

LunarCube Transfer Trajectory Options

David Folta, NASA Goddard Space Flight Center Donald Dichmann, NASA Goddard Space Flight Center Pamela Clark, Catholic University Amanda Haapala, Purdue University Kathleen Howell, Purdue University

- Numerous Earth-Moon (EM) trajectory and lunar orbit options are available for LunarCube missions
- Our investigation of potential trajectories highlights several transfer and lunar capture scenarios
 - Low Earth orbit (LEO); Geostationary transfer orbits (GTO); Higher energy direct lunar transfer orbits (EM-1)
 - Lunar elliptical and circular orbits with minimal capture requirements
 - Yield a wide range of transfer durations, fuel requirements, and final destinations including Sun-Earth and Earth-Moon libration orbits, and heliocentric designs
- Given the limited injection infrastructure, many designs are contingent upon the modification of an initial condition of the injected or deployed orbit
- Restricted by subsystems selection such as propulsion or communication
- Application Earth-Moon dynamical system design approach
 - Apply natural trajectory flow and take advantage of system perturbations
 - For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture

- Trajectory Propulsion trades drive many mission design options
 - $_{\circ}\,$ Both low and high-thrust transfers are feasible assuming sufficient power or fuel mass
- For the EM-1 injected initial design, modify the lunar flyby distance to alter the system energy, matching that of a typical Sun-Earth system heteroclinic manifold
 - $_{\circ}\,$ Option uses dynamics similar to the ARTEMIS mission design
 - Manifold and maneuvers raise perigee to that of a lunar orbit, adjust the timing wrt the Moon, rotate the line of apsides, and target a ballistic lunar encounter.
 - $_{\circ}\,$ Orbital energy (C3) with respect to the Moon is targeted to < -0.1 km^{2}/s^{2}
- LEO or GTO design options use impulsive maneuvers to phase onto a local Earth-Moon manifold, which then transfers LunarCube to a lunar encounter
- Investigation concludes with several design options which provide estimated ΔV requirements, achieved lunar orbit parameters, and associated transfer trajectory information
- The use of Goddard's dynamical systems mission design tool, Adaptive Trajectory Design (ATD), and operational software (GMAT, Astrogator) are utilized to generated results

Low thrust and impulsive maneuvers concepts

- Low thrust level investigated vary from μN to mN,
 - Limits the control authority and trajectory modifications
 - Power limited, with power < 100W(?)
- Attitude control and pointing constraints may impede use or drive designs
- Impulsive designs drive fuel mass, deterministic ΔVs , or timing

Launch vehicle and related primary trajectories

- Secondary payloads cannot drive primary mission goals but can provide a minimal cost approach
- Constrain the mission design wrt launch/ injection parameters
 - Injection energy can vary over launch period or window
 - Number of launch opportunities can be limited
- Three injection options limitations
 - LEO launch dates, inclination and accelerations (Nodal precession and atmospheric drag)
 - GTO launch dates and line of apsides alignment
 - EM-1 launch dates, varying injection energy over window, unknown trajectory (apoapsis) direction

- Describes long-term qualitative behavior of complex dynamical systems
- Employs differential equations (continuous) / difference equations (discrete)
- Deterministic system, yet nonlinearity leads to loss of predictability
- Focus not on precise solutions, but on general exploration of space (periodic orbits, quasi-periodic motion, chaos, ...)

- Poincaré maps and invariant manifolds useful to locate long-term capture trajectories about the smaller primary in CR3BP
- Images from Howell, Craig Davis, and Haapala, *Journal of Mathematical Problems in Engineering*, Special Issue: Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites, 2012.

- Simplified model, autonomous system .
- Provides useful information about fundamental solutions (libration point orbits, stable/unstable invariant manifolds, retrograde orbits, ...)
- Solutions from CR3BP transitioned to ephemeris model, generally, maintain orbit characteristics

Sun-Earth-Moon (GMAT)

Images from Haapala, Vaguero, Pavlak, Howell, and Folta, AAS/AIAA Astrodynamics Specialist Conference, 2013.

- In 2009, two small spacecraft where transferred from low elliptical Earth orbits to lunar elliptical orbits
 - Use of a dynamical system (manifold) approach with numerical targeting
 - $_{\circ}\,$ Lower thrust propulsion system (4N) with constrained thrust direction on a spinning spacecraft
 - ° Orbit-Raising maneuvers performed near periapsis to raise apoapsis to lunar distance
 - Lunar Gravity Assists (LGAs) to align trajectory for Earth-moon libration insertion and to raise periapsis

4th International Workshop on LunarCubes, October 7-10, 2014 Sunnyvale, CA.

