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At the end of this lecture, you should 
understand:

• The view of DXA BMD as a surrogate for fracture risk in 
terrestrial medicine. Why DXA is not a good research 
technology to understand fracture risk in astronauts.

• Flight data describing the unique effects of spaceflight on 
skeletal sites at risk for age-related osteoporosis on 
Earth.

• Bold research approaches to assessing the 
“biomechanical competence of bone” in the context of 
NASA’s constraints.



BONE BIOLOGY
Getting on the same page.



Cortical Bone/ “Compact Bone”

Sources:  L. Mosekilde; SL Bonnick; P Crompton

PROXIMAL FEMUR
VERTEBRAL BODY – 66% BMD

Cancellous “Spongy” Bone/Trabecular Bone

Trochanter
50% BMD

Femoral Neck
25% BMD

TWO TYPES OF BONE



Entire skeleton turns-over  
10%/year:  3% cortex but 
25% of cancellous bone

Cortical  Bone 80% of 
total skeleton
(long bones)Cancellous Bone 20% of 

total skeleton (vertebrae,
ribs, ends of long bones)
Contains 80% of bone 
surfaces

Distribution of bone types in skeleton 
and turnover rates on earth

Cortical  Bone 80% of 
total skeleton
(long bones)



Trabecular Surface

Intracortical

Periosteal Surface

BONE SURFACES – Sites of bone formation & 
removal – not random

Endocortical “Endosteal” Surface



Remodeling at the level of a single “Bone 
Remodeling Unit”

HIGHLY-REGULATED ACTIONS OF BONE CELLS on BONE TURNOVER. 

1-2 million BRUs in the adult skeleton



osteoblasts

osteoclasts

osteocytes

TYPES OF BONE CELLS:  mediators of bone resorption, 
bone formation, mechanical sensing

Bone Marrow Area

Mineralized bone



 
    Shuttle

1981-2010 
     

Mercury 
1961-63 

Gemini 
1965-66 

Apollo 
1968-72 

Skylab 
1973-

74 

 Intl Space Station
2000-present

     
       
 
 
 

 Calcium 
balance 
 
SPA of 
heel and 
wrist 

Soyuz/Salyut 
1974-85

 SPA  
 Urine, fecal Ca 

Mir 
1986-2000 

 
 DXA 
 

 
 
 DXA 
 QCT 
 pQCT 
 BTO 

    Heel,Wrist 

   
    
 

Characterizing Bone Changes* in Space

SPA=Single Photon Absorptiometry
DXA=Dual-energy X-ray Absorptiometry
QCT=Quantitative Computed Tomography
pQCT = peripheral QCT 
BTO=biochemical markers of bone turnover *Two functions of skeleton



Skylab-Bone Mineral Density of Calcaneus 
(vs. wrist)

Rambaut P, Johnston R. Acta Astronaut. 1979;6:1113-22.



Urinary Ca during Skylab
(Mean +_ SEM)
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Functions of the Skeleton*

• Internal support for the body

• Attachment for muscles / tendons for motion

• Protects vital organs

• Encloses blood-forming elements in marrow

• Mobilized store for Calcium (Ca2+) homeostasis

*What potential risks to human health & performance? During and after a mission.



Four identified “Bone” health risks for 
exploration missions.

1. Early Onset Osteoporosis  (fragility fractures)

2. Bone Fracture (trauma fractures)

3. Formation of Renal Stones 

4. Intervertebral Disc Injury (or Damage)



Four Identified “Bone” health risks for 
exploration missions.

1. Early Onset Osteoporosis 

2. Bone Fracture

3. Formation of Renal Stones 

4. Intervertebral Disc Injury (or Damage)



Journal of Bone & Mineral 
June 28(6):1243-1255, 2013

“Bone Summit I – 2010”



1. What additional 
measure(s) do we need 
to monitor?   

2. How frequently? For how 
long?

3. How should Med Ops use 
research data in its 
clinical practice?  

4. Need specific clinical 
practice guidelines.

BONE SUMMIT
2010 and 2013

Flight validation Research

Astronauts Clinical Care

Ground‐Analog Research

Combined Medical and Research Tests:  
Intervention Requirement?, Clinical Triggers?, Surveillance 

Recommendations

Bone Research @ NASA



Take Home Messages from 
Bone Summit (2010)

1. Bone is a complicated tissue.
2. NASA has constraints: low subject #’s; slow data 

acquisition.
3. Astronauts are understudied group.
4. Spaceflight effects on bone are unique.
5. Clinically-accepted tests have limitations.
6. NASA’s medical standards for bone health 

(based upon terrestrial guidelines) are not 
applicable to long-duration astronauts.

