

Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit

David Chelmins, Richard Reinhart, Dale Mortensen, Bryan Welch, Joseph Downey, and Mike Evans

> dchelmins@nasa.gov +1 (216) 433-3304

NASA Glenn Research Center (GRC) Cleveland, Ohio, United States

IAC 2014, Toronto, Ontario, Canada

- Introduction and Background
- Recent Mission Use of 26 GHz Ka-Band

SCaN Testbed

- Ka-Band Components
- SCaN Testbed Radios and Capabilities
- Ka-Band Tracking Considerations

Experiments on SCaN Testbed

- Ka-Band Launch Waveform Performance
- Antenna Pointing Quality Metric
- High-Rate, Bandwidth-Efficient Waveform

• Toward the Future: Ka-Band User Spacecraft

• NASA is considering use of Ka-band for Low Earth Orbit (LEO)

- Large data volumes drive the need for higher data rates
- Short pass times drive the need for more bandwidth and higher-order modulation schemes

Int'l Telecommunications Union (ITU) allocations favor Ka-band

- S-band space science: ~10 MHz
- X-band earth science: ~375 MHz
- Ka-band space-to-space: ~2250 MHz
- NASA developed the Space Communications and Navigation (SCaN) Testbed to research software-defined radio techniques for Ka-band transition in LEO
 - First NASA space-qualified Ka-band transceiver (Harris Corp.)
 - Research capabilities for modulation, pointing/tracking, etc.

NASA

- SCaN Testbed
- Solar Dynamics Observatory
- Lunar Reconnaissance Orbiter

JAXA

- Advanced Earth Observing Satellite
- Advanced Land Observation Satellite

- Japanese Experiment Module (Int'l Space Station ISS)
- ESA
 - Envisat (concluded in 2012)

• Transition to Ka-band has been slow for a number of reasons...

- Reusing hardware and systems from previous missions (reduce risk)
- Increased complexity of narrow-beam antenna pointing

RF Components

- Traveling Wave Tube Amplifier (TWTA)
 - L3 Corporation, 40 Watts (25.5 to 25.8 GHz)
- High Gain Antenna (HGA)
 - 0.5 meter parabolic reflector
 - 39 dB peak gain at 22 GHz receive
 - 39.8 dB peak gain at 25 GHz transmit
- Integrated Gimbal Assembly (IGA)
 - Waveguide rotary joints
 - 2-axis gimbaled pedestal

Harris Corporation Software-Defined Radio (SDR)

- AITech s950 single board computer
- 4 Xilinx Virtex-IV field programmable gate arrays (FPGAs)
- Compact Peripheral Component Interconnect (cPCI) chassis
- Output: ~1 mW at Ka-band with an S-band intermediate frequency

- SCaN Testbed studying advanced communications, navigation, and networking applications of SDR for space
 - Jet Propulsion Laboratory SDR: S-band transceiver, L-band receiver
 - General Dynamics SDR: S-band transceiver

NTIA Frequency Allocation and Data Capability

- Ka-band: 225 MHz; launch data rates from 1 to 100 Mbps
- S-band: 6 MHz; launch data rates from 24 kbps to 1 Mbps

STB Ka-Band Tracking

SCaN Testbed antenna pointing system

- Reprogrammable algorithm
- Open loop or closed loop
 - Acquisition spiral & autotrack modes
 - Programmable threshold based recv'd power

Small beamwidth → sensitive pointing

• STB 3 dB beamwidth is approximately 1 degree

- ISS two line element (TLE) staleness tends to create azimuth errors
 - Azimuth error == altitude; elevation error == ascending node
- ISS truss flexure can induce 1 to 2 degrees of pointing error
 - See Dean Schrage "ISS Truss Flexure Measurement Applying Ka-Band Closed-Loop Tracking", 3rd Annual ISS Research and Development Conference

Closed loop is preferred

- Many pointing error sources: TLE staleness, truss flexure, attitude uncertainty
- Open loop is sufficient for high link margin and recent TLEs.

• Space-to-space Ka-band links have been evaluated

- Full duplex links with NASA's Tracking and Data Relay Satellite System
- Waveform installed on Harris SDR at payload launch
- Stable signal with ~2.4 dB margin at 100 Mbps user data rate

Successful link demonstrations

• No observed bit errors after 40+ minutes at 100 Mbps return link

Parameter	Forward Link (SDR Receive)	Return Link (SDR Transmit)
Frequency (GHz)	22.68	25.65
Data Rate (Mbps)	9.5	100
Modulation	BPSK	SQPSK
Convolutional	1/2 rate	1/2 rate
Coding		
Bandwidth (MHz)	38	200
EIRP (dBW)	63	49.2
G/T (dB/K)	2.69	26.51
Required BER	10 ⁻⁸	10 ⁻⁸
Range (km)	43550	
Link Margin	3.0 dB	2.4 dB

- Antenna pointing quality metric (APQM) is important for closed loop tracking.
 - STB uses a linear signal strength indicator
 - Strong out-of-band signal rejection (noise/interference)

Developed an APQM algorithm at NASA GRC

• Allows tracking of any modulation type or noise signal

• Objective: Maximize data rate and improve spectral efficiency

- Demonstrated 300 Mbps data rate over 225 MHz bandwidth and SQPSK
- Implements high-order modulation techniques and LDPC coding
 - Gaussian Minimum Shift Keying (GMSK)
 - Pulse-shape filtered M-order phase-shift keying (M-PSK)
 - M-order quadrature amplitude modulation (M-QAM)
- Implements digital pre-distortion techniques to account for channel issues

NASA's Space Network Ground Segment Sustainment Project

- TDRSS will support 8-PSK modulation and LDPC decoding
- Other modulation and coding support can be provided through user modems on-site

- Interagency Operations Advisory Group (IOAG) study examined direct-to-ground feasibility of 26-GHz Ka-band from LEO.
 - Adaptive coding and modulation schemes
 - On-board steerable antennas and pointing algorithms
 - High-rate data interfaces and on-board storage
- SCaN Testbed can simulate the direct-to-ground environment through antenna mis-pointing.

Time

- Although mission adoption has been slow, full duplex Ka-band is viable for low earth orbit applications.
- SCaN Testbed has the capability and location to support ongoing Ka research for LEO.
 - Antenna pointing and tracking
 - Received power estimation algorithms
 - Modulation and coding

• More time must be dedicated to study the Ka user spacecraft.

- Omni-directional antennas for mission recovery
- Pointing requirements

