
October 2014

NASA/TM–2014-218536

A Walsh Function Module Users’ Manual

Peter A. Gnoffo
Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA Aeronautics
and Space Database and its public interface, the
NASA Technical Report Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in
both non-NASA channels and by NASA in the
NASA STI Report Series, which includes the
following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or co-
sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page
at http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI
Information Desk at 443-757-5803

• Phone the NASA STI Information Desk at
443-757-5802

• Write to:
 STI Information Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

October 2014

NASA/TM–2014-218536

A Walsh Function Module Users’ Manual

Peter A. Gnoffo
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics
and Space Administration

Abstract

The solution of partial differential equations (PDEs) with Walsh functions offers new opportunities
to simulate many challenging problems in mathematical physics. The approach was developed to
better simulate hypersonic flows with shocks on unstructured grids. It is unique in that integrals and
derivatives are computed using simple matrix multiplication of series representations of functions
without the need for divided differences. The product of any two Walsh functions is another Walsh
function - a feature that radically changes an algorithm for solving PDEs. A FORTRAN module
for supporting Walsh function simulations is documented. A FORTRAN code is also documented
with options for solving time-dependent problems: an advection equation, a Burgers equation, and
a Riemann problem. The sample problems demonstrate the usage of the Walsh function module
including such features as operator overloading, Fast Walsh Transforms in multi-dimensions, and a
Fast Walsh reciprocal.

1

Contents

1 Introduction 4

2 Walsh Function Module: walsh_tools 6
2.1 Parameters and Arrays . 6

2.1.1 dp . 6
2.1.2 gns . 6

2.2 Derived Types . 6
2.2.1 type(g) . 6
2.2.2 type(walsh) . 7

2.3 Operator Overloading . 9
2.3.1 assignment(=) . 9
2.3.2 operator(+) . 9
2.3.3 operator(-) . 10
2.3.4 operator(*) . 10
2.3.5 operator(**) . 10
2.3.6 operator(/) . 10

2.4 Functions . 11
2.4.1 f_from_comp . 11
2.4.2 absw . 11
2.4.3 sqrtw . 11
2.4.4 gn . 11
2.4.5 pmap . 12
2.4.6 intx . 12
2.4.7 inty . 12
2.4.8 intz . 12
2.4.9 intt . 13

2.5 Subroutines . 13
2.5.1 allocate_walsh . 13
2.5.2 deallocate_walsh . 13
2.5.3 initialize_walsh . 13
2.5.4 fast_walsh_gather_4d . 14
2.5.5 g_hat_bisection . 15
2.5.6 g_recursion . 15
2.5.7 check_walsh . 15
2.5.8 setup_domain . 16

3 Boundary Module: boundary 17
3.1 overlap . 17
3.2 profile . 19
3.3 profile_burgers . 20
3.4 profile_sod . 20
3.5 boundary_from_interior . 20

4 LAPACK Module: lapack 23

2

5 Demonstration Program: demo 24
5.1 Test Cases . 24

5.1.1 Advection . 24
5.1.2 Burgers Equation . 25
5.1.3 Riemann Problem . 26

5.2 Compilation . 28
5.2.1 Makefile.env . 28
5.2.2 make.dependencies . 28
5.2.3 Makefile.rules . 29
5.2.4 Makefile . 29

5.3 Inputs . 29
5.3.1 demo_code . 29
5.3.2 nu . 29
5.3.3 p_alpha . 30
5.3.4 p_tau . 30
5.3.5 p_domain . 30
5.3.6 overlap_x . 30
5.3.7 overlap_t . 30
5.3.8 dt . 30
5.3.9 t_max . 31
5.3.10 truncate . 31

5.4 OutputFiles . 31
5.4.1 Screen Output . 31
5.4.2 Plot Files . 31

5.5 Flowchart . 32

6 Sample Solutions 34
6.1 Advection . 34
6.2 Burgers Equation . 36
6.3 Riemann Problem . 39

7 Summary 41

3

1 Introduction

The solution of partial differential equations (PDEs) with Walsh functions offers new opportunities
to simulate many challenging problems in mathematical physics. The approach was developed to
better simulate hypersonic flows with shocks on unstructured grids. [1]

The Walsh function approach is unique in that integrals and derivatives are computed using
simple matrix multiplication of series representations of functions without the need for divided
differences. The product of any two Walsh functions is another Walsh function - a feature that
radically changes an algorithm for solving PDEs.

While this algorithm holds great promise, there are coding infrastructure challenges that make
it difficult to further explore and develop numerical simulation tools using Walsh functions. Some
unique strengths of Walsh functions are the capabilities to systematically account for non-linear
interactions of component waves and to explicitly propagate boundary conditions across the so-
lution domain. However, the implementation of these capabilities presents tedious programming
challenges. Multiplication and division of two Walsh functions are fundamentally different from any
currently supported operations in any programming language. Keeping track of Jacobians required
for the solution of systems of PDEs can become especially tedious in this environment. Fortunately,
all of this tedious detail can be supported in the background through use of a module that supports
operator overloading and other commonly used functions and routines in the solution of partial
differential equations. This support greatly simplifies the learning curve for new users wanting to
explore the use of Walsh functions in solving PDEs.

The purpose of this manual is to document the Walsh function support infrastructure in FOR-
TRAN module walsh_tools. It also provides three demonstration problems providing examples
of how the walsh_tools infrastructure is used to solve PDEs. It is assumed the reader/user has
some familiarity with FORTRAN 2003 in general and the use of derived types in particular. This
manual is intended to be used in association with the original documentation [1] of the algorithm.
Only the interface to Walsh function operations and algorithms is described; the reader must refer
to the original documentation as well as the FORTRAN program files described herein for details
of implementation.

Two algorithms not previously documented are supported within the module walsh_tools.

• The Fast Walsh Transform (FWT) in multi-dimensions is key to efficient solution of problems
using a large number (N) of terms in the series. An element of any solution algorithm requires
the transformation from wave number representation to discrete value representation and back.
The FWT implements this transformation in order N log(N) operations (if N = 2p) rather
than order N2 operations as documented previously. [1]

• The Fast Walsh Reciprocal (FWR) provides the inverse of a Walsh symmetric matrix in order
N log(N) operations. Any problems involving the evaluation of the reciprocal of a function
requires evaluation of a Walsh symmetric matrix inverse.

Documentation and derivation of the FWT and FWR algorithms are planned for an upcoming paper.
For now, the implementation of these algorithms is documented in the accompanying FORTRAN
code.

The remainder of this manual is organized as follows. Section 2 documents the Walsh function
specific oerations, functions, and subroutines that are intended to provided infrastructure support
for new research involving Walsh functions in the solution of PDEs. Section 3 documents the

4

routines used to define boundary conditions and exact solutions to the demonstration problems.
Section 4 briefly describes the linear solver software routines [2] used to solve the PDEs with Newton
relaxation. Section 5 defines the three demonstration test problems and documents how module
walsh_tools is used obtain their solution. Finally, Section 6 documents results of the problems
defined in Sec. 5. The ultimate goal of this effort is to encourage new users to borrow and improve
upon the algorithms documented here to further advance the use of Walsh functions in the solution
of non-linear, partial differential equations.

5

2 Walsh Function Module: walsh_tools

The Walsh function module walsh_tools includes all derived types, procedures, functions, and
subroutines required to define and use Walsh functions in the solution of partial differential equa-
tions. It is assumed that users will want to start with the current code structure and then make
changes associated with their own research and application needs. Only variables, functions, and
routines declared public - intended for general use - are documented here. Note that the Jacobians
of every variable of type walsh are automatically computed.

2.1 Parameters and Arrays

2.1.1 dp

integer, parameter :: dp = selected_real_kind(15, 307)

All real values in all modules are set to type real(dp). The parameter dp allows the programmer
to modify the real precision throughout. Double precision is the default.

2.1.2 gns

type(g), dimension(:), allocatable :: gns

The array of orthonormal Walsh functions created in subroutine g_hat_bisection or subroutine
gn_recursion.

2.2 Derived Types

2.2.1 type(g)

type g

integer, dimension(:), pointer :: segment

integer, dimension(:), pointer :: factor

integer :: level

end type

Each orthonormal Walsh function gn is of type(g). This derived type includes three essential
elements for describing the nth Walsh function.

• The one-dimensional integer array segment is allocated n and includes the dimensionless
segment lengths (1 or 2) corresponding to ĝn of Eq. 6 of Reference[1].