7. Recommended exploring the transition of 
research approaches to clinical arena. 



Risk: Different types of fractures

Load > Bone Strength = FRACTURE

(Causality – BIOMECHANICS)

You don’t have to have OSTEOPOROSIS.

“Osteoporotic/Fragility Fractures” –
low to atraumatic Fractures 
due to Osteoporosis
(Causality - SKELETAL CONDITION)

You don’t have to be OLD.
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Does spaceflight result in irreversible changes to bone 
that combine with age-related losses?
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NASA measures Bone Mineral Density [BMD] 
by DXA as a surrogate for fracture just as clinical 

world.  –T-scores (Not BMD change). circa 2000

Permissible 
Outcome
Limit

Preflight 
Standard

Mitigation
Efficacy



“Osteoporosis is a skeletal disorder characterized by 
compromised bone strength predisposing to an increased 
risk of fracture.  Bone strength reflects the integration of two 
main features:  bone density and bone quality.”  

JAMA.  2001

Disconnects evident
In population studies.

FRACTURE CASES

NON FRACTURES



BONE STRENGTH IS 
INFLUENCED BY ADDITIONAL 
FACTORS THAT ARE NOT 
MEASURED BY DXA AREAL 
BMD.

Widely-applied surrogate for fracture



Diagnostic Guidelines Not Meaningful
for Astronauts

for peri- and postmenopausal women and men > 50 years.



Age is important risk factor for bone loss but
the utility for < 50 years not clearly evident .*

Kanis et al JBMR 9(8):1137, 1994    
* The use of DXA BMD for surveillance of active astronauts is a unique application.



Risk for osteoporotic fractures is lower at younger ages.

Adapted from:
Kanis JA et al. Osteoporosis Int. 2001;12:989-995

Slide Courtesy of S. Petak, MD.
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DXA testing for the younger aged is not considered necessary.



WHAT COULD BE MEASURED 
TO DEFINE A RARE RISK IN 
YOUNGER PERSONS?

Uncertainty exists. Are the long-duration astronauts at risk? 



History of Bone Imaging in Space

ApolloMercury
Gemini

Skylab
Space Shuttle

ISS

1961-63 1965-66 1968-72

• X-ray 
densitometry

• SPA  heel 
and wrist

• SPA  heel 
and wrist

1973-74 2000-present

Soyuz/Salyut
1974-85
• SPA  
• DPA

Mir

• DXA whole body
• CT of  lumbar spine 

BMD

1974-85

• DXA
• QCT
• HR3DpQCT

(ESA)

Slide courtesy of S. Amin, adapted from Dr. Jean Sibonga, NASA JSC



Measurement of bone mineral in 2-d projection of bone [BMDa] 
g/cm2

•Improved precision;  Low radiation;  Shorter scan times; BMD measures 
over multiple skeletal sites

• Validated in numerous population studies for fracture prediction

• Long established, widely-applied surrogate for fracture outcome – become 
NASA standards, but T-scores give only Relative Risks

Dual-energy X-ray Absorptiometry-DXA 



Areal BMD 
g/cm2

%/Month 
Change + SD

Lumbar Spine -1.06+0.63*
Femoral Neck -1.15+0.84*
Trochanter -1.56+0.99*
Total Body -0.35+0.25*
Pelvis -1.35+0.54*
Arm -0.04+0.88
Leg -0.34+0.33*

*p<0.01, n=16-18

DXA:  BMD losses are site-specific and 
rapid

Hip
1.5% / month

Whole Body
0.3% / month

Lumbar Spine
1% / month

LeBlanc et al, J Musculoskeletal 2000

vs. 0.5 – 1.0 % BMD loss/year in the aged



* Updated data since 2010 Bone Summit

Note: No population data % BMD loss = Fracture Outcome

Effects of exercise regimens described using DXA BMD



Mary Bouxsein, Ph.D. Bone Geometry and Skeletal Fragility, May 2005

A Limitation: DXA Cannot distinguish changes in 
bone geometry– a contributor to bone strength.

