

Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor (AIAA-2014-2744)

Dave Sree - Tuskegee University, Alabama, USA

David B. Stephens - NASA Glenn Research Center, Ohio, USA

Funding for this research was provided by: NASA Environmentally Responsible Aviation Project, NASA Fixed Wing Project, NASA Glenn Faculty Fellowship Program.

20th AIAA/CEAS Aeroacoustics Conference (AIAA Aviation 2014 Forum), Atlanta, GA

Open Rotor Acoustics

ASA/GE Open Rotor Test Campaign (2009-2012)

- Open rotor spectra composed of tones and broadband 12 x 10 blade counts produce many tones
- **Objective:** Develop a tool to separate tones and broadband

Synchronous Averaging for Fans

For single shaft data (like fan data), synchronous or phaselocked averaging provides an unambiguous way to separate tone and BB.

Synchronous Averaging for Open Rotor

For uncoupled two-shaft open rotor systems, phase between the rotors drifts and synchronous averaging only captures individual rotor tones, but not the interaction tones.

Spectral Processing for Open Rotor Data

New Processing Method

Capture correlated portion of signal before phase drifts too much

D. Sree, "A novel signal processing technique for separating tonal and broadband noise components from counter-rotating open-rotor acoustic data," *International Journal of Aeroacoustics*, 2013.

New Processing Method

Shift second segment by the time delay, maintaining segment length

Calculate mean of the two segments and the deviation from the mean

New Processing Method

- Tones end up in "segment mean"
- Broadband split; need to correct
- Usual spectral estimation like windowing, overlapping, etc. can be included

New Method Applied to Fan Data

\diamondResults match synchronous averaging decomposition well

Some tone energy remaining in "broadband" at few frequencies

New Method Applied to Open Rotor Data

Operating condition: nominal cruise

New Method Applied to Open Rotor Data

Operating condition: nominal take-off

Results satisfactory; a few tones in the "broadband" spectrum

New Method Applied to Open Rotor Data

Operating condition: nominal approach

Results satisfactory; a few tones in the "broadband" spectrum

Sound Directivity

- Broadband can be an equal contributor at some operating conditions
- Tones dominate at cruise
- Implications for noise reduction

Investigation of limitations

- Operating condition: cruise (higher thrust level)

Investigation of limitations

- Operating condition: approach (higher thrust level)
- Results unsatisfactory

Investigation of limitations

This data set also challenging for spectral methods

Summary of Methods

D. B. Stephens and H. Vold, "Order tracking signal processing for open rotor acoustics," *Journal of Sound and Vibration*, 2014.

	Spectral Methods	Phase Averaging	Vold-Kalman Order Tracking	Sree's Method
Application	Any	Single shaft	Multi-Shaft	Any
Input	Frequency Spectrum	Time Series	Time Series	Time Series
Output	Frequency Spectra	Time Series	Time Series	Frequency Spectra
Encoder Required	No	Yes	Yes	No
Processing Speed	Fastest	Medium	Slowest	Fast
Other Advantages	Robust	Well defined	Quantifies tone coherence with each shaft	Parameter free
Other Disadvantages	Ad-hoc, subjective	Fails for Open Rotors	May require filter bandwidth tuning	Only accounts for dominant frequency and harmonics

Comparison of Methods

Different tools fit different needs

Conclusions

A new signal processing method has been developed

- Separates tones and broadband
- Output A Most open rotor measurements result in good separation, but not all
- Improvements still underway
- Applicability to other data sets being investigated
- Algorithm available as a short MATLAB script

