-phase

Numerical integration

FBLT half-phase
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= MGALT and FBLT share identical decision and constraint vectors
= Control bounds, flyby model and TOF constralnt gradients may be

provided fully analytically

Jull =/u2, +u2, +u2, <1

ot o —
Cp, =0V, —v =0

Cflyby—altitude = Tperiapse — {Tpianet + hsafe) = 0
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= FBLT transcription results in a large, sparse NLP

= We want to calculate the gradient of each NLP constraint w.r.t. each NLP parameter
(KKT first order necessary conditions) — form the problem Jacobian

= SNOPT will do this with finite differencing...this is EXPENSIVE
= FBLT is already much slower than MGALT due to numerical integration vs. analytic

Kepler, so it is even more important to supply user-defined derivatives

= The most challenging are the match point continuity constraints: state transition

matrices
‘p.'\"/')
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= Traditional six-by-six STM is augmented to include mass and the
current time step’s control parameters u,, u, and u,

= Match point constraint vector sensitivities w.r.t. controls make up the
majority of the dense entries in the Jacobian

= An STM chain is constructed beginning with the segment of interest and
proceeding using “stripped” STMs to the match point
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= Unlike the two-body problem (see Battin for example), analytic expressions for the
perturbation STM entries don’t exist for true continuous thrust

= We can solve for them numerically

= Differential equations for the STM entries are appended to the physics EOM’s and
integrated alongside them

= \We must calculate the state propagation matrix (A) at each integration time step

= A also referred to as the fundamental solution/set .

=A%

r

. T :
X=|r|=|2z y z v, v, v, m] A__GX

m - 0X
X=f= [ r T m Uz Uy Uy S11 S12 ... S1010 ]

S. P. Hughes, D. S. Cooley, and J. J. Guzman, “A Direct Method for Fuel Optimal Maneuvers of Dis-
tributed Spacecraft in Multiple Flight Regimes,” Proceedings of the AAS/AIAA Space Flight Mechanics
Meeting, Copper Mountain, Colorado, No. AAS-05-158, January 23-27 2005.

S. P. Hughes and E. Dove, “Optimal Control and Near Optimal Guidance for the Magnetospheric Multi-
Scale Mission (MMS),” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh,
Pennsylvania, No. AAS-09-330, August 9-13 2009.
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= Launch vehicles are modeled using a polynomial fit
Maetiverea = (1 — oLy) (fLVC3’5 + ey Cs + dpyC3 + cpyC3 + byyC3 + aLV)
where a;y, is launch vehicle margin and C; is hyperbolic excess velocity

= Thrusters are modeled using either a polynomial fit to published thrust and mass flow rate
data

Thmax=eFP4+dFP3+CFP2+bFP+aF
Tmax = eTP4 + dTP3 + CTPZ + bTP + ar
or, when detailed performance data is unavailable
_2nP Tmax

max — Mmax =

Ispgo Ispgo
= Power is modeled by a standard polynomial model

Vi Y
Po[ Yot F+3

_— 1—1)¢
r2\1 4 y3r + yur? ( 2

P, is the power at beginning of life at 1 AU, t is the solar array degradation constant and t is
the time since launch in years

NAVIGATION & MISSION DESIGN BRANCH, CODE 595

NASA GSFC s



= Two main components
- Adaptive step sizing algorithm
- 8t order embedded explicit Runge-Kutta step calculation method
= Local truncation error between 7" and 8" order solutions is used to adaptively

size the integration step
t(] t]

= Each FBLT
segment hy is

broken into §; N |
sub-steps . /\/

hy =) 6

NAVIGATION & MISSION DESIGN BRANCH, CODE 595
NASA GSFC

16



= After each sub-step, the local truncation error between the 7t and 8™ order
solutions is calculated (Ae)

= |If Ae > AT then S = 0.98, the time step will be reduced and the sub-step is
reintegrated

= else S = 1.01, and the time step length is increased, potentially saving
computation time

= g is the order of the relative error of the method, g = 8 for RK7(8)13M

= The integration proceeds until integration across the full FBLT time step has
been completed to within the user-specified error tolerance

AT

1

Y
&E A. M. Ghosh, Multi-Cubesat Mission Planning Enabled Through Parallel Computing. PhD thesis,
University of Illinois at Urbana-Champaign, May 2013.
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. Calculate the gradient and step at the left hand side of the RK sub-step
ki = b f (t, X,.)