Areal (g/cm2)



Exercise changes geometry of whole bone 
(adult skeleton)- not detected by DXA.

1. Haapasalo H, Sievanan H, Kannus P, Heinonen A, Oja P, Vuori I.  1996  
Dimensions and estimated mechanical characteristics of the humerus after 
long-term tennis loading.  J Bone Miner Res.  11:864-872.

2. Adami S, Gatto D, Braga V, Bianchini D, Rossini M.  1999  Site-specific effects of 
strength training on bone structure and geometry of ultradistal radius in 
postmenopausal women.  J Bone Miner Res.  14(1):120-124.

3. Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I.  2000  
Exercise-induced bone gain is due to enlargement in bone size without a 
change in volumetric bone density: a peripheral quantitative computed 
tomography study of the upper arms of male tennis players.  Bone  17(3):351-
357.

4. Vainionpaa A, Korpelainan R, Sievanen H, Vihriaia E, Leppaluoto J, Jamasa T.  2007  
Effect of impact exercise and its intensity on bone geometry at weight-bearing 
tibia and femur.  Bone  40(3):604-611.  

5. Hind K, Gannon L, Whatley, Cooke C, Truscott J.  2011  Bone cross-sectional 
geometry in male runners, gymnasts, swimmers and non-athletic controls: a 
hip-structural analysis study.  Eur J Appl Physiol .  e pub May 24

33



The location of formed bone makes a 
difference.

Slide courtesy of  M. Bouxsein, PhD



QCT quantifies volumetric BMD

DXA reports areal BMD (aBMD)

Densitometry & Reported Measurement 

g/cm2  averaged for cortical + trabecular bone

g/cm3 for separate  cortical & trabecular bone



Research:  QCT detects different rate of vBMD loss in 
separate bone compartments of hip. (n=16 ISS 

volunteers)
Index 
DXA 

 

%/Month 
Change + SD 

Index 
QCT 

%/Month 
Change + SD 

aBMD Lumbar 
Spine 

1.06+0.63* Integral vBMD 
Lumbar Spine 
 

0.9+0.5 
 
 
 

  Trabecular 
vBMD Lumbar 
Spine 
 

0.7+0.6 

aBMD Femoral 
Neck 

1.15+0.84* Integral vBMD 
Femoral Neck 
 

1.2+0.7 

  Trabecular 
vBMD 
Femoral 
 Neck 
 

2.7+1.9 

aBMD 
Trochanter 

1.56+0.99* Integral vBMD 
Trochanter 
 

1.5+0.9 

*p<0.01,  
n=16-18 

 Trabecular 
vBMD 
Trochanter 

2.2+0.9 

 

LeBlanc, J Musculoskelet Neuronal Interact. 2000 ; 
Lang , J Bone Miner Res, 2004; 



Slide adapted from T. Lang., JBMR 2006.
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detected  12 months after return



Structural 
Framework

Mineral
Reservoir

Formation Biochemical Markers

Resorption Biochemical Markers

Osteoblasts

Osteoclasts

Bone 
Resorption

Bone 
Formation

Two Functions of the Skeleton- increasing 
understanding by biochemistry



Serum and urinary biomarkers are by-products of 
bone turnover and bone cell activity.

