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Abstract

NASA'’s Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand
contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets.
Here we report on simulations using NASA’s Goddard Earth Observing System Model, version 5
(GEOS-5) which was used to evaluate the consistency of two different sets of observationally
constrained land and ocean fluxes with atmospheric CO; records. Despite the strong data constraint,
the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA
and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin)
differ by 35% in their global estimates of carbon flux with particularly strong disagreement in high
latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the
seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing
SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere
surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO; observed by
GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences
between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small,
typically less than 5 ppmv at the surface and 3 ppmv in the XCO, column. A statistical analysis based
on the variability of observations shows that flux differences of these magnitudes are difficult to

distinguish from natural variability, regardless of measurement platform.



63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

1. Introduction

Major weaknesses still exist in our understanding of the processes that control atmospheric carbon
dioxide (CO;) concentrations and as a result, our ability to simulate and predict changes in the Earth
system. While the magnitude of the global growth rate of atmospheric CO, is well constrained by
surface observations (e.g. Conway et al. [1994]), attributing its changes to specific processes remains a
challenge given current CO, observing capabilities. The Atmospheric Carbon Cycle Inversion
Intercomparison (TransCom 3) compared estimates of the carbon budget produced by inverse models
using a variety of atmospheric transport fields and CO, observations from a global network of surface
stations for the period 1992-1996; their results indicated the presence of a larger northern hemisphere
(NH) land carbon sink than represented in the a priori flux distribution assumed for the experiment,
though the results were strongly influenced by differences in transport fields [Gurney et al., 2002]. The
precise location, cause of, and variability of this missing carbon sink remain poorly understood despite
the insights provided by intercomparison studies. In addition to uncertainty in the processes governing
the contemporary carbon budget, there is evidence that natural land and ocean carbon sinks have
decreased over the course of the twentieth century resulting in an increase in the fraction of
anthropogenic emissions remaining in the atmosphere, but this is still controversial [Le Quéré et al.,

2009; Knorr, 2009].

Model estimates of land and ocean carbon flux are important because they are the only way to
understand the underlying processes governing carbon storage and exchange, facilitating an enhanced
understanding that may one day contribute to improved abilities to predict changes in the global carbon
budget. A number of attempts have been made to compare estimates of carbon flux from different land
models. Randerson et al. [2009] compared two biogeochemistry models using a common modeling

framework and demonstrated that global carbon sinks differed by a factor of 2 during the 1990s.
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Schaefer et al. [2012] and Raczka et al [2013] compared estimates of gross primary production (GPP)
and carbon balance among terrestrial ecosystem models over North America and found large
differences. Schwalm et al. [2010] compared output from 22 terrestrial biosphere models with data
from flux towers in North America and found that models' ability to reproduce observed monthly net
ecosystem exchange was poor, though performance was better at forested sites than non-forested sites.
Most recently, Huntzinger et al [2012] compared 19 terrestrial biosphere models over North America
and found large differences in estimates of GPP (between 12.2 and 32.9 PgC yr') and heterotrophic
respiration (5.6 to 13.2 PgC yr'l) among models with smaller differences in net ecosystem production (-
0.7 to 2.2 PgC yr’'), underscoring the continued uncertainty in land flux processes. Observational
estimates of net ecosystem exchange collected worldwide at tower stations provide valuable
information to constrain carbon fluxes at local scales (e.g. Lafleur et al. [2003]; Hollinger et al. [2004];
Winderlich et al. [2013]), but are difficult to translate to realistic global estimates because of the spatial

heterogeneity of vegetation and limited flux sampling locations.

While ocean carbon fluxes are considered to be reasonably well constrained by the observational
database compiled by Takahashi et al. [2002, 2009], certain regions are poorly sampled and models are
still needed to understand air-sea exchange processes and predict how they might evolve in the future.
As is the case among land models, wide disparity exists among model-derived ocean flux estimates.
Doney et al. [2004] showed that errors in model physical processes complicated efforts to compare
ocean biogeochemical fields among models while Najjar et al. [2007] documented large circulation
differences among 12 global ocean models which influenced export of dissolved organic matter,
particularly to the Southern Ocean. Popova et al. [2012] compared five ocean models in the arctic and
found that, while primary production was generally consistent among models, the models disagreed
over the relative importance of the processes governing production. Uncertainties in the ocean carbon

uptake are especially important because they are directly propagated into the inference of the global
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terrestrial sink as used by the Global Carbon Project [Le Quere et al, 2013].

It is important to design an Earth observing system that will enable reduction of uncertainties in carbon
fluxes and enhance our ability to predict changes in the carbon-climate system. A number of
components of the carbon cycle are currently constrained by different types of observations. The
Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Terra and
Aqua satellites provide information about vegetation characteristics and fire. Information from the
Advanced Very High Resolution Radiometer (AVHRR) instruments aboard NOAA satellites provide a
longer term record of vegetation evolution. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS),
Suomi National Polar-orbiting Partnership (Suomi NPP), and MODIS both provide information on
ocean color and productivity while MODIS and geostationary weather satellites observe the physical
ocean state. Weather satellites also enhance our understanding of the carbon cycle by providing
information on atmospheric circulation that are necessary for interpreting atmospheric CO,
observations. Though these remote sensing products inform a number of model-based land and ocean
carbon flux estimates, substantial uncertainty remains as documented in the numerous studies cited

above.

Atmospheric CO;, observations provide an important constraint on carbon fluxes, but are limited in
space and time. NOAA maintains a network of surface sampling site in remote locations worldwide
where trace gas measurements are conducted several times per week as well as a smaller number of
observatories and tower sites that provide continuous CO, data. Ground-based column CO,
observations are currently collected at a small number of stations as part of the Total Carbon Column
Observing Network (TCCON). Chevallier et al. (2011) demonstrated the utility of column CO, data for
inferring regional carbon budgets for the first time using data from this sparse network. Several satellite

datasets are available from the Atmospheric Infrared Sounder (AIRS) and the Japanese Greenhouses



138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

gases Observing SATellite (GOSAT), and, prior to May, 2010, the Scanning Imaging Absorption
Spectrometer for Atmospheric Cartography (SCIAMACHY). Satellite CO, observations have
provided valuable information for constraining surface fluxes, but their impact is limited by their
inability to observe in the presence of clouds and aerosols (GOSAT) and low sensitivity to near surface

CO; mixing ratios (AIRS).

NASA'’s Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand
the observational constraints placed on carbon fluxes by bringing together state of the art models with a
wealth of remote sensing resources. “Bottom up” surface flux estimates were computed by two land
and two ocean models for the 2009-2010 period using a consistent set of meteorology input from
NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA; Rienecker et al.
[2011]). These results were propagated forward in the atmosphere using NASA’s Goddard Earth
Observing System Model, version 5 (GEOS-5) constrained by MERRA analyzed meteorological fields.
Unlike other model intercomparison projects which span a much larger range of model variables, our
intention is not to assess the full range of flux uncertainty and variability; instead, this work brings
together a small group of model estimates of flux and atmospheric transport that are tightly constrained
by remote sensing datasets and draws upon the expertise of the creators of those datasets to assess flux
differences and their manifestation in atmospheric CO, records. Here, we report on the results of these
simulations with a focus on understanding how uncertainty in observationally constrained land and
ocean flux estimates propagates into atmospheric CO, and characterizing how differences in flux
processes might be observed in the atmosphere by existing platforms. This work is complimentary to
the application of “top-down” approaches used to infer the surface fluxes given satellite observations
[Liu et al, 2014]. Section 2 of this paper describes the models used in this work while section 3 of this
paper describes the comparison with different CO, datasets. Section 4 provides a summary and

conclusions drawn from this work.
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2. Model and Data Background

2.1. Land Biosphere Flux Estimates

2.1.1. CASA-GFED3

The Carnegie-Ames-Stanford-Approach — Global Fire Emissions Database version 3 (CASA-GFED?3)
derives from Potter et al. [1993], diverging in development since Randerson et al. [1996]. CASA is a
light use efficiency type model: net primary production (NPP) is expressed as the product of
photosynthetically active solar radiation, a light use efficiency parameter, scalars that capture
temperature and moisture limitations, and fractional absorption of solar radiation by the vegetation

canopy (FPAR). This latter variable is derived from satellite data.

Fire parameterization was incorporated into the model by van der Werf et al. [2004], producing CASA-
GFED, and the model has undergone several revisions (van der Werf et al. [2006, 2010]) leading to its
most recent version CASA-GFED3. Input data sets include air temperature, precipitation, incident solar
radiation, a soil classification map, and a number of satellite derived products including MODIS

vegetation classification, MODIS based burned area, and AVHRR FPAR.

CASA-GFED3 is run at monthly time steps with 0.5° spatial resolution. As part of the CMS FPP,
fluxes were computed using MERRA meteorology and FPAR derived from AVHRR NDVI (Tucker et
al. [2005]) according to the procedure of Los et al. [2000]. The original 8-km, biweekly AVHRR NDVI
was aggregated up to the monthly, 0.5°x0.5°grid by averaging. Model output includes NPP,
heterotrophic respiration (Rh), and fire emissions from forest, savanna, deforestation, peat, and
agriculture. For this project, fire emissions were disaggregated from monthly to daily using the MODIS
active fire products as described in Mu et al. [2011]. Monthly NPP and heterotrophic respiration were

disaggregated to 3-hour time intervals following Olsen and Randerson [2004].
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2.1.2. NASA Ames CASA

The NASA Ames CASA model (hereafter referred to as Ames CASA) relies on satellite observations
of vegetation cover from MODIS as time-series inputs to estimate monthly carbon fluxes from
terrestrial ecosystems worldwide. All model algorithms, parameter settings, and land cover data sets

used in Ames CASA for CMS flux computations have been documented by Potter et al. [2007].

