

VALIDATION OF THE 5TH PERCENTILE HYBRID III ATD FINITE ELEMENT MODEL

C. Lawrence,¹ J. T. Somers,² M. A. Baldwin,³ J. A. Wells,⁴ N. Newby,² N. J. Currie⁶

¹NASA Glenn Research Center, Cleveland, OH
²Wyle Science, Technology, and Engineering Group, Houston, TX
³Lockheed Martin, Denver, CO
⁴Lockheed Martin, Houston, TX
⁵ NASA Johnson Space Center, Houston, TX

Outline

- Human System Interface Requirements (HSIR)
- Objective
- Finite Element and physical Anthropomorphic Test Dummies (ATD)
- Wright Patterson Air Force Research Laboratory Horizontal Impact Accelerator (sled)
- Test matrix
- Test and simulation results for case 8924
- Next steps

Anthropomorphic Test Device Limits

Injury Assessment Reference Values (IARV) Limits

		Non-Dec	onditioned	Deconditioned			
	ATD SIZE-	Nominal	Off-Nominal	Nominal	Off-Nominal		
	5 th Female	375	525	375	525		
HIC 13	95 th Male	325	450	325	450		
Head Rotational	5 th Female	2,500	4,200	2,500	4,200		
Acceleration [rad/sec ²]	95 th Male	2,100	3,600	2,100	3,600		
N	5 th Female	0.5	0.5	0.4	0.4		
N _{ij}	95 th Male	0.5	0.5	0.4	0.4		
Peak Neck Axial Tension	5 th Female	890 -	- 1,840	765 – 1,580			
Force [N] ²	95 th Male	2,000	- 3,390	1,720 - 2,910			
Peak Neck Axial	5 th Female	890 -	- 2,310	765 – 1,990			
Compression Force [N] ²	95 th Male	2,000	- 4,360	1,720 - 3,750			
FI-:1	5 th Female		Pa	S			
Flaii	95 th Male		Pa	Pass			
Peak Lumbar Axial	5 th Female	3,500	4,200	3,000	3,600		
Compression [N] ³	95 th Male	6,600	7,800	5,700	6,700		

¹The following ATDs shall be used to evaluate the metrics:

5th percentile female automotive Hybrid III

95th percentile male automotive Hybrid III with straight spine

²Values in table are evaluated at varying time durations as specified in J

³Required only if Occupant Response Amplification ground rule is not met by the design

Objective

- Determine Model Uncertainty Factor (MUF) for available COTS FE models using test data from physical ATD testing.
 - What is utility of COTS FE ATD models for program status, design iteration, and selection of conditions for physical ATD compliance testing?
- Develop best modeling practices.

LSTC FE model of 5th percentile female H3

Livermore Software Technology Corporation

PRODUCTS	SUPPORT	APPLICATIONS	SALES	TRAINING

Hybrid III 5th Percentile Female

The model of the Hybrid III 5th Percentile Female dummy is a joint development with the <u>National Crash Analysis Center</u> (NCAC) at The George Washington University. The current release is an ALPHA version. Some documentation is provided at the beginning of the keyword file. Separate and detailed documentation will be included in a later release.

All current models can be obtained through our webpage in the <u>LSTC</u> <u>Models download section</u> or through your <u>LS-DYNA distributor</u>.

To submit questions, suggestions, or feedback about LSTC's models, please send an e-mail to: <u>atds@lstc.com</u>. Also, please contact us if you would like to help improve these models by sharing test data.

LSTC FE model and aerospace 5th percentile female H3 NASA

LSTC FE model and aerospace 5th percentile female H3 NASA

ACES Helmet

ACES helmet finite element model

Suited aerospace 5th percentile female H3

ASA

Sample Test Conditions

Unsuited NASA automotive ATD

Rear/lateral impact

Spinal impact

Rear impact (launch abort)

NASA Occupant Protection

IA SA

Impact Orientations

- X/Z
 - Tilt Angles
 - 0, 22.5, 45, 67.5, 90°
 - G Levels
 - 10, 15, 20, 25 G
 - Rise Times
 - 30, 60, 90, 120, 150 ms
 - 100 possible cases

90° (lateral) 0° (rear)

- X/Y
 - Rotation Angles
 - 0, 15, 30, 45°
 - G Levels
 - 5, 10, 15 G
 - Rise Times
 - 30, 60, 90, 120, 150 ms
 - 60 possible cases