• The one-dimensional integer array factor is allocated n. The mth element of factor defines
the mapped location k of the product gngm = gk. This array corresponds to the nth column
of the multiplication table P(n,m) of Table 2 in Reference [1].

• The integer level corresponds to the value of p in Eq. (3) of Reference[1]. Segment size for
gn is determined by p in Eq. (2) of Reference[1].

6

2.2.2 type(walsh)

type walsh

integer :: len

integer :: ndep

integer :: nbcx

integer :: nbcy

integer :: nbcz

integer :: nbct

logical :: jacb

integer, dimension(4) :: nseg

real(dp), dimension(4,2) :: domain

logical, dimension(:), allocatable :: bdep

logical, dimension(:), allocatable :: bcx

logical, dimension(:), allocatable :: bcy

logical, dimension(:), allocatable :: bcz

logical, dimension(:), allocatable :: bct

real(dp), dimension(:), allocatable :: comp

real(dp), dimension(:,:,:), allocatable :: jac

real(dp), dimension(:,:,:), allocatable :: jacbcx

real(dp), dimension(:,:,:), allocatable :: jacbcy

real(dp), dimension(:,:,:), allocatable :: jacbcz

real(dp), dimension(:,:,:), allocatable :: jacbct

end type

Every dependent variable in the solution of a system of PDEs is of type walsh. This derived type
includes all of the information required to evaluate all wave components and Jacobians across a
domain for most unary and binary operations (+,-,*,/,**,

∫
,and ∂()

∂(x,y,z,t)) involving operands of
type walsh.

• The integer len equals the maximum number of segments in the domain. This value is
inherited by any derived function of type walsh.

• The integer ndep is the total number of primary, dependent variables in the domain. This
value is inherited by any derived function of type walsh. If the domain is global then ndep
is usually equal to the number of PDEs to be solved. If the domain is a boundary then ndep
equals the total number of boundary conditions in the respective coordinate direction.

• The integer nbcx is the total number of boundary conditions in the x (or α) direction for the
system. This value is inherited by any derived function of type walsh.

• The integer nbcy is the total number of boundary conditions in the y (or β) direction for the
system. This value is inherited by any derived function of type walsh.

• The integer nbcz is the total number of boundary conditions in the z (or γ) direction for the
system. This value is inherited by any derived function of type walsh.

• The integer nbct is the total number of boundary conditions in the t (or τ) direction for the
system. This value is inherited by any derived function of type walsh.

7

• The logical flag jacb is true if the function is derived from (or is itself) a primary dependent
variable or boundary condition. Often, PDEs include metric coefficients represented by Walsh
functions across the domain that are only functions of the independent variables, in which
case jacb is false. If a new function is derived from a Walsh function with jacb equal true, it
too will assign jacb equal to true.

• The one-dimensional, integer array nseg of length 4 includes the number of segments across
the domain in the x, y, z, and t directions (or α, β, γ, and τ directions), respectively. If a
simulation includes only two directions then the segment numbers of the remaining directions
are set to 1 - indicating a constant value of all functions in those directions. This array is
inherited by any derived function of type walsh.

• The two-dimensional, real array domain with dimension (4,2) includes the initial, constant
value of the computational coordinate in the x, y, z, and t directions (or α, β, γ, and τ direc-
tions), in the (1,1), (2,1), (3,1), and (4,1) locations, respectively. It includes the terminating,
constant value of the computational coordinate in the x, y, z, and t directions (or α, β, γ,
and τ directions), in the (1,2), (2,2), (3,2), and (4,2) locations, respectively. If a simulation
includes only two directions then the initial and terminating values of the remaining directions
are set to 0 and 1. This array is inherited by any derived function of type walsh.

• The one-dimensional, logical array bdep has length ndep. The mth element of bdep is true
if it is derived from the mth primary, dependent variable. Otherwise it is false.

• The one-dimensional, logical array bcx has length nbcx. The mth element of bcx is true if
it is derived from the mth boundary condition in the x (or α) direction. Otherwise it is false.

• The one-dimensional, logical array bcy has length nbcy. The mth element of bcy is true if
it is derived from the mth boundary condition in the y (or β) direction. Otherwise it is false.

• The one-dimensional, logical array bcz has length nbcz. The mth element of bcz is true if
it is derived from the mth boundary condition in the z (or γ) direction. Otherwise it is false.

• The one-dimensional, logical array bct has length nbct. The mth element of bct is true if it
is derived from the mth boundary condition in the t (or τ) direction. Otherwise it is false.

• The one-dimensional, real array comp has length len. It contains the wave components Al

of the Walsh function series.

nseg(4)∑
n=1

nseg(3)∑
k=1

nseg(2)∑
j=1

nseg(1)∑
i=1

Algi(x)gj(y)gk(z)gn(t)

where l = i+ nseg(1)(j − 1 + nseg(2)(k − 1 + nseg(3)(n− 1))).

• The three-dimensional, real array jac is dimensioned (len, len, ndep). Jacobian jac(l,m, n)
contains the partial derivative of the lth wave component with respect to the mth wave
component of the nth primary, dependent variable.

• The three-dimensional, real array jacbcx is dimensioned to (len, lenx, max(1,nbcx)), where:

lenx = max(1, nseg(2) * nseg(3) * nseg(4))

8

The element jacbcx(l,m,n) contains the partial derivative of the lth wave component with
respect to the mth wave component of the nth boundary condition in the x (or α) direction.

• The three-dimensional, real array jacbcy is dimensioned to (len,leny, max(1,nbcy)), where:

leny = max(1, nseg(1) * nseg(3) * nseg(4))

The element jacbcy(l,m,n) contains the partial derivative of the lth wave component with
respect to the mth wave component of the nth boundary condition in the y (or β) direction.

• The three-dimensional, real array jacbcz is dimensioned to (len,lenz, max(1,nbcz)), where:

lenz = max(1, nseg(1) * nseg(2) * nseg(4))

The element jacbcz(l,m,n) contains the partial derivative of the lth wave component with
respect to the mth wave component of the nth boundary condition in the z (or γ) direction.

• The three-dimensional, real array jacbct is dimensioned to (len,lent, max(1,nbct)), where:

lent = max(1, nseg(1) * nseg(2) * nseg(3))

The element jacbct(l,m,n) contains the partial derivative of the lth wave component with
respect to the mth wave component of the nth boundary condition in the t (or τ) direction.

2.3 Operator Overloading

2.3.1 assignment(=)

public :: assignment(=)

interface assignment(=)

module procedure walsh_assign_dd

end interface

A function of type walsh on the left side of the equals sign (=) is set equal to the result of the
expression involving functions of type walsh on the right side.

2.3.2 operator(+)

public :: operator(+)

interface operator(+)

module procedure walsh_plus_dd

module procedure walsh_plus_dr

module procedure walsh_plus_rd

end interface

A binary operation in which a function of type walsh may be added to another function of type
walsh or to a real number.

9

2.3.3 operator(-)

public :: operator(-)

interface operator(-)

module procedure walsh_minus_d

module procedure walsh_minus_dd

module procedure walsh_minus_dr

module procedure walsh_minus_rd

end interface

A binary operation in which a function of type walsh may be subtracted from another function of
type walsh or from a real number. The unary operation simply takes the negative of the function.

2.3.4 operator(*)

public :: operator(*)

interface operator(*)

module procedure walsh_prod_dd

module procedure walsh_prod_rd

module procedure walsh_prod_dr

end interface

A binary operation in which a function of type walsh may be multiplied by another function of
type walsh or by a real number.

2.3.5 operator(**)

public :: operator(**)

interface operator(**)

module procedure walsh_expo_di

end interface

A binary operation in which a function of type walsh may be raised to a positive integer power.

2.3.6 operator(/)

public :: operator(/)

interface operator(/)

module procedure walsh_div_rd

module procedure walsh_div_dr

module procedure walsh_div_dd

end interface

If a function of type walsh occurs on the right side of the operator /, its reciprocal is evaluated
using a Fast Walsh Reciprocal Transform and then the reciprocal multiplies the function or real
number on the left. If a real number occurs on the right, its reciprocal multiplies the function on
the left.

10

2.4 Functions

2.4.1 f_from_comp

pure elemental function f_from_comp(x, y, z, t, a, &

filter)

type(walsh), intent(in) :: a

real(dp), intent(in) :: x, y, z, t

logical, optional, intent(in) :: filter

real(dp) :: f_from_comp

The value of a function a of type walsh at location (x, y, z, t) in the domain is returned as
f_from_comp. If filter is present and true, the contributions from the highest family of wave
numbers in each direction are not included in the function evaluation. This function does not utilize
the Fast Walsh Transform (FWT) which may be more efficient in many circumstances.