For the CMS FPP computations of net biosphere fluxes of carbon to the atmosphere, the Ames CASA
version documented in Potter et al. [2007] has been modified to use global 0.5° (latitude/longitude)
MODIS Enhanced Vegetation Index (EVI) input data (for the years 2000-2010) generated by
aggregating monthly 0.05° (~6 km) values. In addition, in cropland areas, 40% of annual NPP carbon
is removed each year from the litter decomposition flux pathways and diverted into harvested food
products. This is assumed to be re-emitted as a consistent monthly flux (1/12 of the annual cropland
harvest carbon total) with a weighted spatial distribution corresponding to the maps of cropland harvest
CO, emissions developed by Ciais et al. [2007]. Net biosphere fluxes for both CASA-GFED3 and
Ames CASA were disaggregated to 3-hour time intervals following Olsen and Randerson [2004]. In
contrast to the CASA-GFED3 fluxes, biomass burning is not included in the Ames CASA fluxes
computed as part of the CMS FPP. CASA-GFED3 does not include the crop redistribution incorporated

in Ames CASA flux estimates.

The Ames CASA fluxes produced as part of the CMS FPP differ from a more recent version of Ames

CASA described in Potter et al. [2012] both in the use of different meteorological driver data and in the

methodology of process representation.

2.1.3. Differences between Land Flux Estimates
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Figure 1 shows time series of monthly global flux totals computed by the two land models. Ames
CASA estimates a weaker land sink (driven by NH summer) and a stronger source during NH winter
compared to CASA-GFED3. These differences result in substantially different annual flux estimates
for both years; during 2009 (2010), Ames CASA estimates that the terrestrial biosphere is a 2.5 (2.1)
Pg C source while CASA-GFED3 calculates a smaller 0.34 (1.2) Pg C source. The average difference
in annual land flux between the two models is 1.7 Pg C. For reference, the uncertainty in land flux
between these two models is nearly 20% of the annual mean fossil fuel emissions for the 2009 to 2010
period (9 Pg C; Boden et al. [2011]). GFED3 fluxes for 2009 (2010) indicate that fires are a global 2.1
(2.9) Pg C source of carbon to the atmosphere while Ames CASA fluxes considered here do not
include the effects of fire. In both models, the land biosphere is a source of carbon the atmosphere
rather than a sink as indicated by multi-model inversion studies (e.g. Gurney et al. [2002]). Using
observed atmospheric CO; increases, fossil fuel emission inventories, and ocean models, Le Quéré et
al. [2013] estimate the magnitude of the land carbon sink as 3.3 (2.55) Pg C during 2009 (2010). This
may be due to the fact that neither model includes several processes thought to be important in
explaining the global land sink including CO, fertilization (e.g. Bellassen et al. [2011]; Vanuytrecht et
al. [2011]; Piao et al. [2013]; Los [2013]), nitrogen deposition (e.g. Esser et al. [2011]; Bala et al.
[2013]; Fleischer et al. [2013]; Gerber et al. [2013]), and land use history (e.g. Sentman et al. [2011]).
In addition to differences in the magnitude of the land biosphere flux estimates, the Ames CASA and
CASA-GFED3 models indicate differences in the phasing of the global seasonal cycle in terrestrial
carbon flux to the atmosphere. Ames CASA diagnoses an earlier pattern of drawdown during NH

spring and an earlier transition from sink to source during NH autumn in 2009.

Figures 2 shows the geographic distribution of land fluxes computed by CASA-GFED3 and Ames
CASA for four months during 2009. During January, CASA-GFED3 indicates greater drawdown of

CO; over the southern hemisphere (SH) regions of South America and Africa than does Ames CASA.
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Fire emissions in equatorial Africa and Australia are also evident in CASA-GFED3 while absent in
Ames CASA. In the NH, Ames CASA estimates greater release of CO, to the atmosphere along the
east coasts of the United States and China. In April, Ames CASA fluxes are generally weak in most
locations as the model transitions between winter and summer seasons; areas of western Europe have
transitioned from a source in January to a sink of CO; in April. In contrast, CASA-GFED3 patterns are
generally similar in April and January but fluxes from the land to the atmosphere are slightly larger at
most NH locations. During July, CASA-GFED?3 estimates greater uptake of CO, at most NH locations,
particularly at high latitudes, than does Ames CASA. This contrast is also evident over equatorial
South America while in mid-latitude regions of the continent, CASA-GFED3 indicates greater release
of CO; to the atmosphere. The models also differ strongly in their assessment of fluxes over India and
Southeast Asia during July with CASA-GFED3 indicating a substantial source and Ames CASA
indicating a sink. During October, Ames CASA fluxes are generally much weaker than CASA-GFED3
fluxes. Strong fire activity over South America is evident in CASA-GFED3 during October and not
included in Ames CASA flux estimates. Differences between the spatial distributions of Ames CASA
and CASA-GFED3 fluxes for 2010 (not shown) are qualitatively similar though 2010 was

characterized by larger fire emissions in CASA-GFED3.

2.2.  Ocean Flux Estimates

2.2.1. NOBM

Global ocean carbon dynamics are simulated by the NASA Ocean Biogeochemical Model (NOBM). It
is a three-dimensional representation of coupled circulation, biogeochemical, and radiative processes in
the global oceans (Gregg et al. [2003]; Gregg and Casey [2007]). The biogeochemical processes model
contains 4 phytoplankton groups, 4 nutrient groups, a single herbivore group, and 3 detrital pools. The
phytoplankton groups differ in maximum growth rates, sinking rates, nutrient requirements, and optical

properties. Three detrital pools provide for storage of organic material, sinking, and eventual
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remineralization back to usable nutrients. Radiative transfer calculations provide the underwater
irradiance fields necessary to drive growth of the phytoplankton groups, and interact with the heat
budget. Carbon cycling involves dissolved organic carbon (DOC) and dissolved inorganic carbon
(Gregg et al., 2013). DOC has sources from phytoplankton, herbivores, and carbon detritus, and a sink
to DIC. DIC has sources from phytoplankton, herbivores, carbon detritus, and DOC, and
communicates with the atmosphere, which can be either a source or sink. The ecosystem sink for DIC
is phytoplankton, through photosynthesis. This represents the biological pump portion of the carbon
dynamics. The solubility pump portion is represented by the interactions among temperature, alkalinity
(parameterized as a function of salinity), silica, and phosphate (parameterized as a function of nitrate).
The alkalinity/salinity parameterization utilizes the spatial variability of salinity in the model adjusted
to mean alkalinity from the Ocean Model Intercomparison Project (OCMIP; Orr et al. [2001]). The

calculations for the solubility pump follow the standards set by the OCMIP.

NOBM’s domain spans from —84° to 72° latitude in increments of 1.25° longitude by 2/3° latitude,
including only open ocean areas where bottom depth is greater than 200m. The model contains 14
vertical layers, in quasi-isopycnal coordinates and is driven by MERRA monthly mean wind stress, sea
surface temperature, and shortwave radiation fields. MODIS-Aqua chlorophyll data were assimilated to
represent the sum of all phytoplankton components in the model. As part of the CMS FPP, daily
NOBM ocean pCO; fields were used as input into GEOS-5 and ocean-atmosphere CO, fluxes were

computed within GEOS-5 using the GEOS-5 atmospheric CO, mixing ratios and winds.

2.2.2. ECCO2-Darwin
The ECCO2-Darwin Ocean Carbon Cycle Model is based on a global, eddying, ocean and sea ice
configuration of the Massachusetts Institute of Technology general circulation model (MITgcm;

Marshall et al. [1997a, 1997b]) and on results from two separate projects: the Estimating the
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Circulation and Climate of the Ocean, Phase II (ECCO2) Project, which provides a data-constrained
estimate of the time-evolving physical ocean state, and the Darwin Project, which provides time-
evolving ocean ecosystem variables. Together, ECCO2 and Darwin provide a time-evolving physical
and biological environment for carbon biogeochemistry, which is used to compute surface fluxes of

carbon at high spatial and temporal resolution.

The ECCO2 model configuration is a cube-sphere grid [Adcroft et al., 2004] with 18-km horizontal
grid spacing and 50 vertical levels [Menemenlis et al., 2005a; 2008]. The ECCO2 model configuration
includes a dynamic/thermodynamic sea ice model (Losch et al. [2010]; Heimbach et al. [2010]). In a
first step, the ECCO2 model configuration was adjusted using a low-dimensional (Green’s functions)
estimation approach [Menemenlis et al., 2005b]. In a second step, the method of Lagrange multipliers
(adjoint method) was used to adjust initial and time-evolving surface boundary conditions [Wunsch and
Heimbach, 2007]. Data constraints include sea level anomaly from Jason-1 and OSTM, sea surface
temperature from AMSR-E, and temperature and salinity profiles from Argo. This adjoint-based

ECCO2 solution is used to drive the Darwin ecosystem model.

The Darwin Project is an initiative to advance the development and application of novel models of
marine microbial communities, identifying the relationships of individuals and communities to their
environment, connecting cellular-scale processes to global microbial community structure (Follows et
al. [2007, 2011]; Dutkiewicz et al. [2009]). The particular configuration used for the CMS FPP
includes five phytoplankton functional types (choices based on results from previous versions of the
model) and two zooplankton types. The carbon cycle is explicitly included in this configuration, along
with those of nitrogen, phosphorus, iron, silica, oxygen, and alkalinity. The carbonate chemistry
follows the simplified model proposed by Follows et al. [2006] and air-sea CO, exchange is

parameterized according to Wanninkhof [1992].
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ECCO2-Darwin fluxes produced as part of the CMS FPP are described in more detail in Brix et al.
[2014]. GEOS-5 simulations presented here use version 2.1 fluxes. Since the CMS FPP, ECCO2-
Darwin fluxes have undergone further development including modification of the piston velocity

parameterization.