2. At each of the 13 stages, calculate the state sample point and the
gradient/step at that point...store the gradient information

Xn(i):f{n‘i‘zﬂijkj 1>7 1,7=1,2,3,..,s

ki=0n-f (tn + ¢i0n, ﬁ’n[?))

3. At the right hand side of the sub-step, compute the 7t and 8™ order solutions

ﬁn+1:ﬁn+23iki Xnt1 =X ‘|‘Zbk 1=2,3,...,
=1

4. Update time and adjust the step size tni1 = tn + On
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= |f we had an analytic equations for propagating the trajectory, TOF derivatives
would be fairly simple (to first order)

or,, = v, - 01T OF

= Unfortunately, we have a numerical approximation, so computing TOF
derivatives involves taking derivatives of the components of the integrator itself

= Derivatives of both the adaptive step routine as well as the RK step calculation

must be accumulated as the integration is performed

0X i1 _0X, _i_ig Ik; : I‘
OTOF ~ OTOF = = "OTOF X=f=| r
ki _ n . o OF . om
OTOF  O0TOF "OTOF
8i:cb—3g’c o afﬂb—ae/c . arcb—sfc 8fcb—sﬁc . Irep—3p afrzb—s;’c . am-ﬁfﬂ afcb—sfc . or
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= State gradient TOF derivatives for the spacecraft in turn require sensitivity of 3
body position to changes in TOF

= EMTG uses the SPICE kernels to calculate solar system body states
= Analytical derivatives are only possible if you can access SPICE internally
= SPICE uses Chebyshev polynomial interpolation for planetary positions

= Fortunately, for planets only, the velocity polynomial is the time derivative of the
position polynomial (we have direct access to the position curve derivative)

= This is not true for planetary satellites, velocity curve is fit separately
- Another ephemeris reader (FIRE, Arora and Russell, 2008) would solve this
= EMTG's power solar electric hardware models are TOF dependent

ai:cb—.e/c _ afcb—sfc . arcb—.e/c afcb—sﬁc . Orcp_3p afrzh—s/c . amsfc af‘cb—ee/c . oT
OTOF 0ty .. OTOF = Ore s OTOF ' 0m,,. OTOF ' oT  OTOF
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= State gradient TOF derivatives for the spacecraft in turn require sensitivity of 3
body position to changes in TOF

= EMTG uses the SPICE kernels to calculate solar system body states
= Analytical derivatives are only possible if you can access SPICE internally
= SPICE uses Chebyshev polynomial interpolation for planetary positions

= Fortunately, for planets only, the velocity polynomial is the time derivative of the
position polynomial (we have direct access to the position curve derivative)

= This is not true for planetary satellites, velocity curve is fit separately
- Another ephemeris reader (FIRE, Arora and Russell, 2008) would solve this
= EMTG's power solar electric hardware models are TOF dependent

ai:cb—.e/c _ afcb—sfc . arcb—.e/c afcb—sﬁc . Orcp_3p i afrzh—s/c . amsfc af‘cb—ee/c . oT
OTOF Oty .. OTOF | 0tw s | OTOF ' 0m,,. OTOF ' oT  OTOF

. T
8rcb—s/c 3r35_3/5r3b—s/c ]13373
or — T Hab r2 3
cb—3b 3b—s/c 3b—s/c
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= State gradient TOF derivatives for the spacecraft in turn require sensitivity of 3
body position to changes in TOF

= EMTG uses the SPICE kernels to calculate solar system body states
= Analytical derivatives are only possible if you can access SPICE internally
= SPICE uses Chebyshev polynomial interpolation for planetary positions

= Fortunately, for planets only, the velocity polynomial is the time derivative of the
position polynomial (we have direct access to the position curve derivative)