2.4.2 absw

function absw(a)

type(walsh), intent(in) :: a

type(walsh) :: absw

The absolute value of a function a of type walsh is returned. A Fast Walsh Transform (FWT) is
used to convert from wave number component space to functional value space, the absolute value
of the function is computed, and then another FWT transforms the result back to wave number
component space.

2.4.3 sqrtw

function sqrtw(a)

type(walsh), intent(in) :: a

type(walsh) :: sqrtw

The square root of a function a of type walsh is returned. A Fast Walsh Transform (FWT) is
used to convert from wave number component space to functional value space, the square root
of the function is computed, and then another FWT transforms the result back to wave number
component space.

2.4.4 gn

pure elemental function gn(x0,x1,x,n)

real(dp), intent(in) :: x0

real(dp), intent(in) :: x1

real(dp), intent(in) :: x

integer, intent(in) :: n

real(dp) :: gn

The value gn of the nth orthonormal walsh function, at location x in the domain, with lower bound
x0 and upper bound x1, is returned using Eq (4) of Reference [1]. In many cases, use of an FWT
is more efficient.

11

2.4.5 pmap

pure elemental function pmap(n1,n2)

integer, intent(in) :: n1, n2

integer :: pmap

The product of basis functions n1 and n2 map to pmap. That is: gn1(x)gn2(x) = gpmap(x) for
domain length 1. See Table 2 of Reference [1].

2.4.6 intx

pure function intx(f,fa,fb,diff)

type(walsh), intent(in) :: f

type(walsh), optional, intent(in) :: fa

type(walsh), optional, intent(in) :: fb

logical, optional, intent(in) :: diff

type(walsh) :: intx

If diff is present and true, the returned function intx of type walsh defines the partial derivative of
the input Walsh function f with respect to x (or coordinate α). If diff is absent or false, the returned
function intx of type walsh defines the integral of the input Walsh function f as a function of x
(or coordinate α). Evaluation of the derivative and integral differ primarily by the transformation
matrix used: D for the derivative from Eq. 52 of Reference [1] or χT for the integral from Eq. 44 of
Reference [1]. A Walsh function boundary condition variable, defining the variation of a boundary
condition at x = domain(1, 1) for fa or at x = domain(1, 2) for fb, provides additional degrees of
freedom to satisfy PDE system boundary conditions. Only one boundary condition (fa or fb) may
be used in the function call.

2.4.7 inty

pure function inty(f,fa,fb,diff)

type(walsh), intent(in) :: f

type(walsh), optional, intent(in) :: fa

type(walsh), optional, intent(in) :: fb

logical, optional, intent(in) :: diff

type(walsh) :: inty

Same as intx but in the y (or coordinate β) direction.

2.4.8 intz

pure function intz(f,fa,fb,diff)

type(walsh), intent(in) :: f

type(walsh), optional, intent(in) :: fa

type(walsh), optional, intent(in) :: fb

logical, optional, intent(in) :: diff

type(walsh) :: intz

Same as intx but in the z (or coordinate γ) direction.

12

2.4.9 intt

pure function intt(f,fa,fb,diff)

type(walsh), intent(in) :: f

type(walsh), optional, intent(in) :: fa

type(walsh), optional, intent(in) :: fb

logical, optional, intent(in) :: diff

type(walsh) :: intt

Same as intx but in the t (or coordinate τ) direction.

2.5 Subroutines

2.5.1 allocate_walsh

pure subroutine allocate_walsh(a, nseg, ndep, nbcx, &

nbcy, nbcz, nbct, jacb)

type(walsh), intent(inout) :: a

integer, dimension(4), intent(in) :: nseg

integer, intent(in) :: ndep

integer, intent(in) :: nbcx

integer, intent(in) :: nbcy

integer, intent(in) :: nbcz

integer, intent(in) :: nbct

logical, intent(in) :: jacb

This routine allocates the elements of function a of derived type walsh and initializes its scalar
elements. The allocatable vector elements of a are initialized to zero. If, on input, the allocatable
elements of a are already allocated, the routine checks that the allocation is correct. If not correct,
the elements are deallocated and then reallocated. The other inputs are defined previously for
type(walsh). The domain boundaries domain are not changed by this routine.

2.5.2 deallocate_walsh

pure subroutine deallocate_walsh(a)

type(walsh), intent(inout):: a

This routine deallocates all allocatable elements of a.

2.5.3 initialize_walsh

subroutine initialize_walsh(a, nseg, ndep, nbcx, nbcy,&

nbcz, nbct, domain, b, mseg, dep)

type(walsh), intent(out):: a

integer, dimension(4), intent(in) :: nseg

integer, dimension(4), intent(in) :: mseg

real(dp), dimension(4,2), intent(in) :: domain

real(dp), dimension(:), intent(in) :: b

13

integer, intent(in) :: ndep

integer, intent(in) :: nbcx

integer, intent(in) :: nbcy

integer, intent(in) :: nbcz

integer, intent(in) :: nbct

integer, optional intent(in) :: dep

Primary dependent variables of type walsh are initialized in this routine.

• a: The function of type walsh to be initialized.

• nseg, ndep, nbcx, nbcy, nbcz, nbct, domain: See definition in Sec. 2.2.2.

• b: A one-dimensional array of real values used to compute the initial wave components of
a using a FWT. The b array may be dimensioned to either the total number of segments
in the entire domain or to the number of segments on any boundary of the domain. If
b is dimensioned according to the number of segments on a domain boundary, then that
distribution is injected into the rest of the domain. For example, in a time-dependent problem,
the known initial condition at t = 0 (domain(4,1)) is used to initialize the function at later
times.

• mseg: The number of segments for each computational direction of the initializing array b.
The array is ordered by l = i+mseg(1)(j − 1 +mseg(2)(k − 1 +mseg(3)(n− 1))).

• dep: An integer specifying the identity of the initialized variable used for defining the Jaco-
bian. If a is the second of three primary dependent variables, then ndep = 3 and dep = 2.
If a is the fourth of six boundary conditions in the x (or α) direction, then ndep = 6 and
dep = 4. The initialization of every primary dependent variable will have identical values of
ndep, nbcx, nbcy, nbcz, nbct that are determined by the system of PDEs being solved.
The initialization of every boundary condition will have nbcx = nbcy = nbcz = nbct =
0, and ndep equal to the total number of boundary conditions in that direction on both the
initial and terminal boundaries. If dep is absent or equal to 0, then the initialized function a
is not dependent on any dependent variable or boundary condition.

2.5.4 fast_walsh_gather_4d

subroutine fast_walsh_gather_4d(a, b, need_jac, &

direction, truncate)

type(walsh), intent(in) :: a

type(walsh), intent(out) :: b

logical, intent(in) :: need_jac

logical, intent(in) :: direction

integer, intent(in) :: truncate

This routine is the single public interface for executing Fast Walsh Transforms (FWT). Other private
routines exist internal to the walsh_tools module for executing parts of the transformation.

• a: Input function of type walsh to be transformed.

14

• b: Transformed output function of type walsh.

• need_jac: A logical flag indicating the need to transform the Jacobian elements of a. Trans-
form the Jacobians if true.

• direction: A logical flag indicating the direction of the transformation. If true, then the
transformation goes from discrete functional values at smallest segment centers in the do-
main to the Walsh function wave components. If false, the transformation goes from wave
component space to discrete values.

• truncate: An integer flag indicating the level of truncation in the transformation.
0 - no truncation
1 - truncate highest family of terms in the first coordinate direction
2 - truncate highest family of terms in the second coordinate direction
3 - truncate highest family of terms in the third coordinate direction
4 - truncate highest family of terms in the fourth coordinate direction
5 - truncate highest family of terms in all coordinate directions

2.5.5 g_hat_bisection

subroutine g_hat_bisection(level_max)

integer, intent(in) :: level_max

• level_max: The maximum value of p used in any of the computational coordinate directions
where the maximum number of Walsh functions equals 2p.

This routine calculates gns (see Sec. 2.1.2) by the original bisection algorithm of Reference[1].
This algorithm does not use recursion relations. It is less efficient than the recursion algorithm in
subroutine gn_recursion) and it does not compute the multiplication table. It is retained to enable
independent checks of the recursion algorithm.