2.2.3. Differences between Ocean Flux Estimates

NOBM ocean fluxes contain weaker seasonal variations than those produced by the ECCO2-Darwin
model (Figure 1). Both models estimate comparable global fluxes for much of the year but during June,
July, and August (JJA), ECCO2-Darwin fluxes indicate a weaker ocean sink (or slight source) relative
to NOBM; as a result, the 2009 (2010) annual ECCO2-Darwin ocean sink is 2.4 (2.6) Pg C compared
to 3.7 (4.0) Pg C from NOBM, a difference of 36% (35%). The Global Carbon Budget [Le Quere et al.,
2013] estimates a global ocean flux of 2.57 (2.55) Pg C yr'1 for 2009 (2010). NOBM ocean fluxes
indicate a stronger ocean sink than the GCB estimate while ECCO2-Darwin estimates differ by less

than 10% from GCB in both years.

Figure 3 shows geographic distributions of ocean fluxes computed by NOBM and ECCO2-Darwin for
four months in 2009. During January, differences between model estimates of flux are largest in high
latitude oceans. NOBM estimates a greater Atlantic Ocean sink north of 30° while ECCO2-Darwin
estimates a much stronger ocean sink in the southern ocean than is evident in NOBM. April
distributions are generally similar to January, though a decrease in the northern NOBM sink and
increase in the ECCO2-Darwin sink relative to January result in spatially inhomogeneous differences
north of 30°. During July, ocean flux distributions differ substantially from January; the northern sink
in NOBM has weakened and is now evident only in the north Atlantic basin. ECCO2-Darwin’s strong

southern ocean sink has also weakened while the NOBM southern ocean sink has become stronger.
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During October, the NOBM distribution of fluxes is dominated by a strong sink throughout much of
the southern hemisphere oceans. ECCO2-Darwin indicates stronger sinks in high latitude regions of
both hemispheres, but with less areal extent relative to NOBM. Ocean models also differ in their
estimation of coastal fluxes, particularly off the Atlantic coasts of Africa and North America and the

Pacific coast of South America.

In regions below 30°S, ECCO2-Darwin estimates an ocean sink 27% (23%) greater than NOBM during
2009 (2010). In addition to differences in magnitude of the sink in this region which includes the
Southern Ocean, the seasonal cycle of ocean fluxes is nearly reversed; NOBM estimates peak
drawdown in the sink during SH winter months, while ECCO2-Darwin indicates that the sink is at its
weakest during these months. In SH Summer, ECCO2-Darwin simulates a maximum in CO,
drawdown in the region while NOBM simulates a minimum. NOBM, whose domain only extends to
72°N, estimates a sink several times weaker than ECCO2 in NH high latitude oceans. The largest
disparities between ocean flux models occur in regions that are rarely observed by ships or are

observed only during certain months as shown in Takahashi et al. [2009].

2.3.  GEOS-5 Earth System Model

The GEOS-5 Atmospheric General Circulation Model (AGCM) has been developed as a flexible tool to
represent the atmosphere on a variety of temporal and spatial scales. It is a central component of the
GEOS-5 atmospheric data assimilation system [Rienecker et al., 2008], where it is used with half-
degree spatial resolution for meteorological analysis and forecasting [Zhu and Gelaro, 2008] including
the production of MERRA which spans the period from 1979 to present [Reinecker et al., 2011]. It has
also been developed as a tool for studying atmospheric composition and climate. Ott et al. [2010] used
GEOS-5 to examine the impact of Indonesian biomass burning aerosols on atmospheric circulation and

Ott et al. [2011] examined the impact of uncertainty in GEOS-5 convection on global carbon monoxide
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distributions. Model output has also been used by Wang et al. [2009] to compute CO:CO, correlations

and their impact on inverse modeling.

The AGCM combines the finite volume dynamical core described in Lin [2004] with the GEOS-5
column physics package, summarized in Rienecker et al. [2008]. The model domain extends from the
surface to 0.01 hPa and uses 72 hybrid layers that transition from terrain-following near the surface to
pure pressure levels above 180 hPa. In this study, the horizontal resolution is 1° x 1.25° (latitude by
longitude) and the time step is 30 minutes for physical computations, with more frequent computations
of resolved-scale transport in the dynamical core. Trace gases are transported on-line in GEOS-5 using
the Lin [2004] dynamical core for resolved scales; turbulent mixing of CO, is performed in the same
way as for moisture (using the Lock et al. [2000] boundary-layer turbulence module); and using the
Relaxed-Arakawa Schubert convective scheme [Moorthi and Suarez, 1992] to represent convective
transport. In the present simulations, transport is constrained with MERRA reanalysis fields to ensure

consistency with observed meteorology.

Land biosphere, biomass burning, fossil fuel, and ocean CO, fluxes are prescribed in GEOS-5. For the
CMS FPP simulations, GEOS-5 was configured to simulate the emission and transport of several
different CO, tracers representing differing combinations of land and ocean fluxes described in Table 1.
In addition to the land and ocean biosphere fluxes provided as part of the CMS FPP, CO, emissions
from fossil fuels are taken from the Department of Energy’s Carbon Dioxide Information Analysis
Center (CDIAC; Boden et al. [2011]). Prior to the target 2009-2010 CMS period, CO, tracers were
spun up from 2000-2008 beginning with a uniform initial condition of 350 ppmv to ensure realistic
atmospheric distributions. During the spinup period, land biosphere and biomass burning fluxes from
an earlier version of the CASA-GFED model were used in combination with ocean and fossil fuel

fluxes from the TransCom Continuous Experiment [Law et al., 2008]. Simulated CO, mixing ratios for
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December 2008 were calculated at the locations of NOAA Earth Science Research Laboratory (ESRL)
marine boundary layer stations [Novelli et al., 1992] and compared with observations; on the basis of
this comparison a uniform global offset was subtracted from the simulated CO, fields to ensure that
global average surface CO, concentration was representative of atmospheric conditions at the

beginning of the CMS period.

3. Comparison with CO, Observational Records

3.1. Comparison with surface CO; in situ observations

NOAA'’s Earth System Research Laboratory (ESRL) Carbon Cycle Greenhouse Gases Group (CCGG)
analyzes samples taken weekly at an international cooperative network of surface observing stations
(Tans et al., 1990). These data have been used to understand both long term changes in and interannual
variability of natural carbon sinks (e.g. Ballantyne et al. [2012]; Conway et al. [1994]). Sites are
typically located in remote locations (Figure 4) so that observations represent the background surface

CO; mixing ratios rather than local source and sink influences.

For comparison to surface stations, the GEOS-5 grid cell containing each station location was sampled
at the time that an observation was collected and simulated CO, mixing ratios then vertically
interpolated to the altitude of the observing station creating model ‘pseudo data’. Observations and
pseudo-data are averaged over the course of a day (when multiple observations are present) and daily
simulated and observed CO, mixing ratios at Mauna Loa, Ny Alesund, and Palmer Station (indicated
on Figure 4) are shown in Figure 5 for the flux scenarios described in Table 1. One of the primary
features evident in this comparison is difference in annual atmospheric growth rate between the flux
scenarios. In the beginning of 2009, all scenarios in the GEOS-5 simulations begin from the same CO,
mixing ratios, but over time differences in the magnitude of the combined land and ocean carbon flux

cause the spread in the ensemble of simulations to grow. While this spread in simulations caused by
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differing growth rates happens at all stations, it is most evident at Mauna Loa and Palmer Station
because of the smaller amplitude of the seasonal cycle at these locations. We calculate growth rates for
each flux scenario by first calculating the monthly mean of surface CO, mixing ratio at all CCGG
marine boundary layer (MBL) sites during 2009 and 2010. For each month, the 2009 MBL monthly
mean is subtracted from the corresponding 2010 value and these differences are averaged over all
calendar months to estimate the annual mean growth rate shown in Table 1. Using the same method to
calculate the annual mean growth rate from observations yields a value of 2.4 ppmv. Flux scenario CG-
NO, which combines NOBM and CASA-GFED fluxes, provides the most favorable comparison with
the observed growth rate. Both the Ames CASA and ECCO-2 fluxes produce weaker natural sinks than
flux scenario CG-NO resulting in greater rates of accumulation of CO; in the atmosphere for scenarios

AC-NO and CG-ED relative to scenario CG-NO.

In order to examine the ability of the simulations to capture observed spatial and temporal variations in
CO,, we remove the difference in growth rate by subtracting the trends from observations and
simulations (Figure 5, right columns). At Mauna Loa, the de-trended time series shows that land
biosphere flux differences have a greater impact on simulated mixing ratios than do ocean flux
differences. None of the flux scenarios succeeds in reproducing the magnitude of the seasonal cycle
observed at Mauna Loa, likely because the NH land sinks in both estimates are too weak or because of
deficiencies in model transport. At Ny-Alesund, all model simulations reproduce the seasonal cycle
reasonably well though simulations tend to overestimate CO,, particularly during spring. Differences in
seasonal cycle between the Ames CASA and CASA-GFED fluxes are small, but evident at this station
in spring and summer months. Ocean flux differences manifest as much smaller mixing ratio
differences despite the fact that only one model, ECCO2-Darwin, produces fluxes at this high northern
latitude region. At Palmer Station Antarctica, ocean flux differences are larger than at any other station

due to the disparity between model estimates of Southern Ocean flux. NOBM overestimates the
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magnitude of the observed, weak seasonal cycle by 0.5 ppmv while seasonal variations in the ECCO2-
Darwin simulation are much too strong resulting in a 5 ppmv overestimate of the seasonal cycle
amplitude. The similarity of the CG-NO and AC-NO simulations and large differences between the
CG-NO and CG-ED simulations suggest that the seasonal cycle of nearby ocean fluxes more strongly
influences the simulation of CO, at high latitude SH stations than does the seasonal cycle of land

fluxes.