Serum:
Total and bone-specific alkaline phosphatase (formation)
Osteocalcin (formation)
Total serum Calcium (40% protein bound;  calcium complexes)
Ionized serum Calcium (physiologically active)

Urine:
Pyridinium cross-links (resorption)
Deoxypyridinoline cross-links (resorption)
n-telopeptide (resorption)

Hormones:  (regulation of calcium homeostasis)
Parathyroid hormone – glands - main calcium sensing organ
1,25 Dihydroxyvitamin D -- stimulates Ca conservation
25 Hydroxyvitamin D – assayed vitamin D metabolite (substrate)



Bone breakdown is increased, formation is uncoupled
from resorption, and bone gain and loss are unbalanced*

(Smith et al, JBMR 2005); adapted by Sibonga

Reflects changes in bone cells but not where bone 
mass is lost.  

* Could lead to net bone loss in skeleton.



Remodeling of bone at the level of a single “BRU”

HIGHLY-REGULATED ACTIONS OF BONE CELLS on BONE TURNOVER. 

Under-filling, over-filling, balanced filling of the bone remodeling unit [BRU]
Can impact overall structural strength of whole bone (skeletal region).

1-2 million BRUs in the adult skeleton



Some insight gained by comparison to 
Earth-based disorders of increased bone resorption.



.
(Mosekilde, 2000; Seeman, 2002; Silva, 1997; Kleerekoper, 1985)

Representative manifestation on bone microarchitecture.
Clinical test not currently available for hip/spine.



HOW CAN RESEARCH DATA 
BE USED FOR CLINICAL CARE 
IN THE ABSENCE OF 
FRACTURE EVIDENCE?

Path to Risk Reduction
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Sibonga et al. BONE 41:973-978, 2007



DXA & QCT Spine in 8 ISS astronauts : 
Expanding our Understanding of Recovery After Spaceflight

QCT Extension Study (n=8) Postflight Trabecular BMD in hip.  Carpenter, D et al. Acta Astronautica, 2010.

L1-L4 L1, L2



DXA & QCT Femoral Neck

QCT Extension Study (n=8) Postflight Trabecular BMD in hip.  Carpenter, D et al. Acta Astronautica, 2010.



Clinical Evidence: QCT measures are independent 
predictors of hip fracture to supplement aBMD.



• Different patterns of bone “loss” (cortical vs. trabecular) with different 
metabolic disorders …analogous to spaceflight effects

Seeman, JCI 1992
Slide courtesy of
Dr. Amin, MD
Dual Photon 
Absorptiometry (DPA)

DXA BMD not as good of predictor of hip fractures for the
“complicated patient” i.e., non-age-related bone loss.



Describing changes in hip bone strength with Finite 
Element Modeling/Analysis: 

Emerging data from population studies. 
• Male-female differences in prediction of hip fracture during finite 

element analysis. Keyak JH, Sigurdsson S, Karlsdottir G, Oskarsdottir D, 
Sigmarsdottir A, Zhao S, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, 
Siggeirsdottir K, Eiriksdottir G, Gudnason V, Lang TR. Bone. 
2011;48(6):1239-1245.

• Association of hip strength estimates by finite –element analysis with 
fractures in women and men. Amin S,, Kopperdahl DL, Melton LJ 3rd, 
Achenbach SJ, Therneau TM, Riggs BL, Keaveny TM, Khosla S. J Bone 
Miner Res. 2011;26(7):1593-1600.

• Age-dependence of femoral strength in white women and men. 
Keaveny TM, Kopperdahl DL, Melton III LJ, Hoffmann PF, Amin S, Riggs 
BL, Khosla S. J Bone Miner Res. 2010;25(5):994-1001.

• Osteoporotic Fractures in Med Study Group. Finite element analysis of 
the proximal femur and hip fracture risk in older men. Orwoll ES, 
Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Ensrud K, 
Lane N, Hoffmann PR, Kopperdahl DL, Keaveny TM J Bone Miner Res. 
2009;24(3):475–483.



Images courtesy of Dr. J Keyak

Finite Element Models of QCT data – “FE modeling” is 
a computational tool to estimate failure loads 

(“strength”) of complex structures.

J. Keyak et al, 1998, 2001, 2005
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Individual Results
Fall Loading (3 gain to 24% loss in 

strength)
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QCT estimates fracture loads
better than DXA 

QCT + FEM has superior 
capabilities for estimating fracture 
loads

R2=.66
QCT

R2 =.57
DXA

R2 =.84
FEMDD Cody:  Femoral strength is better predicted  by finite 

element models than QCT and DXA.  J Biomechanics  
32:1013 1999.