2.5.6 g_recursion

subroutine g_recursion(level_max)

integer, intent(in) :: level_max

• level_max: The maximum value of p used in any of the computational coordinate directions
where the maximum number of Walsh functions equals 2p.

This routine calculates gns (see Sec. 2.1.2) by the recursion algorithm of Reference[1].

2.5.7 check_walsh

subroutine check_walsh(a)

type(walsh), intent(in) :: a

This routine prints information about a function a of type walsh which is often helpful in debugging
new code. It prints all of the scalar and small array elements of the derived type and the first 8
elements of the larger arrays in the derived type.

15

2.5.8 setup_domain

subroutine setup_domain(sa,sb,p,overlap,N,ds,sap,sbp,L)

real(dp), intent(in) :: sa, sb ! true endpoints

integer, intent(in) :: p ! N = 2**p

integer, intent(in) :: overlap ! 0 = ^1122,

! 1 = 1^122,

! 2 = 11^22

integer, intent(out) :: N ! number of segments

real(dp), intent(out) :: ds ! segment length

real(dp), intent(out) :: sap, sbp ! overlap endpoints

real(dp), intent(out) :: L ! sbp - sap

The solution of PDEs may employ overlap of neighboring domains or overlap of a single domain
across a boundary. The effective boundary location is defined by Eq. 100 of Reference [1].

• sa, sb: The true endpoints of the domain to be solved.

• p: The number of Walsh functions in the direction defined by (sa, sb) is 2p.

• overlap: An integer flag defining the extent of the overlap.
0 - no overlap, the effective domain is exactly the true domain.
1 - 1/2 segment overlap, the midpoint of the terminating, smallest segment is positioned over
the true boundary.
2 - full segment overlap, the terminating smallest segment is positioned across the true bound-
ary.

• N: Maximum number of segments in the given computational direction.

• ds: Length of smallest segment in the effective domain.

• sap, sbp: Endpoints of the effective domain, including overlap.

• L: Length of the effective domain.

16

3 Boundary Module: boundary

The module boundary includes all functions and subroutines required to define Walsh function
boundary conditions for the demonstration problems.

3.1 overlap

Figure 1: Schematic of the distribution of segments in g8(x) as a function of the overlap parameter.

The user-defined integer flag overlap is a key element of boundary condition formulation. As
shown in Fig. 1, overlap defines the extent to which the terminating segments of the Walsh basis
functions overlap the boundary of the physical domain. For overlap = 0, there is zero overlap.
For overlap = 1, the midpoint of the terminating segment coincides with the boundary of the
physical domain. The two half segments extending beyond the boundary sum to one. For overlap
= 2, the terminating segments bound the physical domain. In this case, the two full segments

17

extending beyond the boundary sum to two. The total length of segments extending beyond the
domain boundaries leads to the following equation for the smallest segment length in the Walsh
series representation of the solution.

Δx =
xb − xa

Nα − overlap
(1)

Here Nα = 2pα is the terminating Walsh function index in the series representation,

q(x) =

Nα∑
α=1

qw%comp(α)gα(x) (2)

and the symbol % indicates that the wave number component comp is an element of the Walsh
function series type qw as defined in Sec. 2.2.2.

Numerical tests indicate that second-order differential equations are most accurately modeled
with overlap =2. This overlap requires that the Walsh series representation of the dependent
variable(s) has a value on the bounding segments equal to the given Dirichlet boundary conditions.
A zero gradient boundary requires the values on the two terminating segments to be equal. Examples
of the coding for these formulations are included in the demonstration test cases for Burgers Equation
and the Riemann problem.

The first-order linear advection equation test case uses overlap = 1 to impose a periodic
boundary condition. In this case, the dependent variable value on the left terminating segment at
xa is set equal to the value on the right terminating segment at xb.

Figure 2 shows the distribution of segments across subdomains that span the global domain.
Subdomains are introduced to reduce the storage requirements for Jacobians. In the example of
Fig. 2, if a single series with 16 terms spans the global domain, then a single Jacobian with
162 = 256 is evaluated. (Boundary condition contributions to the Jacobian are not included in this
simple example.) If the global domain is subdivided into 4 equal parts (shown as black, green, red,
and blue in Fig. 2), and each of these subdomains is spanned by a series with 4 terms, then the
discretization of the global domain is equivalent to the single 16 term representation. However, the
Jacobian storage is a factor of 4 smaller (4 × 42 = 64) and Newton convergence is compromised
when the global domain is partitioned in this manner.

When subdomains are used, inter-domain boundary conditions are required. The overlap pa-
rameter plays the same role in the inter-domain boundaries as in the global boundaries. For overlap
= 0, neighboring subdomains (illustrated as black to green, green to red, red to blue in Fig. 2)
have no overlap; their endpoints are coincident. For overlap =1, neighboring subdomains have one
overlapping segment. For overlap = 2, neighboring subdomains have two overlapping segments.
The three light black vertical lines in Fig. 2 define the inter-domain boundaries. The extent of
overlap of the subdomains as a function of overlap is exactly the same as shown for the global
domain boundaries in Fig. 1. The minimum segment size when nD subdomains are utilized is given
by

Δx =
xb − xa

nD(Nα − overlap)
(3)

The advection test case uses overlap = 1 to compute inter-domain boundary conditions. The
advection direction is from left to right. The function value computed at the far right segment
of the black, green, and red sections is used to define the far left green, red, and blue segments,
respectively. The Burgers equation and Riemann test cases include dissipation terms. In these

18

Figure 2: Schematic of the distribution of segments in the case where a four term Walsh series is
implemented across each of four subdomains spanning the global domain.

cases, information is transferred in both directions across the inter-domain boundaries. The effect
of this data transfer is to make the functional values at the overlapping segments of neighboring
subdomains identical.

3.2 profile

function profile(xp,demo_code,var)

real(dp), intent(in) :: xp

integer, intent(in) :: demo_code

integer, intent(in) :: var

real(dp) :: profile

19

The initial conditions for the three test problems are returned in profile as a function of xp.

• xp: position

• demo_code: test problem identification
0 - advection problem
1 - Burgers equation
2 - Riemann problem

• var: returned primary dependent variable
1 - density, ρ for demo_code = 2 , velocity, u for demo_code = 0 or 1
2 - momentum, ρu for demo_code = 2
3 - energy density, ρE for demo_code = 2

3.3 profile_burgers

function profile_burgers(x,nu)

real(dp), intent(in) :: x, nu

real(dp) :: profile_burgers

The analytic, steady solution for Burgers equation is returned in profile_burgers computed as a
function of x and nu.

3.4 profile_sod

subroutine profile_sod(x,t,p,rho,u,e)

real(dp), intent(in) :: x, t

real(dp), intent(out) :: p,rho,u,e

The analytic, time dependent solution [3] for the Riemann problem is returned in profile_sod
computed for the Sod test conditions [4].

• x: position, −1 ≤ x ≤ 1

• t: time

• p: pressure

• rho: density

• u: velocity

• e: energy

3.5 boundary_from_interior

public :: boundary_from_interior

interface boundary_from_interior

module procedure boundary_from_interior_1

module procedure boundary_from_interior_2

20

end interface

subroutine boundary_from_interior_1(qwp,qb,face,overlap,qbj)

type(walsh), intent(in) :: qwp

real(dp), dimension(:), intent(inout) :: qb

integer, intent(in) :: face

! 1=xmin 2=xmax

! 3=ymin 4=ymax

! 5=zmin 6=zmax

! 7=tmin 8=tmax

integer, intent(in) :: overlap

! 0=^1122

! 1=1^122

! 2=11^22

real(dp), dimension(:,:), optional, intent(inout) :: qbj

!

subroutine boundary_from_interior_2(qwp,qb,face,overlap,qbj)

type(walsh), intent(in) :: qwp

real(dp), dimension(:), intent(inout) :: qb

integer, intent(in) :: face

! 1=xmin 2=xmax

! 3=ymin 4=ymax

! 5=zmin 6=zmax

! 7=tmin 8=tmax

integer, intent(in) :: overlap

! 0=^1122

! 1=1^122

! 2=11^22

real(dp), dimension(:,:,:), optional, intent(inout) :: qbj

Boundary conditions are usually defined as a function of discrete values in physical space. Conse-
quently, a FWT is used to transform components of primary dependent variables in sequency space
to discrete values in physical space. A Walsh series dependent variable is denoted qw. The FWT of
qw is denoted qwp. Both functions are of type walsh. The element comp of qwp is an array of
discrete values at segment midpoints in the domain. The element jac of qwp is an array containing
the Jacobian of discrete values of the dependent variable with respect to the wave components of
the primary dependent variables.