Figure 6 compares observed and simulated (assuming flux combination CG-NO) monthly mean CO,
mixing ratios at all NOAA ESRL stations collecting substantial amounts of data during the 2009-2010
period. Observations at NH stations comprise the bulk of the dataset and show a strong seasonal cycle
due to the influence of the land biosphere. The CG-NO simulation also shows a strong seasonal cycle
for most stations north of 30°N. At these locations, the model tends to overestimate CO,, particularly
during NH spring and summer, because the CASA-GFED3 land sink is too weak. Comparisons with
the Global Carbon Budget presented by Le Quere et al. [2013] indicate an overestimate of global fluxes
by the GC-NO flux combination of approximately 3 Pg C which translates into an average, global
overestimate in the atmospheric CO; of 1.4 ppmv assuming that the excess CO, were instantly diffused
throughout the mass of the atmosphere. At stations north of 60°N, annual mean CO, is, on average,
overestimated by 2.3 ppmv during 2010 while stations between the equator and 60°N are overestimated
by an average of 1.3 ppmv. CO, at northern high latitude stations is overestimated by an average of 4
ppmv during spring months and 3 ppmv during summer while NH stations south of 60°N are
overestimated by 1.7 ppmv during spring and 1.9 ppmv during summer. The difference in the
magnitude of overestimate between NH high and mid-latitude stations may indicate that the CASA-
GFED3 land sink underestimate is concentrated in this area or that vertical transport errors are greater
at NH high latitudes, resulting in excessive concentration of CO; near the surface. In the SH, model

errors average 1.7 ppmv during 2010 and show much weaker seasonality.
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In Figure 7, we evaluate the ability of GEOS-5 simulations to reproduce the seasonal cycle in CO,
observed at ESRL stations during 2010. To calculate seasonal cycle errors, monthly means were
calculated from observations and model output after de-trending to remove the annual growth rate. We
define the amplitude of the seasonal cycle as the difference between the maximum and minimum
monthly values. Errors in the months during which minima and maxima in the seasonal cycle occur are
also calculated for each station. Means of the amplitude and phasing errors are then calculated over 10
degree latitude bands and only include stations for which data is available in every calendar month
during 2010. At NH mid- and high latitude stations, performance is similar for all model flux
combinations. Simulations overestimate the magnitude of the seasonal cycle by a few ppmv on average,
generally succeed in estimating the summer month during which the minimum should occur, but have
more difficulty in estimating the timing of maximum CO, ratios in the winter. While errors in the
amplitude of the seasonal cycle are small at tropical stations, the model given any flux combination
tends to struggle reproducing the observed timing of minima and maxima at SH tropical stations. This
is likely due to a combination of the weak seasonal cycle in CO, at these locations, errors in the
transport of CO, from NH locations, and uncertainty in land fluxes in this region that contains dense
vegetation. All simulations considered in this study fail to adequately simulate the seasonal cycle at SH
high latitude stations. Amplitude errors of several ppmv are often larger than the observed seasonal
cycle magnitude. In these locations, ECCO2-Darwin fluxes, which indicate a stronger Southern Ocean
sink with greater seasonality relative to NOBM, degrade model performance in terms of both seasonal

cycle amplitude and the timing of the maximum in surface CO, mixing ratio.

Despite the substantial flux differences among the land and ocean models shown in Figures 1-3,

differences in atmospheric CO, mixing ratio at remote surface stations tend to be quite subtle as

evident in the time series comparisons in Figure 5. To quantitatively determine how atmospheric CO,
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observations might be used to discern between these realistic, observationally constrained flux
estimates, we follow the method of Huntzinger et al. [2011] who examined the utility of continuous
atmospheric flux measurements at a set of tower locations for constraining biospheric flux variability.
In order to test the statistical significance of the difference between simulated pseudo-observations, we
apply a Chi-square test of variance based on the number of observations per month, the mean squared
difference between pairs of pseudo-observations using different flux estimates, and the variance of
model-data mismatch [Huntzinger et al., 2011]. Model-data mismatch, an estimate of how closely a
model could reproduce an observation, is estimated in this study by estimating the variance of
observation residuals around a smooth curve fit to the observations at each site, a method used by
Bousquet et al. [1999] and Gurney et al. [2002]. It is important to note that expected model-data
mismatch is calculated solely based on variability in the observations. We calculate mean squared
difference between simulated CO, pairs by first removing the difference in annual growth rate as
shown in Figure 5. Qualitatively, this method allows us to assess how well the small atmospheric signal
caused by a difference in assumed flux might be distinguished from a background of strong, natural

variability.

Figure 8 shows the difference in monthly mean CO; mixing ratio at NOAA ESRL stations resulting
from underlying land and ocean flux differences. Differences which are not significantly larger than the
model-data mismatch variance at a significance level of 0.05 are indicated by diagonal lines. The
largest differences due to land flux are evident at stations in the NH mid- and high latitudes during
spring and early summer (2-4 ppmv), when Ames CASA indicates an earlier drawdown of CO; by the
land biosphere than does CASA-GFED3, and in January through March of 2010 (2-5 ppmv), when the
larger land to atmosphere carbon flux in Ames CASA from the latter part of 2009 is most evident. A
similar feature is not present in 2009 because it is too close to the initiation of the simulations, but

begins to be seen again in December, 2010. Land flux differences are typically less than 2 ppmv at
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most remote SH locations. At NH locations, land flux differences manifest primarily as a difference in
seasonal cycle, consistent with the global flux differences shown in Figure 1. Localized differences,
such as those shown in Figure 2 during April and October, are generally not evident in monthly mean
CO; mixing ratios at NOAA ESRL stations because of their remote locations. The lack of evidence of
fire emissions, present in CASA-GFED3 and not Ames CASA, is striking, particularly at SH locations.
Analysis of the model’s GFED3 biomass burning tracer shows that at all stations except Ascension
Island, deviations from the annual mean are smaller than 1 ppmv. At Ascension Island, biomass

burning events with greater than 1 ppmv influence only occur on a few days.

Even in locations and months where substantial differences in CO, mixing ratio due to land flux exist,
their magnitude is small enough that they are often difficult to distinguish from natural variability
evident in the observations. In the NH mid-latitudes, large differences in CO, mixing ratio attributable
to land flux would not be significantly larger than the expected model-data mismatch because of the
large variability evident in the observational records. Differences at NH high latitude stations and in the

SH are statistically significant, but only during certain seasons.

Differences between ocean flux models, which are nearly as large as land flux differences on a global
annual basis but exhibit much less seasonality, are even less evident at NOAA ESRL stations. Large
differences due to the difference in Southern Ocean sink exist only at stations south of 30°S but are
statistically significant in most months. Significant differences between the two ocean models at all
stations south of 30°S demonstrate the importance of ocean flux in that region. In this region, NOBM
fluxes are more realistic than ECCO2-Darwin fluxes which result in underestimates in surface CO,
mixing ratio and errors in the gradient between tropical and SH high latitude CO,. Observations
suggest a mean difference between Mauna Loa and SH high latitude stations during March, April, and

May (MAM) of 6.6 ppmv. While NOBM fluxes reproduce this spatial gradient fairly well, simulating a
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mean difference of 6.1 ppmv, ECCO2-Darwin fluxes result in a gradient of 8.5 ppmv indicating that
Southern Ocean drawdown is too large during certain months. Large differences in ocean CO, flux are
also present in the NH (Figure 3), but the fact that they occur over smaller regions than in the SH
results in smaller mixing ratio differences at NH locations. The combination of smaller mixing ratio
differences and greater variability due to biosphere flux and fossil fuel emissions in the NH means that
NH ocean flux differences are difficult to distinguish from natural variability. Cold Bay and Shemya,
both in Alaska and strongly influenced by marine air, are two exceptions; at these locations differences

due to ocean flux are large enough to be distinguished.

3.2.  Comparisons with HIPPO aircraft observations

Beginning in 2009, the HIAPER (High-performance Instrumented Airborne Platform for
Environmental Research) Pole-to-Pole Observations (HIPPO) project has measured atmospheric CO»,
other trace gases, and aerosols in a series of field campaigns. HIPPO missions consist of north-south
transects spanning the Pacific ocean from 85°N to 67°S with profiles of atmospheric trace gases every
2.2° latitude [Wofsy et al., 2011]. HIPPO data have been used extensively for validation and calibration
of remote sensing data products (e.g. Wunch et al. [2010]; Inoue et al. [2013]), for evaluation of
atmospheric transport models (e.g. Keppel-Aleks et al. [2013]; Mann et al. [2012]), and to better

understand emission and transport processes (e.g. Keppel-Aleks et al. [2012]; Kipling et al. [2013]).

Three of the five planned HIPPO missions occurred during the 2009-2010 period. Because the first
deployment occurred in January, 2009, shortly after the beginning of the CMS target period, our results
focus on the second and third HIPPO deployments (HIPPO-2 and HIPPO-3). Both campaigns sampled
the Pacific Ocean between 150°E and 90°W. During the second deployment, the majority of samples
were collected between 180°W and 150°W while during the third campaign, sampling was focused

between 170°W and 140°W. HIPPO data shown are 10 second average data. GEOS-5 pseudo-data are
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created by sampling the appropriate three-hour model output, interpolating model profiles to the
measurement latitude and longitude, and then interpolating resulting profiles vertically to replicate the

measurement conditions as well as possible.