= This is not true for planetary satellites, velocity curve is fit separately
- Another ephemeris reader (FIRE, Arora and Russell, 2008) would solve this
= EMTG's power solar electric hardware models are TOF dependent

ai:cb—.e/c _ afcb—sfc . arcb—.e/c afcb—sﬁc .Ercb—Sb + ai:r:h—s/c . amsfc af‘cb—ee/c . oT
OTOF 0ty .. OTOF = Ore s |0TOF| 0m,. OTOF ' oT  OTOF
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= State gradient TOF derivatives for the spacecraft in turn require sensitivity of 3
body position to changes in TOF

= EMTG uses the SPICE kernels to calculate solar system body states
= Analytical derivatives are only possible if you can access SPICE internally
= SPICE uses Chebyshev polynomial interpolation for planetary positions

= Fortunately, for planets only, the velocity polynomial is the time derivative of the
position polynomial (we have direct access to the position curve derivative)

= This is not true for planetary satellites, velocity curve is fit separately
- Another ephemeris reader (FIRE, Arora and Russell, 2008) would solve this
= EMTG's power solar electric hardware models are TOF dependent

ai:cb—.e/c _ afcb—sfc . arcb—.e/c afcb—sﬁc . Orcp_3p afrzh—s/c . amsfc af‘cb—ee/c . oT
OTOF 0ty .. OTOF = Ore s OTOF = 0m,,. OTOF ' oT |dTOF
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Parameter Value

Initial mass 3000 kg

Earliest allowed launch date January 1st, 2015

Latest allowed launch date unbounded

Initial v up to 6.97 km/s

Maximum flight time unbounded

Arrival type low-thrust rendezvous

Thruster NEXT - high thrust variant

Thrust coefficients er = 0.09591 dp = —1.98537 ¢ = 11.47980 by = 15.06977 ar = 14.51552
Thruster duty cycle 0.9

Mass flow rate coefficients epr = 0.01492 dp = —0.27539 cp = 1.60966 by = —2.53056 ap = 3.22089
Solar power coefficients vo = 1.32077 v1 = —0.10848 v = —0.11665 vz = 0.10843 4 = —0.01279
Solver parameters

Flyby sequence Earth-Jupiter direct (E-I)

Number of time-steps 40

Ephemeris SPICE

SNOPT feasibility tolerance 1.0e-5

Objective function maximize final mass

Number of NLP parameters 126

Number of constraints (including objective function) 48

Dense Jacobian entries 1002

Table 2: Earth to Jupiter low-thrust direct transfer problem assumptions
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= SNOPT was allowed to execute for 100 major iterations
= STM-based Jacobian run converged after 80 majors
= Finite differenced Jacobian run hit the 100 major iteration limit

= Both are equally effective at solving the problem from an MGALT initial
guess

= Numerically computed STMs afford 13-15 times execution speed increase

Metric STM computed Jacobian  Finite Differenced Jacobian
Final mass delivered to Jupiter ~ 2117.68 kg 2117.53 kg
SNOPT execution time 44.04 s 67291 s

Table 3: STM vs. finite differenced Jacobian SNOPT performance metrics
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= Low-thrust preliminary design cadence has been drastically increased

= EMTG-General Mission Analysis Tool (GMAT) work flow has been
improved
= Although GMAT can converge from an MGALT or FBLT initial guess,

for complex problems sometimes even an FBLT cannot converge from
MGALT

= For cases when MGALT is insufficient, it is crucial that initial guesses PP oo u

for GMAT be generated as fast as possible using FBLT

= Launch vehicle, power and thruster models are currently being
integrated with GMAT

= |t is recommended that the STM described in this presentation be

incorporated into GMAT's solvers as it can handle arbitrarily complex A Vs

dynamics (i.e. SRP, gravitational harmonics could be added relatively
easily)

= EMTG and GMAT native integrators are also quite similar
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= The state transition matrix increases the efficiency of the finite-burn low-thrust
transcription and allows for the tempo at which low-thrust preliminary design is
performed to be increased, saving analysts’ time.

= |t importantly includes accurate hardware models that can have a major influence
on mission feasibility even at the preliminary design stage

= This work enables FBLT to be used in the framework of a global optimizer for
many problems

= With EMTG'’s performance increases serving as an example, the logical next step
would be to repeat the same process inside the GMAT high-fidelity tool

= This work has extensions in other areas of interest:
- Spacecraft guidance (method of adjoints and the guidance matrix)
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