• qwp: The FWT of qw in the domain.

• qb: The interpolated value of the discrete function qwp%comp on the boundary.

• face: Boundary code.
1 = xmin, 2 = xmax
3 = ymin, 4 = ymax
5 = zmin, 6 = zmax

• overlap: An integer flag defining the extent of the overlap.
0 - no overlap, the effective domain is exactly the true domain.

21

1 - 1/2 segment overlap, the midpoint of the terminating, smallest segment is positioned over
the true boundary.
2 - full segment overlap, the terminating smallest segment is positioned across the true bound-
ary

• qbj: The Jacobian of qb with respect to the wave components of qw. The argument is
optional and if it is not present then a Jacobian does not need to be returned. In general,
the interpolated value (qb) of the discrete function on the boundary is a function of qwp
at two terminating segments for overlap =2. However, qb is a function of qwp at a single
terminating segment for overlap = 0 or 1. If the entry is a two-dimensional, real array, then
the Jacobian at the single terminating segment for overlap = 0 or 1 is returned. If the entry
is a three-dimensional, real array, then the Jacobian at the terminating segment (third index
=1) and its neighbor (third index = 2) for overlap = 2 is returned.

22

4 LAPACK Module: lapack

The linear solver sgesv from lapack [2] is required. That routine, and lower level routines required
by sgesv have been assembled into a module to simplify installation. All real values used in these
routines have been converted to real(dp) (see Sec. 2.1.1). Because the code is changed, the routine
is renamed to sgesv_mod per request of the authors. [2]

LAPACK is available from netlib via anonymous ftp and the World Wide Web at
http://www.netlib.org/lapack, and is governed by the following license:

Copyright (c) 1992-2013 The University of Tennessee and The University of Ten-
nessee Research Foundation. All rights reserved. Copyright (c) 2000-2013 The Univer-
sity of California Berkeley. All rights reserved. Copyright (c) 2006-2013 The University
of Colorado Denver. All rights reserved.

COPY RIGHT
Additional copyrights may follow
HEADER
Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list

of conditions and the following disclaimer listed in this license in the documentation
and/or other materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

The copyright holders provide no reassurances that the source code provided does not
infringe any patent, copyright, or any other intellectual property rights of third parties.
The copyright holders disclaim any liability to any recipient for claims brought against
recipient by any third party for infringement of that parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

23

5 Demonstration Program: demo

The demonstration program demo includes three test cases providing guidance on the use of the
Walsh function module walsh_tools to solve partial differential equations. All of the sample
problems are time dependent. Two are non-linear. One involves a system of equations.

If the temporal component is computed with pτ = 0, then the time derivative is approximated
with a divided difference. That is ∂q

∂t ≈ (q(x,t+Δt)−q(x,t))
Δt . In this case of a single segment spanning

time step dt, there are not enough degrees of freedom to use the differentiating matrix D. [1] When
pτ > 0, the differentiating matrix is employed and divided differences are not needed. Sample code
blocks will be provided to illustrate this point.

5.1 Test Cases

5.1.1 Advection

The linear, first-order advection equation is

∂u

∂t
+ c

∂u

∂x
= 0 (4)

where c = 1 is the wave speed and u(x, 0) = u0(x) is the initial condition on the domain 0 ≤ x ≤ 1.
The initial profile moves to the right. A periodic boundary condition is applied so that as the
profile exits the right boundary it reemerges from the left. The test is designed to provide an
easily evaluated metric to measure how well the initial profile is preserved. The initial profile in the
demonstration case (see Fig. 3) is a sawtooth defined by

u0(x) =

⎧⎪⎨
⎪⎩

0 for 0 ≤ x < 1
4

1− 4|x− 1
2 | for 1

4 ≤ x < 3
4

1 for 3
4 ≤ x ≤ 1

(5)

Code for Eq. 4 using walsh_tools is written:

if(N_tau > 1)then

resw(1) = intt(q1w(m),fa=q10w(m),diff=.true.) &

+ wave_speed*intx(q1w(m),fa=q1aw(m),diff=.true.)

else

resw(1) = (q1w(m) - q10w(m))/dt &

+ wave_speed*intx(q1w(m),fa=q1aw(m),diff=.true.)

end if

In this example, if Nτ > 1 (pτ > 0), then the time derivative term is calculated inside the function
call to intt and it uses the differentiating matrix. If Nτ = 1 (pτ = 0), then the time derivative
term is calculated as a divided difference. In both cases, the space derivative is calculated inside the
function call to intx. Note that for this linear, first-order equation, only a single Walsh function
dependent variable q1aw(m) is required to satisfy a boundary condition in space and q10w(m)
is required to satisfy an initial condition in time. Also note that index m refers to a subdomain. If
pdomain = 0, then m is identically equal to 1.

24

Figure 3: The initial profile for the advection test case, u0(x).

A subtle but critically important point is encountered when defining the dependent variable
boundary condition q10w(m). In general, one knows the initial condition. Why not simply repre-
sent q10w(m) explicitly as the Walsh transform of the known, initial condition? Different variations
of this idea have been explored with no satisfactory solution. Numerical tests indicate that the com-
puted q10w(m) provides a close but inexact representation of the initial condition on the segment
center. Allowing q10w(m) to be part of the dependent variable set provides additional degrees of
freedom that enables the computed solution on the global domain to exactly match the specified,
initial conditions. This same observation applies to domain boundary conditions in space that are
explicitly known. Treating boundary conditions as dependent variables provides additional relief at
domain corners where spatial and temporal boundary conditions overlap. Close examination of the
source code will reveal that boundary conditions at these corners are not overspecified; rather, the
highest component Walsh function contribution to one of the boundary condition series is set to
zero to reflect the fact that one less degree of freedom is required to close the system.

5.1.2 Burgers Equation

The non-linear, second-order Burgers equation is

∂u

∂t
+

1

2

∂u2

∂x
= ν

∂2u

∂x2
(6)

where the diffusivity ν ≥ 0 is input by the user. (See Sec. 5.3.) The initial condition is a linear
function u0(x) = −x on the domain −1 ≤ x ≤ 1 with boundary conditions ua(t) = u(−1, t) = 1
and ub(t) = u(1, t) = −1.

Given these initial and boundary conditions, the solution profile evolves according to the local
value of u. At any given time, points with positive value of u move to the right and points with

25

negative value of u move to the left with speed u. This motion is dissipated as a function of diffusivity
ν. Large values of ν evolve profiles that are nearly linear between the boundary values. Small values
of ν evolve profiles with an abrupt, shock-like transition from 1 to -1 at x = 0. Examples will be
provided in Sec. 6.2.

If the diffusivity is specified 0, then an artificial diffusion term must be included to maintain a
stable computation while accommodating boundary conditions from both the left and right. The
artificial dissipation is defined

ν0 =
1

2
(dxp)

2

∣∣∣∣∂u∂x
∣∣∣∣ (7)

where dxp (given by Eq. 3) is the smallest segment size used in the Walsh series representation of
the solution. The use of a second-order, artificial dissipation here and in the Riemann problem that
follows presents a simple solution for communicating information from opposite boundaries. Such
communication was not an issue in the linear advection test case in which all waves travel from
left to right. It is thought that a characterstic-based formulation of this problem could offer better
accuracy as ν → 0 and the transition from u = 1 to u = −1 occurs over a length smaller than dxp.
For now only the artificial dissipation is used to address this issue.

Code for Eq. 6 using walsh_tools is written:

if(N_tau > 1)then

resw(1) = intt(q1w(m),fa=q10w(m),diff=.true.) &

+ intx(0.5_dp*q1w(m)**2-tauxw,fa=q1bw(m),diff=.true.)

else

resw(1) = (q1w(m) - q10w(m))/dt &

+ intx(0.5_dp*q1w(m)**2-tauxw,fa=q1bw(m),diff=.true.)

end if

Representation of the time derivative is exactly the same as discussed above for the advection
equation. The shear term, tauxw = ν∂u/∂x, was computed just above this block as:

uxw = intx(q1w(m),fa=q1aw(m),diff=.true.)

if(nu==0._dp)then

dx2 = 0.5_dp*dx_eff**2

tauxw = dx2*absw(uxw)*uxw

else

tauxw = nu*uxw

end if

Note that if ν = 0, then the artificial dissipation is added as defined in Eq. 7. Also note that this
second-order equation has two boundary conditions that must be engaged. The Walsh function
dependent variables q1aw(m) used in the definition of uxw = ∂u/∂x and q1bw(m) used in the
definition of ∂(.5u2 − ν∂u/∂x)/∂x, provide additional degrees of freedom required to satisfy the
boundary conditions. The Walsh function dependent variable q10w(m) used in the definition of
∂u/∂t provides the additional degrees of freedom to satisfy the initial condition.