Figure 9 shows a longitudinal cross section comparison between the observed CO, data and GEOS-5
simulations for HIPPO-2, which occurred during October and November, 2009. Relative to the HIPPO
data, GEOS-5 assuming flux combination CG-NO tends to overestimate CO, throughout the sampled
region of the Pacific. Errors are greater in the NH (1-5 ppmv) than the SH (less than 3 ppmv). The
model is able to capture the major features of the observed transect, including elevated near surface
CO;, mixing ratios at NH high latitudes and enhanced CO, mixing ratios aloft at 30°S and 30°N.
Transects simulated using flux combinations AC-NO and CG-ED are generally similar to the results
produced by flux combination CG-NO, but with some notable exceptions. The differences between
observations and the CG-NO and AC-NO simulations shows that at NH locations, overestimates in
CO, are worse when using Ames CASA fluxes compared to CASA-GFED. Near 30°S, the Ames
CASA fluxes improve the model’s underestimate of near surface CO, during SH spring. However,
throughout most of the campaign Ames CASA fluxes result in greater errors because the difference in
the magnitude of the global land sink is less realistic. The use of ECCO2-Darwin fluxes in flux
combination CG-ED results in stronger ocean drawdown at NH high latitudes during autumn. This
helps to reduce the overestimate in CO, mixing ratios at these locations, but elsewhere, model

performance is degraded because of the overall weaker ocean sink.

During HIPPO-3, conducted during March and April, 2010 (Figure 10), model performance is
generally similar to performance during the second deployment. All flux combinations result in
overestimates in NH CO; but this is worse when using Ames CASA fluxes than when using CASA-

GFED fluxes. During March and April, the much stronger southern ocean sink in ECCO2-Darwin is
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evident in observations near 60°S, resulting in larger errors in this region compared to NOBM.

We also evaluate the ability of HIPPO-2 and HIPPO-3 data to discern between flux combinations in
different regions of the atmosphere following Huntzinger et al. (2011). Model data mismatch is
estimated here as the variance of CO, observations within 10 degree latitude bins for layers from the
surface to 2 km, from 2 to 4 km, from 4 to 6 km, from 6 to 8 km, and from 8 to 9 km. The Chi-squared
test statistic is calculated for each of these latitude-altitude regions using the number of observations,
the mean squared difference between simulations, and the model data mismatch. Dashed lines on
Figures 9 and 10 indicate regions where the test of variance indicates that flux difference induces
differences in atmospheric CO, mixing ratios that are statistically significant at the 95% confidence
level. During HIPPO-2, land flux differences are primarily detectable in the SH mid-latitudes. SH CO,
differences are smaller than those in the NH, but data exhibit much less variability making the
differences caused by land flux easier to distinguish from the background variability of measurements.
Flux differences in the SH mid-latitudes also tend to be distinguishable through a deep layer of the
atmosphere, not only near the surface. Ocean fluxes are difficult to distinguish during the November
time frame of HIPPO-2 because the greatest disparity between ocean fluxes is in NH high latitudes
where background CO, variability is strong. Land fluxes during HIPPO-3, in contrast to HIPPO-2, are
detectable only below 4 km and at mid- to high latitudes of both hemispheres. Ocean flux differences

are strongly evident in the SH high and mid-latitude locations.

The HIPPO datasets are also extremely valuable for evaluating the model’s ability to simulate vertical
gradients in atmospheric CO,. Figure 11 shows the difference between mean CO; near the surface
(below 2 km) and mean CO, between 6 and 8 km calculated over 5 degree latitude bins for both
HIPPO observations and GEOS-5 pseudo-data. During HIPPO-2, GEOS-5 tends to reasonably

reproduce the observed interhemispheric gradient both at low levels and aloft. During HIPPO-3, all
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flux combinations result in the model overestimating the gradient between northern and southern
hemisphere CO,. However, the vertical gradient is reasonably well simulated with the exception of
ECCO2-Darwin which results in much stronger negative vertical gradients at mid- and high latitude SH
locations than either simulated by NOBM or observed. During HIPPO-3, the earlier spring drawdown
in the NH Ames CASA fluxes also results in a slight overestimate in the vertical gradient in CO, at
most locations. The fact that the interhemispheric gradient in CO; is overestimated during HIPPO-3
while local vertical gradients appear reasonable could indicate either errors in the assumed source

distributions and magnitudes or an error in large scale transport pathways.

3.3.  Comparison with TCCON column CO, observations

The Total Carbon Column Observing Network (TCCON), established in 2004, is a network of ground-
based Fourier Transform Spectrometers recording near-infrared direct solar spectra for a number of
atmospheric trace gases including CO, [Wunch et al., 2011a]. Data are collected continuously during
daylight hours when viewing is not obscured by optically thick cloud and aerosol. Observations are
estimated to have a precision as high as 0.25% (~ 1 ppmv) under clear sky conditions. In contrast to the
NOAA ESRL network, TCCON provides total column CO, observations comparable to the
observations made by GOSAT. TCCON is also much smaller than the NOAA flask network with 16
stations operating during the 2009-2010 study period considered here (Figure 4). TCCON observations
are the primary calibration and validation dataset for GOSAT [Wunch et al., 2011b] and their use for
flux inference has been demonstrated by Chevallier et al. [2011]. For this analysis, TCCON
observations are slightly adjusted to account for laser sampling errors noted by Messerschmidt et al.

[2012] and Dohe et al. [2013].

In order to compare with TCCON observations, GEOS-5 CO, fields are sampled at the appropriate

observation time and convolved with the averaging kernel and a priori profile information appropriate
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for each station as described in Wunch et al. (2010). Simulated and observed daily means of column
CO; are then calculated; the results for four stations are shown in Figure 12. As is expected, column
CO, observations exhibit smaller seasonal variations than do surface observations. At both high NH
mid-latitude stations shown (Garmisch and Lamont), GEOS-5 simulations are able to reasonably
reproduce the observed column CO, mixing ratios with a slight underestimation in the amplitude of the
seasonal cycle (average underestimate over all NH mid- and high latitude stations of 1.4 ppmv for CG-
NO fluxes). Differences due to the flux combination assumed are small, typically no more than a few
ppmv, but the difference in seasonal cycle between CASA-GFED3 and Ames CASA is evident
particularly during NH spring. At the Izana, Tenerife station, GEOS-5 simulations overestimate
summer CO, mixing ratios relative to observations, a feature also found in the comparison against

Mauna Loa surface observations (Figure 5).

Monthly mean errors between GEOS-5 simulations and TCCON observations (Figure 13) show that
model errors are typically less than 3 ppmv when flux combination CG-NO is assumed. The model
tends to overestimate CO, at NH locations during spring and summer while during winter months,
errors are small (less than 1 ppmv at most stations). Model errors at NOAA ESRL NH stations (Figure
6) during winter are greater than 5 ppmv at some locations, resulting in small overestimates in seasonal
cycle amplitude at the surface (Figure 7). In contrast, the model slightly underestimates the seasonal
cycle amplitude at NH TCCON locations. This may be because of errors in simulated transport during
winter months resulting in too much CO; near the surface, or because of differences in sampling

locations between the ESRL and TCCON networks.

Figure 14 shows differences in column CO; mixing ratio at TCCON stations due to the difference in

land and ocean fluxes assumed. The seasonality of differences due to differences between Ames CASA

and CASA-GFED3 is similar to the analysis of surface observations, but the magnitude of flux
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differences manifests as a smaller magnitude atmospheric mixing ratio difference when the column is
considered. Despite the smaller total magnitude of the column differences, they are distinguishable
from natural variability at most NH stations during late spring and early summer, and winter, 2010.
This is largely due to the weaker natural variability in the column data and greater data volume yielded
by continuous measurements. The Ames CASA fluxes result in lower CO, (0.5-1.5 ppmv) at NH
stations during MAM 2009, and higher (2-3 ppmv) CO, at NH mid- and high latitude locations during

2010 winter, degrading performance relative to the CASA-GFED3 fluxes.

Detecting ocean flux differences at TCCON locations is considerably more difficult than detecting land
flux differences. Data from the Lauder station shows some ability to differentiate between fluxes
during some months of 2010, but data are not available at this site during 2009. These results point to
the difficulty of detecting ocean CO, flux differences with column observations. The nearest surface
station, Baring Head (BHD), New Zealand, indicates a higher percentage of data useful for
differentiating between ocean fluxes throughout the year. Atmospheric mixing ratio differences caused
by ocean flux uncertainty are typically smaller than differences caused by land flux and, as a result,
more difficult to separate from natural variability. Additionally, the TCCON network includes no
stations further south than Lauder making it impossible to directly observe Southern Ocean flux

differences.

3.4. Comparisons with AIRS satellite observations

The Atmospheric Infrared Sounder (AIRS) instrument aboard the Aqua satellite provides a record of
mid-tropospheric CO, from 2002 to present. Because data are collected during both day and night and
retrievals are performed in the presence of clouds, AIRS data provide unprecedented global coverage.
Accuracies are reported to be 2 ppmv or better by Chahine et al. [2005] with a nadir footprint of 90 by

90 km? [Chahine et al., 2008]. AIRS CO, observations have been used to study temporal (e.g. Jiang et
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al. [2010]; Li et al. [2010]) and spatial (e.g. Ruzmaikin et al. [2012]; Bai et al. [2010]) variability in
mid-tropospheric CO,, to evaluate atmospheric CO, simulations (e.g. Feng et al. [2011]), and for data

assimilation studies (e.g. Liu et al. [2012]; Engelen et al. [2009]).

GEOS-5 is sampled according to AIRS version 5 CO; observations using level 2 swath data. Simulated
CO, profiles for the appropriate 3-hour period are interpolated to the location of each observation that
passes AIRS quality assurance procedures. AIRS CO, weighting functions specific to the observation
latitude and background CO; mixing ratio are applied as described in Chahine et al. [2008]. Monthly
mean simulated and observed CO, mixing ratios are then calculated over 5 degree latitude by 5 degree

longitude regions.