- In an ARTEMIS example, consider only the outbound arc of P1
- Follow the original outbound path to the location of a correction maneuver which shifted the spacecraft onto a different path, (orange) manifold
- Subsequent to and along the outbound trajectory two outbound manifold arcs emerge

• Represent potential outcomes from flow along the optimal path and the alternative that incorporates a possible correction maneuver

P1 Pre and Post TCM5 Stable Sun-Earth Manifold

Maneuvers	Stable Manifold (41.6 days)	old (41.6 days) Direct w/ Lunar Assist (18.27 days)	
Launch Vehicle $\Delta { m V}$	3.047 km/s	3.137 km/s	
Δv_1	552.9 m/s	500.0 m/s	
Δv_2	0.192 m/s	587.7m/s	
Δ V Required	553.092 m/s	1087.7m/s	

Initial orbit assumed 200 km LEO Final lunar orbit 1000 km

Trajectories designed using ATD[©]

Maneuvers	Transfer from GTO (18.85 days)
Δv_1	2.503 km/s
Δv_2	80.81 m/s
Δv_3	565.95 m/s
Δ V Required	3.150 km/s

- Without altering the EM-1 injection energy, a LunarCube would perform a close lunar flyby and depart into heliocentric space
- Options to alter LGA energy include changing the flyby distance and orientation, permit trajectories to Sun-Earth L_1/L_2 , Earth-moon L_1/L_2 , and lunar orbits
- Slow down from EM-1 injection approaching lunar flyby
 - Immediately after injection from EM1, thrust against velocity vector (relative to Earth) for several days
 - Option-1: Enter highly eccentric orbit around Earth and gradually raise perigee and lower apogee to approach Moon, in both orbit and phase
 - Option-2: Achieve LGA to enter onto Manifold to raise perigee and approach moon
 - Thrust against velocity vector (relative to Moon) to capture / spiral into a distant lunar orbit
 - or change elliptical eccentricity
- Speed Up from EM-1 injection approaching lunar flyby
 - Immediately after injection from EM1, thrust along velocity vector (relative to Earth)
 - Achieve LGA to insert into a highly eccentric Earth orbit, with inclination close to
 - Moon orbit.
 - Raise perigee and lower apogee to approach Moon, in both orbit and phase
 - Thrust against velocity vector (relative to Moon) to capture / spiral into a distant lunar orbit
 - or change elliptical eccentricity

4th International Workshop on LunarCubes, October 7-10, 2014 Sunnyvale, CA.

AERONAUTICS & ASTRONAUTICS

IACS / CU

Speed up

15-Dec-

31-Jul-

2017

2018

228

1315

Other options to maintain apoapsis near lunar orbit distance and then raise periapsis for a minimal lunar orbit capture

	Example-1	Example-2	Example-3
Initial Mass (Kg)	9	9	12
Thrust Level (mN)	0.4	0.4	2.0
Total DV (m/s)	869	665	1595
Transfer DV (m/s)	673	305	557
Lunar Cap DV (m/s) over 180 days	196	360	1038
unar Flyby Radius (km) (EM1 nominal = 3065)	6763	6911	2510
Max Transfer Range (km)	1,524,000	1,525,250	1,154,950
Total Transfer Duration (days) to Capture	231	257	171
Transfer Duration from Return Lunar Encounter to Capture (days)	60	66	65
Total # of Low Thrust Maneuvers	6	5	13
Duration of Transfer Trajectory Low Thrust Arcs (days)	131	71*	112
Maximum Eclipse Duration (hrs) (Lunar Eclipse)	1	2.7	4
Lunar Orbit (Km) after 180 Days of Thrusting (Apoapsis x Periapsis)	6800 x 100	12000 x 1300	350 x 50
Lunar Orbit Inclination (deg)	20	25 (155)	165

A variety of lunar science orbits can be achieved from any of these analyzed transfers

- Low thrust capture and insertion using a ballistically captured lunar orbit
- Perform an alignment of periapsis (apsides) with science goals
- Target a given periapsis altitude or periapsis decay over time
- Target various eccentricity, semi-major axis, inclinations
- Achieve various science parameters, e.g. Solar angles

- There are numerous Lunar Cube Transfer Trajectory Options available
- The deployment strategy, as a secondary payload, drives the available designs options
- Both low thrust and high performance propulsion systems can be used
 - $_{\circ}\,$ High thrust can result in mass / volume considerations
 - $_{\circ}\,$ Low thrust ranging from $\mu\text{-N}$ to m-N can augment the trajectory given the proper initial conditions
 - $_{\circ}\,$ Power level will drive low thrust capabilities and the ensuing trajectory design
- Transfer and lunar capture into science orbit durations can be time-consuming
- Use of dynamical systems, aka manifolds, can aid in the design and provide an intuitive approach in addition to optimization
- Combining dynamical systems techniques with low thrust propulsion systems versatile, efficient techniques for low-energy transfer to the Moon are achieved

Lunar Cubes are the Next Step for Flexible Trajectory Designs, to the Moon and Beyond