5.1.3 Riemann Problem

The Riemann problem in one-dimension defines the compressible gas dynamic flow that follows
the breaking of a virtual diaphragm separating two, constant initial states. The solution typically

26

involves the propagation of a shock, a contact discontinuity, and an expansion fan. A particular
instance of the Riemann problem was defined by Sod [4] and is frequently used in the validation of
computational fluid dynamics codes.

The one-dimensional, time-dependent, compressible gas dynamic equations are:
∂ρ

∂t
+

∂ρu

∂x
= 0 (8)

∂ρu

∂t
+

∂(p+ ρu2)

∂x
= 0 (9)

∂ρE

∂t
+

∂ρuH

∂x
= 0 (10)

p = (γ − 1)ρe (11)

e = E − u2

2
(12)

H = E +
p

ρ
(13)

The need for artificial dissipation was discussed in the previous section. It is added in Eqs 14 -
16.

∂ρ

∂t
+

∂

∂x

[
ρu− ν1

∂ρ

∂x

]
= 0 (14)

∂ρu

∂t
+

∂

∂x

[
p+ ρu2 − ν2

∂ρu

∂x

]
= 0 (15)

∂ρE

∂t
+

∂

∂x

[
ρuH − ν3

∂ρE

∂x

]
= 0 (16)

The artificial diffusion coefficients defined in Eqs. 17 - 19 are of order (dxp)
2.

ν1 = (dxp)
2

∣∣∣∣∂ρ∂x
∣∣∣∣+ (dxp)

2 (17)

ν2 = (dxp)
2

∣∣∣∣∂ρu∂x

∣∣∣∣+ (dxp)
2 (18)

ν3 = (dxp)
2

∣∣∣∣∂ρE∂x
∣∣∣∣+ (dxp)

2 (19)

The equations are solved on the domain −1 ≤ x ≤ 1 with γ = 1.4. Constant initial conditions
on the left (x < 0) and right (x > 0) for the Sod test case [4] are given by

pL = 1 pR = 0.1

ρL = 1 ρR = 0.125

uL = 0 uR = 0

Boundary conditions are given by
∂ρ

∂x
(−1, t) = 0

∂ρ

∂x
(1, t) = 0

ρu(−1, t) = 0 ρu(1, t) = 0

∂ρE

∂x
(−1, t) = 0

∂ρE

∂x
(1, t) = 0

27

Code for Eq. 14 - 16 using walsh_tools is written:

if(N_tau > 1)then

resw(1) = intt(q1w(m),fa=q10w(m),diff=.true.) &

+ intx(q2w(m)-q1xw,fa=q1aw(m),diff=.true.)

resw(2) = intt(q2w(m),fa=q20w(m),diff=.true.) &

+ intx(pw + rhou2w - q2xw,fa=q2aw(m),diff=.true.)

resw(3) = intt(q3w(m),fa=q30w(m),diff=.true.) &

+ intx(q2w(m)*htw - q3xw,fa=q3aw(m),diff=.true.)

else

resw(1) = (q1w(m) - q10w(m))/dt &

+ intx(q2w(m)-q1xw,fa=q1aw(m),diff=.true.)

resw(2) = (q2w(m) - q20w(m))/dt &

+ intx(pw + rhou2w - q2xw ,fa=q2aw(m),diff=.true.)

resw(3) = (q3w(m) - q30w(m))/dt &

+ intx(q2w(m)*htw - q3xw,fa=q3aw(m),diff=.true.)

end if

The main difference between this code sample and previous ones in this section is that there are
three dependent variables and three corresponding residual equations to be solved.

5.2 Compilation

Any modern FORTRAN compiler should be satisfactory for creating the executable. In the present
example, the FORTRAN compiler “gfortran” is used. Create the following four files in a working
directory and enter the command “make” to create the executable “demo”.

5.2.1 Makefile.env

SHELL = /bin/sh

F90FLAGS = -O2 -g

F90COMPILER = gfortran

F90LINKER = gfortran

F90LIBS = -lm

5.2.2 make.dependencies

demo.o: demo.f90 \

walsh_tools.o \

lapack.o \

boundary.o

walsh_tools.o: walsh_tools.f90

lapack.o: lapack.f90 \

walsh_tools.o

boundary.o: boundary.f90 \

walsh_tools.o

28

5.2.3 Makefile.rules

Note that the lines with eight leading spaces is a “tab” key entry.

FLAGSFILE=.compileFlags

object file rules

.SUFFIXES :

.SUFFIXES : .c .F90 .f90 .o

.f90.o:

$(F90COMPILER) -c $(F90FLAGS) $*.f90

.F90.o:

@echo "$(PKGFLAGS)" > $(FLAGSFILE)

$(F90COMPILER) -c $(F90FLAGS) $(PKGFLAGS) $*.F90

.c.o:

$(CCOMPILER) -c $(CFLAGS) $(PKGFLAGS) $(PKGINCLUDE) $*.c

5.2.4 Makefile

Note that the lines with eight leading spaces is a “tab” key entry.

include Makefile.env

include Makefile.rules

TARGET=demo

default:

$(MAKE) $(TARGET)

$(TARGET): demo.o

$(F90LINKER) $(LDFLAGS) -o $@ *.o $(F90LIBS)

clean:

-rm -rf *.o *.stb *.mod $(TARGET)

include make.dependencies

5.3 Inputs

Upon entering the command “demo” the following prompts are provided.

5.3.1 demo_code

Enter code for demo. 0=Advection, 1=Burgers, 2=Riemann

The answer to this prompt is stored as variable demo_code and it controls the selection of the
demonstration problem.

5.3.2 nu

If demo_code = 1 the next prompt is

Enter value for diffusivity (0 for inviscid)

A value of ν ≥ 0 is required. If 0 < ν < (dxp)
2, then the expected shock transition thickness is

less than the smallest segment size and the solution may not converge. In this case, the artificial
diffusivity ν0 as defined in Eq. 7 is engaged by specifying ν = 0.

29

5.3.3 p_alpha

The next prompt is

Enter power of 2 for series g_alpha(x)

An integer value for pα is required. The number of terms in the Walsh series solution in the x
direction is Nα = 2pα .

5.3.4 p_tau

The next prompt is

Enter power of 2 for series g_tau(t)

An integer value for pτ is required. The number of terms in the Walsh series solution in the t
direction is Nτ = 2pτ .

5.3.5 p_domain

The next prompt is

Enter power of 2 for number of domains spanning x

An integer value for pdomain is required. The number of subdomains across the x direction is
nD = 2pdomain as discussed in Sec. 3.1. If pdomain = 0 the subdomain is identical to the global
domain.

5.3.6 overlap_x

The next prompt is

Enter code for overlap of x-domains: 0=^1122, 1=1^122, 2=11^22

An integer value for overlap_x is required. Guidance for selection of integer code 0, 1, or 2 has
been provided in Sec. 3.1.

5.3.7 overlap_t

The next prompt is

Enter code for overlap of t-domains: 0=^1122, 1=1^122, 2=11^22

An integer value for overlap_t is required. Guidance for selection of integer code 0, 1, or 2 has
been provided in Sec. 3.1.

5.3.8 dt

The next prompt is

Enter timestep

A real value for the time step dt is required. This entry defines the domain size in t.

30

5.3.9 t_max

The next prompt is

Enter total time

A real value for the total time to be simulated t_max is required. The solution is advanced in
time with time step dt until total time t_max is attained.

5.3.10 truncate

The next prompt is

Enter truncate: 1=yes, 0 = no

An integer value for the truncation flag truncate is required. Truncation, if selected, truncates
the contribution of the highest family of Walsh functions after each time step, damping solution
oscillations in the vicinity of shocks.