Figure 15 presents a comparison between AIRS observations and GEOS-5 simulated CO, for October,
2009, a month that coincides with the beginning of the HIPPO-2 campaign. There is little agreement
between the AIRS observations and the CG-NO GEOS-5 simulation. AIRS indicates peak CO; mixing
ratios in SH mid-latitudes with minimum values in tropics and sub-tropics of both hemispheres. In
contrast, GEOS-5 indicates enhanced mid-tropospheric CO; over South America and SH Africa, likely
because of the lofting of fire emissions in these regions (Figure 2). GEOS-5 does not indicate the
presence of enhanced CO, mixing ratios in the mid-latitudes of either hemisphere resulting in a 2-5
ppmv underestimate in these regions relative to AIRS. In biomass burning regions, however, GEOS-5
overestimates mid-tropospheric CO, by 1-3 ppmv relative to AIRS. These results are in sharp contrast
to the comparison between HIPPO-2 CO, observations and GEOS-5 presented in Figure 9; that
comparison indicates that GEOS-5 tends to overestimate mid-tropospheric CO; in the 30-60°S band
over the Pacific Ocean from 0 to 8 km. The discrepancy between AIRS and GEOS-5 in this region
cannot be easily explained by errors in GEOS-5 vertical transport because Figure 11 indicates that

GEOS-5 vertical CO, gradients throughout the SH differ from observed vertical gradients by less than
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1 ppmv. NH underestimates of GEOS-5 relative to AIRS also coincide with regions where HIPPO-2

data indicate that GEOS-5 is overestimating CO; by 2-4 ppmv in the mid-troposphere.

AIRS data show a significant amount of temporal variability evident in the model data mismatch
calculated for each 5 by 5 degree grid box (Figure 15). Model data mismatch is calculated for each grid
cell by computing daily means of available data during the 2009-2010 period, fitting a smooth curve
through the daily data, and calculating the standard deviation of the residuals, similar to the calculation
of model data mismatch for NOAA ESRL and TCCON data. Using this method, expected model data
mismatch is typically between 1.5 and 4 ppmv with the largest observed variability in the mid- and
high latitudes of both hemispheres. Differences between GEOS-5 simulations assuming different flux
combinations are typically small in the mid- and upper troposphere region represented by AIRS
observations. The background difference between flux combinations CG-NO and AC-NO, due to the
difference in annual growth rate, is 1 ppmv during October. In biomass burning regions in SH Africa
and South America, Ames CASA fluxes result in CO, mixing ratios 1 ppmv less than CASA-GFED
fluxes, or nearly 2 ppmv if the difference in annual growth rate is removed. CASA-GFED results in 2
ppmv more CO; over equatorial Africa and SE Asia, but if the difference in growth rate is removed,
these differences are only 1 ppmv. In tropical regions, where vertical transport of surface fluxes is most
rapidly communicated to the mid- and upper troposphere, spatial patterns of atmospheric mixing ratio
differences resemble underlying surface flux differences shown in Figure 2. However, the magnitude of
these differences (1-2 ppmv) is typically smaller than the expected model data mismatch leading to a
lack of ability to discern between flux scenarios with any statistical significance. Ocean flux
differences (shown in Figure 15f), which are smaller in magnitude but more consistent throughout the
year, are not evident when model simulations are sampled with AIRS pressure weighting functions
except as a very slight modification to the north-south CO, gradient that is not statistically significant.

AIRS is not able to observe the large ocean flux differences in high latitude regions; data are not
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available south of 60°S and in NH high latitudes, slow vertical transport times produce no spatial
signature of the underlying flux differences in the mid- and upper troposphere where AIRS

measurements are most sensitive.

In all months during 2009-2010, AIRS data would have little utility for differentiating between spatial
patterns of flux differences. Figure 16 shows the percentage of 5 degree grid boxes per latitude bin that
contain statistically significant land and ocean flux differences for each month during the study period.
Land flux differences would seldom be detectable and only in a small number of grid cells in the
tropics and subtropics. Ocean flux differences are not detectable in any month or location because the
magnitude of the mixing ratio differences is always smaller than the variability inherent in the

measurements.

Figure 17 shows a comparison between simulated and observed monthly zonal mean mixing ratios
derived from AIRS data and model pseudo-data. GEOS-5 fails to capture the seasonal cycle of zonal
mean CO, observed by AIRS. GEOS-5 mid-tropospheric CO, exhibits a much stronger minimum
during the NH growing season (July-October) than does AIRS. AIRS indicates much stronger maxima
in the NH high latitudes during spring than indicated by GEOS-5, and a secondary maxima during
September that is not simulated by GEOS-5. GEOS-5 tends to produce larger than observed CO,
mixing ratios in the tropics and subtropics throughout the year. In the SH mid-latitudes, GEOS-5

underestimates AIRS zonal mean CO; with the largest differences in spring and autumn.

3.5.  Comparisons with GOSAT satellite observations
The Greenhouse gases Observing SATellite (GOSAT), launched in 2009 by the Japanese Aerospace
Exploration Agency (JAXA), monitors CO; and methane from space by analyzing high resolution

spectra of reflected sunlight within several near infrared bands (Kuze et al. [2009]; Yokota et al.,
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[2009]). The near infrared measurement technique allows for greater sensitivity to CO, near the surface
than the thermal infrared measurements of AIRS that are sensitive primarily to the mid- and upper
troposphere. Retrievals are only performed under cloud-free conditions resulting in a much smaller
yield of usable soundings than AIRS. GOSAT observations have been used to examine CO; mixing
ratios in megacities [Kort et al., 2012] and to estimate regional carbon fluxes (e.g. Takagi et al. [2011];
Basu et al. [2013]; Maksyutov et al. [2013]). Several different retrievals of column averaged CO, dry
air mole fraction (XCO;) based on GOSAT observations are currently being produced. In this work,
we use data produced by NASA’s Atmospheric CO, Observations from Space (ACOS) effort, a
collaboration between the original JAXA GOSAT team and NASA’s Orbiting Carbon Observatory
(OCO) science team [Crisp et al., 2012]. These data are produced using a modified version of the OCO
retrieval algorithm applied to GOSAT observed spectra as described in O’Dell et al. [2012] and have
been validated extensively using TCCON measurements (e.g. Wunch et al. [2010, 2011a, 2011b]).
Based on retrievals of realistic simulated observations, O’Dell et al. [2012] estimate that observations
contain RMS XCO, errors of ~1 ppmv and a positive bias of 0.3 ppmv. Dated used here are ACOS

version 3.4.

GEOS-5 is sampled at GOSAT measurement times and locations. Model profiles are interpolated to the
twenty atmospheric pressure levels used in the retrieval process and averaging kernels provided as part
of the ACOS data product are applied to convolve GEOS-5 mixing ratios with the a priori CO, mixing
ratio profile. XCO; is calculated from this simulated pseudo data profile. Monthly mean simulated and
observed CO, mixing ratios are then calculated over 5 degree latitude by 5 degree longitude regions as

was done for the AIRS data comparison.

During October, 2009, the spatial distribution of GEOS-5 assuming flux CG-NO compares much more

favorably with GOSAT observations (Figure 18) than with AIRS (Figure 15). The distribution of
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GOSAT XCO; shows fairly uniform mixing ratios globally with slightly larger XCO;, over South
America and Africa. The GEOS-5 distribution is similar though XCO; is overestimated by 1-3 ppmv in
most locations. This is consistent with HIPPO-2 aircraft observations (Figure 9) which show similar
overestimates between 0 and 8 km. Model data mismatch was calculated as described above for AIRS
data; observations were binned into 5 degree grid cells, daily means calculated and then the standard
deviation of residuals around a smooth curve considered the model data mismatch. Using this
technique, estimated model data mismatch is typically between 0.5 and 1 ppmv. However, despite the
smaller model data mismatch values, differentiating between land and ocean fluxes remains difficult
because of the small number of observations collected. The difference in XCO, due to the underlying
difference in land flux would be primarily detectable over Africa. Ocean flux differences are too small

to be detectable at any location.

A comparison between GOSAT data and GEOS-5 simulations during July 2009 (Figure 19) shows
similar features in both models and observations. The model is able to reasonably reproduce the
observed spatial distribution of XCO; but tends to overestimate XCO; by up to 5 ppmv in most mid-
and high latitude locations. This is consistent with model overestimates of 3-5 ppmv at surface (Figure
6) and TCCON stations (Figure 13) during NH summer months. Model overestimates are larger during
July than during October because the land sink, at its peak during NH summer, is likely weaker in both
CASA-GFED and Ames CASA than in reality. The Ames CASA land fluxes, characterized by earlier
drawdown of CO; in the NH spring, results in smaller CO, mixing ratios during July in the NH than
CASA-GFED despite the fact that the annual total Ames CASA land sink is smaller. Though the
largest differences in land flux during July are in the NH high latitudes (Figure 3), the resultant
atmospheric mixing ratio difference is not generally detectable at these locations. Instead, land flux
differences are most readily observed over NH ocean locations and over North Africa because the

observations exhibit much less variability in these locations. As in October, ocean flux differences are
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not large enough to be detectable at any locations.

Figure 16 also shows the percentage of 5 degree grid boxes per latitude bin that contain statistically
significant (p<0.05) land and ocean flux differences for each month when GOSAT data are considered.
In contrast to AIRS and in spite of very sparse sampling, GOSAT observations would be able to
distinguish spatial pattern differences in atmospheric CO, due to differing land fluxes in both
hemispheres primarily during their spring and summer months. Ocean flux differences are statistically

significant in only a small number of grid cells in the SH tropics.