Test Matrix

1		Cell 4	Run Number	Impact Vector	Impact Direction	Orientation	Impact Level G	Rise Time (ms) <mark><</mark>	Metering Pin	Manikin Type	Manikin Provider	Seat Configuration	Helmet	suit 1	Harness	
2	11/3/2014	В	8924	-X/+Z	Front/Spinal	60°	20	70	11	5% HBIII Aero	AFRL	Orion	None	None	Orion	Ĺ
3	11/3/2014	В	8925	-X/+Z	Front/Spinal	60°	20	70	11	5% HBIII Aero	AFRL	Orion	None	None	Orion	
4	11/4/2014	В	8926	-X/+Z	Front/Spinal	60°	20	70	11	5% HBIII Aero	AFRL	Orion	None	None	Orion	
5	11/4/2014	А	8927	-X/+Z	Front/Spinal	60°	20- 15	70	11	5% HBIII Aero	AFRL	Orion	None	None	Orion	Ĺ
6	11/4/2014	А	8928	-X/+Z	Front/Spinal	60°	20- 15	70	11	5% HBIII Aero	AFRL	Orion	None	None	Orion	
7																
8	11/4/2014	С	8929	-X/+Z	Front/Spinal	60°	15	70	11	5% HBIII Aero	AFRL	Orion	ACES	ACES	Orion	
9	11/4/2014	С	8930	-X/+Z	Front/Spinal	60°	15	70	11	5% HBIII Aero	AFRL	Orion	ACES	ACES	Orion	
10	11/4/2014	С	8931	-X/+Z	Front/Spinal	60°	15	70	11	5% HBIII Aero	AFRL	Orion	ACES	ACES	Orion	L
11																
12	11/5/2014	D	8932	-X/+Z	Front/Spinal	60°	20 15	70	11	5% HBIII Aero	AFRL	Orion	ACES	ACES	Orion	L
13	11/5/2014	D	8933	-X/+Z	Front/Spinal	60°	20 15	70	11	5% HBIII Aero	AFRL	Orion	ACES	ACES	Orion	
14															1 7	ľ

47															
48	11/14/2014	M	8955	-X/+Z	Front/Spinal	60°	20	110	19	5% HBIII Aero	AFRL	Orion	None	None	Orion
49	11/14/2014	М	8956	-X/+Z	Front/Spinal	60°	20	110	19	5% HBIII Aero	AFRL	Orion	None	None	Orion
50															
51	11/18/2014	N	8959	+X	Abort	0°	15	50	2	5% HBIII Aero	AFRL	Orion	None	None	Orion
52	11/18/2014	N	8960	+X	Abort	0°	15	50	2	5% HBIII Aero	AFRL	Orion	None	None	Orion

Positioning Targets

H5 H6

NASA

Test: 8924

Hybrid III Aero 5th Percentile Female ATD Test Results

8924 Video

Brinkley Accelerations

Head Rotational Acceleration and Velocity

Head Injury Criteria

Upper Neck

Neck Axial Force Duration

355lbf @ 5ms 200lbf @ 40ms 172lbf @ 40ms Significant Neck Injury Unlikely 10 20 30 40 50 60 70 Duration of Loading at Given Force Level [ms] **Axial Tension** Case: 8924, H3 5TH LSTC, Crew Position: 1 Response Non-Deconditioned Lim Deconditioned Limit Significant Neck Injury Likely 414lbf @ 5ms

Axial Tension Case: 8924, H3AERO 5TH ATD, Crew Position: 1

Response

Sighificant Netk Injury-Likely

200lbf @ 40ms

40

albf @ 40ms

50

Significant Neck Injury U

70

60

Non-Deconditioned Limit

80

Deconditioned Limit

NASA Occupant Protection

80

Chest Acceleration

Pelvis Acceleration

Case: 8924, H3AERO_5TH_ATD, Pulse: 1

Next Steps

- Generate simulation results for remainder of test cases using
 - Measured target locations to help position ATD in seat
 - Measured HIA (sled) impact accelerations to drive model
- Compare test and analysis for
 - Unsuited ATD
 - Suited ATD
- Resolve differences between WPAFRL aerospace and NASA automotive 5th percentile H3
- Determine best modeling practices
- Determine modeling uncertainty factor (MUF)