5.4 OutputFiles

5.4.1 Screen Output

The error norm (Eq. 20) is printed as a function of time. The norm is computed relative to the time
accurate solution for the Advection equation and the Riemann problem. It is computed relative to
the steady state solution (t >> 0) for Burgers equation. Note that variable names with subscript
"e" represent exact solutions to the test problems.

error norm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑Nα
α=1 |ue(xα, tτ)− u(xα, tτ)|dxp for the Advection test case

∑Nα
α=1 |ue(xα,∞)− u(xα, tτ)|dxp for the Burgers test case

∑Nα
α=1 [|ρe(xα, tτ)− ρ(xα, tτ)|/ρe(xα, tτ)

+|pe(xα, tτ)− p(xα, tτ)|/pe(xα, tτ)
+|ue(xα, tτ)− u(xα, tτ)|] dxp for the Riemann test case

(20)

The L1 norm metric for convergence of wave component magnitudes and integration constants
is printed as l1norm for every Newton relaxation step. It is the sum of the absolute value of
the change in these dependent variables for each relaxation step divided by the total number of
dependent variables.

5.4.2 Plot Files

The solution is output for plotting using ASCII format Tecplot [5] files. A constant over segment
(COS) format is used in some files to emphasize the Walsh function provenance of the solution. This
format produces figures that appear as a stair step distribution where the width of the stairs equals
dxp. Other files use a segment centered (SC) format in which the exact solution at the segment
center is compared to the Walsh function solution at the segment center.

31

• advection.dat: x, u in COS format for the advection test case.

• advection_exact.dat: x, ue, u in SC format for the advection test case.

• burgers.dat: x, u in COS format for the Burgers Equation test case.

• burgers_exact.dat: x, ue, u in SC format for the Burgers Equation test case.

• tube.dat: x, ρ, u, e, p in COS format for the Riemann problem.

• tube_exact.dat: x, ρe, ρ, ue, u, ee, e, pe, p in SC format for the Riemann problem.

A separate Tecplot zone is defined for each time step. Animations of the solution as a function
of time can be created by looping over zones. In the case of the Riemann problem, if the number
of segments in the domain is greater than 32, then only every tenth time step solution is saved in
order to reduce file size. Note that the error norm returns a value of zero for time steps that are
not saved.

5.5 Flowchart

The logical flow through program demo is designed to enable easy contrast of function and subrou-
tine calls for each of the three test problems. The logical flow through the code is relatively simple.
Comments in the body of the code correspond to the following list which highlight key steps in the
algorithm. Differences between the three demonstration code cases in each section should provide
better understanding regarding the way that walsh_tools is used.

• Begin input and setup Parameters as function of overlap

• Open files for tecplot

• Begin allocate and define initial conditions for each dependent variable

• Determine maximum exponent of 2 and compute Walsh functions accordingly

• Determine dimensions of working arrays, allocate and initialize dependent var

• Start marching in time

• Capture initial condition from previous time step

• Initialize loop for Newton iterations

• Define residuals for PDEs in the interior

• Load residuals and Jacobians from the interior for linear solve

• Gather data from interior to define dependent variables on the boundaries

• Define dependent variables and their Jacobians on left and right boundaries

• Define dependent variables and their Jacobians on initial boundaries

• Compute residuals for boundaries

32

• Solve (drdq) dq = res

• Update dependent variables

• Converged or maximum number of allowed relaxations for this time step - Record solution for
post-processing

• Proceed to next time step if elapsed time < t_max

33

6 Sample Solutions

6.1 Advection

The first advection test case uses the following input:

0 ! demo_code

8 ! p_alpha

2 ! p_tau

0 ! p_domain

1 ! overlap_x

1 ! overlap_t

.01 ! dt

1. ! t_max

0 ! truncate

The screen output associated with the first two time steps is:

After 1 global relaxation steps, l1norm = 5.6617743259134005E-005

After 2 global relaxation steps, l1norm = 4.3534691685466348E-018

At time = 1.0000000000000000E-002 error norm = 4.8274819263081860E-005

After 1 global relaxation steps, l1norm = 1.0070258277040343E-004

After 2 global relaxation steps, l1norm = 4.7764211618465652E-018

At time = 2.0000000000000000E-002 error norm = 6.2407283720140061E-005

The convergence criteria requires l1norm < 10−10 before advancing to the next time. After 100
time steps, completing a single cycle of the initial sawtooth profile, the output associated with the
last two time steps is:

At time = 0.98000000000000065 error norm = 1.6334071728664030E-003

After 1 global relaxation steps, l1norm = 1.2065793876161089E-004

After 2 global relaxation steps, l1norm = 4.4603672023197547E-018

At time = 0.99000000000000066 error norm = 1.6609375712891763E-003

After 1 global relaxation steps, l1norm = 9.7874071929656260E-005

After 2 global relaxation steps, l1norm = 4.0288670095828081E-018

At time = 1.0000000000000007 error norm = 1.6595651815910024E-003

The Walsh function solution of the advected profile after one cycle is compared to the exact
solution in Fig. 4a. If a Courant number is defined as the ratio of the distance traveled by a wave
in time step dt divided by the smallest segment size dxp, then the Courant number in this case is
cdt/dxp = 2.55. The error norm after one cycle equals 1.66 10−3. Some oscillation is evident at the
front foot of the profile. If the case is rerun with truncate = 1 to smooth oscillations, the error
norm after 1 cycle increases to 1.37 10−2 and the profile is shown in Fig. 4b. Truncation eliminates
the oscillations at the expense of smoothing out the discontinuities at the tip and feet of the profile.

If temporal degrees of freedom are exchanged for spatial degrees of freedom by decreasing pτ to
0 and increasing pα to 10, then the Courant number increases to 10.23 and the profile appears in
Fig. 4c. Note that pτ = 0 requires overlap_t = 0. The temporal truncation error overwhelms any
benefit from a factor 4 finer resolution in x in this case.

34

(a) pα = 8, pτ = 2, truncate = 0, dt = 0.01 (b) pα = 8, pτ = 2, truncate = 1, dt = 0.01

(c) pα = 10, pτ = 0, truncate = 0, dt = 0.01 (d) pα = 6, pτ = 6, truncate = 0, dt = 1.

Figure 4: Advection test problem showing profile after one complete cycle at t = 1. Black is the
Walsh function series solution. Red is the exact solution.

In stark contrast to the previous case, if spatial resolution is sacrificed for increased temporal
revolution by setting pα = 6 and pτ = 6 and increasing the time step dt by a factor of 100, then a
complete cycle is computed in a single time step as shown in Fig. 4d with zero error norm for the
linear problem. Zero error means that the advected profile exactly crosses the segment midpoints.
The Courant number in this case is 63, using the previous definition. A more representative defini-
tion of the Courant number is to consider the distance traveled by a wave in the smallest temporal
segment size c(dt)p divided by the smallest segment size in space (dx)p, in which case the Courant
number is equal to 1. This result exhibits a resonance in that the computed profile exactly repeats

35

every time step, so that the l1norm = 0 in a single relaxation step, because the initial condition
at the beginning of the time step equals the converged condition at the end of the time step. This
convergence behavior is captured in the following screen output for this case.

After 1 global relaxation steps, l1norm = 9.0004947907115784E-004

After 2 global relaxation steps, l1norm = 2.8991809556234448E-018

At time = 1.0000000000000000 error norm = 6.3363534456109310E-017

After 1 global relaxation steps, l1norm = 2.7318494984685376E-018

At time = 2.0000000000000000 error norm = 1.7762526354977382E-016

After 1 global relaxation steps, l1norm = 2.4981190159567315E-018

At time = 3.0000000000000000 error norm = 3.2152011681236220E-016

6.2 Burgers Equation

The first advection test case uses the following input:

1 ! demo_code

.1 ! nu

6 ! p_alpha

0 ! p_tau

0 ! p_domain

2 ! overlap_x

0 ! overlap_t

0.1 ! dt

10. ! t_max

0 ! truncate

The screen output associated with the first two time steps is:

After 1 global relaxation steps, l1norm = 1.3058307122319951E-002

After 2 global relaxation steps, l1norm = 7.5467963857695639E-010

After 3 global relaxation steps, l1norm = 6.3699131433843720E-018

At time = 0.10000000000000001 error norm = 0.63941814680754439

After 1 global relaxation steps, l1norm = 6.2273326570300310E-004

After 2 global relaxation steps, l1norm = 4.6192751541354147E-010

After 3 global relaxation steps, l1norm = 2.3647276144270429E-018

At time = 0.20000000000000001 error norm = 0.56102491910795882

The screen output associated with the last two time steps is:

After 1 global relaxation steps, l1norm = 9.6066902157564443E-014

At time = 9.9999999999999805 error norm = 5.8941163924331765E-004

After 1 global relaxation steps, l1norm = 7.4717043270173795E-014

At time = 10.099999999999980 error norm = 5.8941163870657035E-004

A steady solution is obtained for t > 6.6 based on attaining an l1norm < 10−10 in a single
relaxation step following an advance in time. The steady solution at t = 10 is shown in Fig. 5a.
The segmented nature of the underlying Walsh function support is evident in the stair stepping

36

Table 1: Error norms for Burgers Equation with ν = 0.1.

pα error norm error norm ratio
3 1.28 10−1 -
4 1.33 10−2 9.62
5 2.60 10−3 5.12
6 5.89 10−4 4.41
7 1.40 10−4 4.21
8 3.45 10−5 4.06
9 8.92 10−6 3.87

appearance of the solution. The stair stepping is less evident in Fig. 5b in which pα = 8 and
segment size is a factor of 4 smaller. The error norm for this problem is recorded in Table 1. With
each increment in pα the number of segments is doubled and the error norm decreases by a factor
of approximately 4, indicating second-order accuracy relative to the smallest segment size.