Simulated zonal mean XCO, from GEOS-5 agrees much more favorably with GOSAT data (Figure 20)
than with AIRS (Figure 17) as was the case when spatial distributions of CO, during October 2009
were considered. GEOS-5 tends to overestimate XCO, throughout the year with the largest degree of
overestimation during NH spring and summer. The use of Ames CASA instead of CASA GFED land
fluxes help to improve the overestimation during spring, but degrades the comparison with
observations during NH winter. Atmospheric CO, differences caused by differing land fluxes are
detectable when zonal means are considered primarily during spring and summer months in both
hemispheres. Ocean flux differences are too small to be detected by GOSAT observations in all months

and in all locations.

4. Summary and Conclusions

As part of NASA’s CMS Flux Pilot Project, the GEOS-5 GCM was used to simulate atmospheric CO;
mixing ratios during 2009 and 2010 using two sets of model-based land and ocean flux estimates. All
land and ocean flux estimates were informed by multiple satellite datasets and compared with
numerous observations with the goal of better understanding the constraint on carbon flux provided by

current observing systems. Despite the strong data constraint, the two land models used in this work
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differed by an average of 1.7 Pg C in their estimate of the global land carbon sink during 2009 and
2010. Both land flux models estimate the land biosphere as a net source of carbon to the atmosphere
rather than a ~ 3 Pg C sink as indicated by the Global Carbon Budget [Le Quere et al., 2013]. While the
presence of a missing land sink was indicated by TRANSCOM models over 10 years ago (e.g. Gurney
et al. [2002]) and much progress has since been made in understanding the processes which may
account for the disparity between forward and inverse model flux estimates, the CMS FPP results show
that estimating realistic net land carbon fluxes at both global and regional scales remains a challenge
for models, even those informed by remote sensing observations. Ocean models differ by 1.4 Pg C per
year in global carbon flux. In ocean waters south of 30°S, model flux differences are 25% as large as
the mean regional flux and the phasing of the seasonal cycle also differs substantially. The magnitude
of these differences underscores the continued uncertainty surrounding the ability of natural carbon

reservoirs to compensate for increasing fossil fuel emissions.

Despite considerable differences in global flux, the performance of GEOS-5 simulations is generally
similar because of the strong role played by meteorological transport. GEOS-5 simulations assuming
all flux combinations tended to overestimate surface CO, mixing ratios in the NH, particularly during
spring and summer seasons when errors are 3-5 ppmv. The amplitude and phasing of the seasonal cycle
at most NH locations is reasonably well simulated though the model tends to slightly overestimate the
amplitude of the seasonal cycle at the surface. All flux combinations examined in this study struggle to
adequately reproduce the timing of the observed seasonal cycle at SH stations and at mid- and high
latitude SH locations and strongly overestimate the magnitude of seasonal variability by as much as 5
ppmv in some locations. Because the seasonal cycle is much smaller at SH mid- and high latitude
compared to NH locations, errors of this magnitude are greater than the observed seasonal cycle

amplitude.
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Comparisons with HIPPO observations provide the opportunity to evaluate the realism of simulated
vertical mixing processes. As expected from flux and surface CO, comparisons, GEOS-5 tends to
overestimate CO, mixing ratios relative to aircraft observations, particularly in the NH mid- and high
latitudes. Differences between mean near surface CO, and CO, observed between 6 and 8 km show the
model succeeds in simulating realistic vertical gradients in CO, during October-November, 2009 and
March-April, 2010. The HIPPO data comparisons indicate that during these months and over the
Pacific, model errors in surface and column CO; are not likely to be attributable to vertical transport

CITors.

GEOS-5 simulations succeed in capturing the major features of column CO, observations from
TCCON and GOSAT though the model tends to overestimate CO, by 3-4 ppmv during NH summer
regardless of the combination of fluxes used. GEOS-5 is also able to reproduce the spatial patterns of
XCO;, observed by GOSAT. When compared with AIRS mid-tropospheric CO, mixing ratios,

however, the model fails to represent either observed spatial distributions or seasonal cycle information.

Comparisons between GEOS-5 and surface, aircraft, TCCON, and GOSAT data reveal a consistent
picture of the capabilities of contemporary models to reproduce atmospheric CO, observations. Models
tend to overestimate CO, because the combined land and ocean flux assumed is too weak.
Overestimates at the surface are largest during the NH summer months, consistent with an
underestimate in the strength of land biosphere sink that is most active in this region and during this
season. HIPPO observations show that vertical gradients are reasonably well simulated, meaning that
excess CO, in the model atmosphere is distributed through the deep layer (typically between the
surface and 8 km) sampled by the aircraft. Total column CO; measurements (TCCON and GOSAT)
are overestimated by GEOS-5 in the same locations and seasons as indicated by comparisons with in

situ measurements, but by a slightly smaller amount. It is more difficult to reconcile AIRS mid-
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tropospheric CO, observations with other observational records and GEOS-5. While AIRS vertical
weighting functions peak in the mid-troposphere, they are strongly sensitive to the upper
troposphere/lower stratosphere (UTLS). Depending on the latitude of the observation, 60-71% of the
observed signal comes from pressures lower than 500 hPa. In order for GEOS-5 simulations to both
agree with TCCON and GOSAT and disagree with AIRS CO, observations, the model would have to
have large errors in the UTLS including overestimates in the tropics and alternating under- and
overestimates in the NH high latitudes. While there is no evidence of this type of model bias in the
comparisons with HIPPO presented here, sampling above 8 km is fairly sparse. More work is needed to
thoroughly evaluate the consistency of AIRS and other CO, data products, especially if they are to be

used together in joint assimilation and inversion frameworks.

Despite differences between land and ocean flux estimates greater than 1 Pg C, resulting differences in
atmospheric mixing ratio at remote surface sites are small, typically less than 5 ppmv at the surface and
3 ppmv in the column, and difficult to distinguish from natural observed variability. At NOAA ESRL
surface stations, the difference between the Ames CASA and CASA-GFED land fluxes manifests most
clearly in the atmosphere during NH spring and winter months. Outside of NH high latitude locations,
CO;, mixing ratio differences are rarely statistically significant when the natural variability of
observations is considered. TCCON observations succeed in detecting seasonal differences between
land flux estimates in NH winter and spring months. Though flux differences result in smaller mixing
ratio differences in the column, the continuous monitoring strategy of TCCON produces larger
quantities of data, which facilitates separation of flux differences from natural variability. AIRS
satellite observations are unable to discern between land flux models because the variability of
observations is larger than the magnitude of the resulting simulated mixing ratio differences in the mid-
and upper troposphere. GOSAT observations are better suited to observing flux differences because of

greater sensitivity near the surface and they show an ability to distinguish between land flux estimates
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during summer months. However, GOSAT’s ability to differentiate between land flux estimates

remains limited by sparse coverage.

Ocean flux differences, characterized by large disparities at high latitudes of both hemispheres, are
primarily distinguishable from natural variability at SH mid- and high latitude surface stations. HIPPO
aircraft observations also succeed in differentiating Southern Ocean flux differences from natural
variability. While in situ observations show an ability to discern between ocean flux estimates, remote
sensing techniques fail for several reasons. The sparse TCCON network contains no stations below
45°S, the region where flux uncertainty is greatest and where surface observations show the greatest
ability to differentiate between ocean flux estimates. As was the case with land flux, ocean flux
estimates produce mixing ratio differences that are smaller than the temporal variability inherent in
AIRS data. GOSAT observations, which have smaller single observation errors than AIRS and greater
sensitivity near surface, do not observe ocean regions south of 40°S. The difference between the ocean
flux models included in the CMS FPP highlights the larger uncertainty in how high latitude ocean
carbon storage has changed in recent decades and how it may continue to change in response to future
climate change. The inability of current remote sensing observations to detect the large differences in
ocean flux presented here highlights the need for continued in situ observations and the development of

remote sensing techniques which have the potential to increase data yield over high latitude regions.

Small mixing ratio differences resulting from flux differences make it difficult to assess the
performance of the individual flux estimates. While CASA-GFED compares more favorably than
Ames CASA to the total land flux estimate from the Global Carbon Budget [Le Quere et al., 2013], it
still diagnoses the land biosphere as a net source of CO, to the atmosphere rather than a sink. NOBM
overestimates the magnitude of the ocean sink relative to the Global Carbon Budget and ECCO2-

Darwin, but because both land flux estimates underestimate the magnitude of the global sink, the CG-
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NO simulation produces the most realistic atmospheric growth rate when compared with NOAA
surface observations. The main land flux difference that manifests in atmospheric CO, mixing ratios is
the difference in seasonal cycle between CASA-GFED and Ames CASA. While the earlier spring
drawdown in Ames CASA results in slightly better comparisons with surface observations during the
spring, earlier release of CO; from the land to the atmosphere in autumn degrades comparisons during
winter. Small-scale differences between CASA-GFED and Ames CASA, including the presence of fire
emissions (CASA-GFED) or redistribution of crop CO, (Ames CASA), are difficult to evaluate
because these differences are not readily evident in the available observational CO, records. While
ECCO2-Darwin produces a global ocean sink magnitude nearly equal to the Global Carbon Budget
estimate, comparisons with surface and aircraft data show that it is less realistic than NOBM over the

Southern Ocean where it diagnoses a larger sink with stronger seasonal variations.

While all flux combinations perform reasonably well in reproducing observed seasonal cycles and
spatial gradients in CO», the troubling implication of this agreement between simulations is that even
differences between flux models on the order of Pg C are difficult to disentangle using current
atmospheric CO, observations. Ocean flux differences are particularly difficult to discern because they
are smaller and tend to occur in high latitude regions that are poorly observed by current remote
sensing platforms. The use of aircraft campaigns, such as HIPPO, provide a valuable complement to
existing long term carbon monitoring strategies and may become more important in the future as

natural carbon reservoirs in remote high latitude locations respond to a changing climate.