QCT + FEM has superior capabilities for 
estimating mechanical strength of ex-vivo 
specimens.
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Additional cut-points for Bone Health: FE Modeling of 
QCT Scans from Population Studies

FE Task Group:
E. Orwoll MD, S Khosla MD, S Amin MD, T Lang PhD, J Keyak PhD, T Keaveny PhD, D Cody PhD, 

JD Sibonga, Ph.D.
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Probabilistic Risk Assessments for Bone 
Fracture:  NASA’s Model for Fracture Likelihood

Bone Loss in 
Space

courses.washington
.edu/me598rc 

Biomechanics 
and Mission 
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Summary

• DXA –widely-applied medical test for terrestrial medicine 
but may be too limiting for operational and clinical 
decision-making for bone health of astronauts.

• If skeletal integrity is assessed solely by a surrogate
measure of bone strength (DXA –BMD) vs. an estimate
of bone strength (e.g., FE modeling), then there may be 
a risk of underestimating fracture probability and poorly 
estimating countermeasure efficacy.

• Bone Research in progress to test QCT as a risk 
surveillance technology and to derive new cut-points to 
supplement bone health standards.



QUESTIONS? COMMENTS?
Thank you.



Backup Slides



Study on Risk Surveillance: Hip QCT
• Test feasibility of QCT protocol for 

surveillance of clinical trigger.

• Accumulate surveillance data for 
development of clinical practice 
guidelines (QCT and FEM)

• Research: Demonstrate how QCT 
can delineate biochemical from 
mechanical countermeasures.  
“Proof of Concept” Pilot Study

Figures courtesy of T. Lang (UCSF) and D. Carter (Stanford U)
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AGE-REGRESSIONS: Trabecular bone 
loss occurs at earlier age than expected.
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Slide courtesy S. Khosla, adapted by Sibonga



HRP slide courtesy C. Kundrot
Adapted Sibonga 2012
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Use of Osteoporosis Policy-makers help to translate 
research data to CPGs in absence of fracture data.

Evidence Base –
Flight and Ground

• Science
• Clinical
• Operational 

experience

Exploration 
Missions & 
Architectures

NASA Spaceflight 
Human System 
Standards

Risks

Integrated Research Plan

Results and 
Deliverables Solicitations 

& Directed 
Research

Gaps

Closure 
Metrics

Clinically-relevant
Research Tasks



Effects on Different Compartments of 
Bone (cortical vs. trabecular BMDs)
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Different ways to unbalance remodeling at bone surface.

Different levels of cell number 
and cell activities ending in deficit
of bone at the BRU.

Space?



QCT provides useful information re: causation of 
hip fracture, evaluation of hip fracture risk and 

possible targets for intervention.
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FE Standards Combine Aging and Spaceflight 
Changes to Hip Strength and used together with 

DXA BMD Standards.

Minimum FE 
strength for Bone 
Health

“Go”

Minimum 
Permissible
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QCT in Population Study: Age-related 
Changes
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The long-duration astronaut – not typical 
subject to evaluate osteoporosis (4/2014).

• Typical space mission duration – 159 ± 32d (range 49-215d)
• Average Age – 47 ± 5 y (range 36 – 56)
• Male to Female Ratio – 4.4 : 1
• Current total # per astronauts in corps – 59 of 365
• # repeat fliers – 6
• BMI – Male BMI 25.7 ± 2.2 (range 21.2 to 30.7); Female BMI 

22.2 ± 2.3 (range 20.1 to 25.9)

• Wt and Ht- Males: Males: 81 ± 9 (64 to 101); 176 ± 6 (163 
to 185)

• Females: 64 ± 7 (54 to 81), 169 ± 4 (163 to 178)
• % Body Fat: Males 20 ± 4 (9 to 27); Females 27 ± 8 (19 to 

41)
• MEDICAL PRIVACY A MAJOR CONSTRAINT



Bone Remodeling Sequence

Slide courtesy of Dr. R. Wermers, Mayo Clinic