(a) pα = 6 (b) pα = 8

Figure 5: Effect of pα in case of ν = 0.1, pτ = 0, and pdomain = 0 for Burgers Equation. Black is
the Walsh function series solution. Red is the exact solution.

As the shock thickness decreases below the width of (dx)p with decreasing ν, oscillations may
be encountered in the solution. These oscillations are eliminated by truncating the highest family
of Walsh function contributions to the solution at the conclusion of a time step. An example
is presented in Fig. 6, where the solution without (a) and with (b) truncation is shown when
ν = 0.001 and pα = 8. The error norm without truncation is 7.27 10−3 and with truncation is
1.94 10−3, indicating roughly a factor of 4 decrease in error. It is a subtle but important point to

37

note that the highest order Walsh functions still contribute to the lower-order non-linear solution
retained after truncation through the self-mapping property under multiplication.

(a) truncate = 0 (b) truncate = 1

Figure 6: Effect of truncate in case of ν = 0.001, pα = 8, pτ = 0, and pdomain = 0 for Burgers
Equation. Black is the Walsh function series solution. Red is the exact solution.

(a) overlap = 1 (b) overlap = 2

Figure 7: Effect of overlap in case of multiple subdomains with ν = 0.01, pα = 8, pτ = 0, and
pdomain = 2. Black is the Walsh function series solution. Red is the exact solution.

38

The effect of overlap in the context of a simulation with multiple subdomains is illustrated in
Fig. 7 for pα = 8, pτ = 0, and pdomain = 2. The interdomain boundary condition must preserve
both the value of u and ∂u/∂x across the boundary. The overlap_x = 1 environment preserves
only the value of u at the single, shared terminating segments. The solution slope is left free to
abruptly rotate across the shared boundary. The overlap_x = 2 environment preserves the value
of u at the two terminating segments of neighboring subdomains. By pinning two values across the
boundary, the solution slopes are also forced to agree. Consequently, with overlap_x = 1, the
solution at the subdomain boundaries essentially stays frozen at the inititial condition of the left
boundary for waves moving to the right (u > 0), and stays frozen at the initial condition of the
right boundary for waves moving to the left (u < 0). The initial condition was a linear variation
such that u(x, 0) = u0(x) = −x. (See Sec. 5.1.2.)

6.3 Riemann Problem

The Riemann test case uses the following input:

2 ! demo_code

7 ! p_alpha

0 ! p_tau

3 ! p_domain

2 ! overlap_x

0 ! overlap_t

0.001 ! dt

2. ! t_max

0 ! truncate

The screen output for the first time step is:

After 1 global relaxation steps, l1norm = 2.8007668595445945E-003

After 2 global relaxation steps, l1norm = 3.2658025447789479E-004

After 3 global relaxation steps, l1norm = 1.4103432439592479E-004

After 4 global relaxation steps, l1norm = 1.6225866477887173E-005

After 5 global relaxation steps, l1norm = 5.4659371674958619E-006

After 6 global relaxation steps, l1norm = 1.0297314400298979E-006

After 7 global relaxation steps, l1norm = 2.3522205149719938E-007

After 8 global relaxation steps, l1norm = 5.2232478176224048E-008

After 9 global relaxation steps, l1norm = 1.3932483790545194E-008

After 10 global relaxation steps, l1norm = 1.8865180918122111E-009

After 11 global relaxation steps, l1norm = 4.3475882498435346E-010

After 12 global relaxation steps, l1norm = 1.7182955939989943E-010

After 13 global relaxation steps, l1norm = 1.0161033064457939E-010

After 14 global relaxation steps, l1norm = 6.8963576126975439E-011

The solution for density at t = 0.42 is presented in Fig. 8. The expansion moving to the left
is evident for −.5 < x < 0. The contact discontinuity at x ≈ 0.35 and the shock at x ≈ 0.7 move
to the right. The constant states between the shock and the contact discontinuity, and between
the contact discontinuity and the head of the expansion, are in excellent agreement with the exact

39

solution. The tail of the expansion at x ≈ −0.5 is slightly rounded. The contact discontinuity
appears more dissipated than the shock. The largest differences are thought to be associated with
the direction of characteristics approaching the discontinuities.

Figure 8: Density profile at t = 0.42 for Riemann problem. Black is the Walsh function series
solution. Red is the exact solution.

40

7 Summary

The module walsh_tools has been developed and documented here to enable new users to explore
and advance orthonormal Walsh function analyses of nonlinear, partial differential equations. The
module contains a fundamental set of operators, functions, and subroutines that enable a new user
to operate with Walsh functions in much the same way that Fourier analysis tools are currently
utilized. The major difference of the Walsh function approach for nonlinear problems is the property
of closure under multiplication - the product of any two Walsh functions is exactly another Walsh
function.

Three test problems documented herein include linear advection, Burgers Equation, and a Rie-
mann problem using Sod test conditions. The first case provides examples of a profile with discon-
tinuities in slope that is advected across the domain. The other two cases explore shock capturing
and ability to accurately track a moving discontinuity. Code for these options appear together in
the program so that new users may study the source code, along with narrative provided here, to
better understand how the infrastructure in walsh_tools may be used in new applications. Of
special note is that the infrastructure automatically provides Jacobians needed to obtain Newton
relaxation of all equations and boundary conditions across the domain.

The algorithms described herein should be considered a starting point for applying Walsh func-
tion based simulations of nonlinear, partial differential equations. Improvements are expected and
will be reported as they become available.

41

References

1. Gnoffo, P. A.: Global Series Solutions of Nonlinear Differential Equations with Shocks Using
Walsh Functions. J. Comput. Phys., Vol. 258, Feb 2014, pp. 650–688.

2. Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Green-
baum, A.; Hammarling, S.; McKenney, A.; and Sorensen, D.: LAPACK Users’ Guide. Society
for Industrial and Applied Mathematics, Philadelphia, PA, third ed., 1999.

3. F. D. Lora-Clavijo, J. P. Cruz-Perez, F. Siddhartha Guzman, and J. A. Gonzalez: Exact solution
of the 1D riemann problem in Newtonian and relativistic hydrodynamics. Revista Mexicana de
Fisica E , Vol. 59, 2013, pp. 28–50.

4. Sod, G. A.: A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic
Conservation Laws. J. Comput. Phys., Vol. 27, 1978, pp. 1–31.

5. tecplot.360 2013 User’s Manual: Release 1 . Bellevue, Washington, 2013.

42

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE

A Walsh Function Module Users' Manual

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Gnoffo, Peter A.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-20399

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified
Subject Category 61
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

The solution of partial differential equations (PDEs) with Walsh functions offers new opportunities to simulate many
challenging problems in mathematical physics. The approach was developed to better simulate hypersonic flows with shocks
on unstructured grids. It is unique in that integrals and derivatives are computed using simple matrix multiplication of series
representations of functions without the need for divided differences. The product of any two Walsh functions is another
Walsh function - a feature that radically changes an algorithm for solving PDEs. A FORTRAN module for supporting Walsh
function simulations is documented. A FORTRAN code is also documented with options for solving time-dependent
problems: an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the usage of
the Walsh function module including such features as operator overloading, Fast Walsh Transforms in multi-dimensions, and a
Fast Walsh reciprocal.
15. SUBJECT TERMS

Burgers; Closure; Riemann; Shock capturing; Sod

18. NUMBER
 OF
 PAGES

47
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 470883.04.07.01

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2014-218536

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
10 - 201401-