Observations from OCO-2 are expected to greatly improve data yield over much of the globe, which
would allow for a greater ability to use space-based observations for flux discrimination. However,
OCO-2 will also be limited in its ability to observe high latitude locations meaning that it will not be

able to directly observe many locations associated with large flux uncertainty throughout the year. The

37



963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

ASCENDS mission, which focuses on active rather than passive observations of CO,, would improve
the ability of GOSAT and OCO-2 to observe high latitude locations, but is not likely to launch until the
2020s. These observational challenges underscore the need for a variety of types of CO, observations
to help fill the gaps left by satellite observations and to provide additional, complementary information

to maximize the impact of satellite observations in regions where they are available.

The small differences in atmospheric CO, mixing ratio due to flux also underscore the importance of
quality meteorological analyses and models. The ability to reasonably simulate small gradients in
atmospheric CO, mixing ratio and to successfully track the transport of air parcels from the surface to
the locations and altitudes at which measurements occur is key to the success of atmospheric inversion
studies which seek to reduce uncertainty in natural carbon sinks using atmospheric CO, observations.

Work is ongoing as part of the CMS project to better understand and quantify transport model errors.
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Tables

Table 1. Combinations of surface (land biosphere and oceanic) fluxes used in the model computations

in the Flux-Pilot Project. Fossil fuel fluxes were identical in all four combinations.

Flux Land Ocean Total Land and Ocean | Annual Mean

Combination | Biosphere Flux (Pg C yr?) Growth Rate at
MBL sites
(ppmv yr)

CG-NO CASA/GFED-3 | NOBM -3.4 (2009), -2.8 (2010) 2.7

AC-NO Ames CASA NOBM -1.2/(2009), -1.9 (2010) 3.5

CG-ED CASA/GFED-3 | ECCO2-Darwin | -2.1 (2009), -1.4 (2010) 33

AC-ED Ames CASA ECCO2-Darwin | 0.1 (2009), -0.5 (2010) 4.1
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Figure 1. Global land and ocean flux estimates produced as part of NASA’s CMS FPP for 2009 and
2010 in Pg carbon per month. Dark green solid line indicates combined NEP and biomass burning
fluxes computed from by the CASA-GFED3 model (dotted dark green line shows biomass burning
contribution only). Light green dashed line indicates NEP from the Ames CASA model. Blue lines
show ocean flux estimates from NOBM (dark blue solid) and ECCO2-Darwin (light blue dashed).
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Figure 2. Monthly land flux estimates from the CASA-GFED?3 (left) and Ames CASA (middle)
models and their difference (CASA-GFED3 minus Ames CASA; right) for January, April, July and
October of 2009. Units are 10~ kg Carbon per m” per month.
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Figure 3. Monthly ocean flux estimates from the NOBM (left) and ECCO2-Darwin (middle) models
and their difference (NOBM minus ECCO2-Darwin; right) for January, April, July and October of
2009. Units are 10~ kg Carbon per m” per month (note that the ocean fluxes shown here are an order of
magnitude smaller than the land fluxes shown in Figure 2).
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Figure 4. Locations of NOAA (red) and TCCON (blue) observing stations in operation during the
study period. Open red circles indicate stations that collected an insufficient amount of data in 2009-
2010 and thus were not included in Figures 6-8. Red (blue) ‘x’ marks indicate NOAA (TCCON)
stations shown in Figure 5 (12).

51



1395

1396
1397
1398
1399
1400

1401

1402

NOAA ESRL/GEOS—5 CO, Comparison
ZEP, 78.9N, 11.9E

JFMAMJI JASONDJIJFMAMJI JASONDJFMAMJJASONDJFMAMJJASOND
Month (2009-2010) Month (2009-2010)

Figure 5. Left panels show simulated and observed CO; at the Mauna Loa, Ny-Alesund, and Palmer
Station. Right panels show simulated and observed CO, at the same locations when differences in
atmospheric growth rate are removed. Red indicates NOAA ESRL observations while black, green, and
blue indicates GEOS-5 simulated mixing ratios assuming flux scenarios CG-NO, AC-NO, and CG-ED,
respectively (flux scenarios are described in detail in Table 1).

52



1403

1404
1405
1406

1407

1408

Observed Monthly Mean CO, Simulated Monthly Mean CO, — CG—NO CG—NO Simuloted — Observed
el 1 e X7 T E ¥ : B 3 E - |
g ON g § i?'—!"!l' 3
i B . L 3
b = ; E 400 &l 5.0
,. ._ 396
) % . o A ] E . =
E & E & E B
g gl g gl 302 8 PP
c 30N ¢ -3 ON c
s 8/ .g% Q% _ 0.0
T & T = =]
a B 85 Bl
2L o {0 —25
E g 384 E .
- & & %05 M 380 E -5.0
g . — — I60S ;ﬁ_ _ - — 60S BF
= 2 s = | i .
S LS W o J oA JOJAIO JAJOJAJDO
Month (2009-2010) Month (2009-2010) Month (2009-2010)

Figure 6. Monthly mean CO, (ppmv) observed at NOAA ESRL stations during 2009-2010 (left)
compared with simulated CO, assuming flux combination CG-NO (middle). Right hand plot shows the
model-observation difference. Stations are oriented from north (top) to south (bottom) on all plots.
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Figure 7. Evaluation of the simulations’ ability to represent the seasonal cycle of CO, observed at
NOAA surface stations during 2010. The top plot shows the mean error in the magnitude of the
seasonal cycle calculated over 10 degree latitude bins and for flux combinations CG-NO, AC-NO, and
CG-ED. The middle (bottom) plot shows the mean error in the month during which the minimum
(maximum) in the seasonal cycle occurs. Boxes identify mean values while vertical lines indicate
maximum and minimum values within each 10 degree latitude range.
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1424  Figure 8. Differences in monthly mean CO; mixing ratio at NOAA surface stations due to differing
1425  land flux estimates (left) and ocean flux estimates (right). Diagonal bars indicate instances in which
1426  flux differences would not be statistically significant from observation variability.
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Figure 9. Comparison of observed and simulated CO, mixing ratios (top) during HIPPO-2 in October
and November, 2009 show HIPPO observations (left), GEOS-5 using flux combination CG-NO
(middle) and the simulated minus observed difference (right). Bottom plots show the difference
between GEOS-5 and observations using alternate flux scenarios AC-NO (left) and CG-ED (right).
Dashed boxes indicate regions where flux differences are significantly larger than the variance of
observations.
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Figure 10. Comparison of observed and simulated CO, mixing ratios (top) during HIPPO-3 in March
and April, 2010 show HIPPO observations (left), GEOS-5 using flux combination CG-NO (middle)
and the simulated minus observed difference (right). Bottom plots show the difference between GEOS-
5 and observations using alternate flux scenarios AC-NO (left) and CG-ED (right). Dashed boxes
indicate regions where flux differences are significantly larger than the variance of observations.
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1460  Figure 11. Simulated and observed vertical gradients in in situ CO, derived from HIPPO data and
1461  GEOS-5 model simulations (right). Gradients are calculated by binning observations and pseudo-data
1462  into 5 latitude bins and calculating the difference between the mean mixing ratios below 2 km (left) and
1463  between 6 and 8 km (middle).
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1466  Figure 12. Comparison of daily mean simulated and observed column CO; at Garmisch, Lamont,
1467  Izana, and Wollongong TCCON stations for 2009-2010.
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1487  Figure 13. Monthly mean CO; (ppmv) observed at TCCON stations during 2009-2010 (top) compared
1488  with simulated CO; assuming flux combination CG-NO (middle). Bottom plot shows the model-
1489  observation difference. Stations are oriented from north (top) to south (bottom) on all plots.

1490

60



1503

1504
1505
1506

1507

1508

1509

Station Name

Station Name

Figure 14. Differences in monthly mean CO, mixing ratio at TCCON stations due to land flux
estimates (top) and ocean flux estimates (bottom). Diagonal bars indicate instances in which flux
differences would not be statistically significant from observation variability.
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Figure 15. Comparison of AIRS observed mid-troposphere CO, mixing ratio with GEOS-5
simulations for October, 2009 for 5 degree latitude by 5 degree longitude grid boxes. The top panels
show AIRS monthly mean mixing ratio (left) and monthly mean GEOS-5 mixing ratios assuming flux
combination CG-NO sampled using AIRS pressure weighting functions (right). Middle panels show
the estimated model data mismatch of AIRS observations for each grid box (left) and GEOS-5 CO,
minus AIRS (right). Bottom panels show the difference between GEOS-5 simulated CO, for flux
combinations AC-NO and CG-NO (left) and combinations CG-ED and CG-NO (right); grid cells
where these differences are not statistically significant at the 95% confidence level are indicated by
black lines.
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Figure 16. Percentage of 5 degree latitude by 5 degree longitude grid cells per month and per latitude
bin in which land (ocean) flux differences manifest as significantly different satellite CO, mixing ratios
re shown in right (left) panels. Top panels show the detectability of flux differences by AIRS while
bottom plots show results for ACOS GOSAT data.
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1529  Figure 17. Seasonal cycle of (a) zonal mean AIRS observed mixing ratios, (b) zonal mean GEOS-5
1530  (CG-NO) mixing ratios calculated with AIRS weighting functions, and (c) the difference between zonal
1531 mean model results and observations. All units are ppmv.
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1534  Figure 18. Same as Figure 14, but using ACOS retrievals of GOSAT observations and sampling
1535  instead of AIRS.
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1539  Figure 19. Same as Figure 17, but for July, 2009.
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1543  Figure 20. Seasonal cycle of (a) zonal mean ACOS observed mixing ratios, (b) zonal mean GEOS-5
1544  (CG-NO) mixing ratios calculated with ACOS weighting functions, and (c) the difference between
1545  zonal mean model results and observations. Bottom plots show the difference in zonal mean caused by
1546  land (d) and ocean flux differences (e). Dashed lines indicate months where flux differences are not
1547  statistically significant from natural variability. All units are ppmv.
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