Alumina-Forming MAX Phases in Turbine Material Systems

James L. Smialek, Bryan J. Harder, Anita Garg, James A. Nesbitt,

NASA Glenn Research Center, Cleveland, OH

39th ICACC Daytona Beach, January 25-30, 2015

MAX Phases, M_nAX_{n-1}

(Barsoum, 2001, about 60 phases; >300 papers)

Oxidation Resistant: M = Ti, Cr Ti_3AIC_2

A = AI, (Si) Ti_2AIC X = C, (N) Cr_2AIC

Strain Tolerant Kinking Cr₂Al(Si)C W. Yu, S. Li, W.G. Sloof, 2007

Ti₂AIC "MAXthal 211" (Kanthal) M. Sundberg, et al., 2004

8000 cycles to 1350°C!

Purpose: Relate Al-MAX phases to coatings applications/turbine environment

- 1) High temperature α -Al₂O₃ kinetics
- 2) High pressure burner rig
- 3) YSZ Thermal Barrier Coatings
- 4) Superalloy/MAX Phase Hybrid
- 5) Hot corrosion

Coating Motivation and Rationale Ti₃AIC₂, Ti₂AIC, Cr₂AIC

- α -Al₂O₃ formers
- CTE close to YSZ, α -Al₂O₃
- Strain tolerance, nano-laminate shear
- Thermal shock resistance: ~1400°C quench
- $K_{IC} \approx 7 \text{ MPa/m}^{1/2}$

Hybrid Concepts (EBC/TBC) Enabled by MAX Phases Intermediate CTE, Strain Tolerance, YSZ Compatibility 1300°C Bond Coats (?)

CTE, 10⁻⁶/°C

Purpose: Relate Al-MAX phases to coatings applications/turbine environment

1) High temperature α -Al₂O₃ kinetics

- grain boundary diffusivity
- transient TiO₂ growth
- cubic kinetics

Schematic of Alumina Scale Transport

$$D_{eff} \approx fD_{gb} = \frac{2\delta}{G_i} D_{gb} \text{ (short circuit diffusion)} >> D_{lattice}$$

Modified Wagner: Derived $k_p vs \delta D_{gb,O}$ Relation: (oxidation product $\Pi \approx constant$)

$$k_{p,\text{instant}} = 2x \frac{dx}{dt} \approx \int_{P_{O_2},\text{interface}}^{P_{O_2},\text{gas}} D_{eff,O} \, d \ln P_{O_2} \quad (Wagner \, eqn.)$$

$$\Pi_{i} = k_{p,instant} \cdot G_{instant} \approx 12\delta D_{gb,O,interface}$$

∴ If scale grain size available, a nearly invariant diffusivity can be estimated.

Scale Grain Boundary Diffusivity MAX Compounds and FeCrAI(Zr) Alloy 10⁻²⁰ oxygen diffusion product, 8D_{gb,0}, m³/sec 10-22 Smialek FeCrAl(Zr) 10⁻²⁴ Tallman Ti₂AIC Song Ti₂AIC \otimes Wang Ti₃AIC₂[#] 10⁻²⁶ Wang Ti₃AIC₂ 375 kJ/mole Lee Cr₂AIC Hajas Cr₂AIC \mathbf{A} 10-28 6.0 8.0 7.0 1/T, 10^4 K^{-1}

MAXthal 211 Ti₂AIC: TGA and HPBR Cubic Constant (vs δD_{gb} FeCrAl(Zr) Alloy)

Purpose: Relate Al-MAX phases to coatings applications/turbine environment

2) First High pressure burner rig test of Ti₂AIC
(Jet A fuel, 6 atm., 25 m/s, 10% water vapor)

- transient TiO₂ growth
- cubic kinetics
- scale volatility issues (?)
- CO/CO₂ (?)

Scale Volatility in Water Vapor Limits Use (Opila, Jacobson, Myers, Copland, 2006)

p_{max}(volatiles) = 10⁻⁶ atm (~1 mil/1000 h) loss

Scale	Volatiles	Upper Temp.
Cr ₂ O ₃	CrO ₂ (OH) ₂ , CrO ₃	500°C
SiO ₂	Si(OH) ₄	970°C
Al_2O_3	AI(OH) ₃	1350°C
TiO ₂	TiO(OH) ₂	(1100°C)

SiC/SiC CMC HPBR Paralinear Weight Change

(1100 °-1300°C, 6 atm; Robinson/Smialek 1998) Si(OH)₄ volatility (Opila et al., 1998-2006)

Ti₂AIC MAX Phase Oxidation

50 h HPBR 1100, 1200, 1300°C

100 h TGA 1100, 1200, 1300°C

HPBR Oxidation Gains for Ti₂AIC

MAXthal 211 Ti₂AIC: TGA and HPBR Cubic Constant (vs δD_{qb} FeCrAl(Zr) Alloy)

Purpose: Relate Al-MAX phases to coatings applications/turbine environment

3) First YSZ Thermal Barrier Coatings on MAX Phases

- APS-Ti₂AIC (250 μ m) **AND** PS-PVD (125 μ m)
- Ti₂AlC; Cr₂AlC grit blast coupons
- 1000°-1200°C furnace test

Interrupted Oxidation of APS YSZ on Ti₂AIC

Interrupted Oxidation of APS YSZ on Cr₂AIC

APS YSZ on Cr₂AlC 1150°C, 400 hr

Uncoated: Al₂O₃ Interfacial Spallation

5 mm

7.5x

4) Stability of Superalloy/MAX Phase Hybrid hot pressed 1100°, 2 h, 10⁻⁶ torr, 30 MPa

As-Hot Pressed Cross Section, DC2

Diffusional Effects after Exposure to 800°C for 100 h

Figure 7

As-Hot Pressed Interface

Oxidized, 800°C, 1000 h

Purpose: Relate Al-MAX phases to coatings applications/turbine environment

5) LTHC Hot Corrosion Resistance

- LSHR Superalloy, Cr₂AlC, (Ti₂AlC)
- 625° -900°C furnace tests; air, SO₂/O₂/Ar
- Li,Mg-Na₂SO₄ eutectic salts (620°, 660°C)

Hybrid Concepts with MAX Phases

Intermediate CTE, Strain Tolerance, LTHC Corrosion Resistance

CTE, 10⁻⁶/°C

704°C Disk Alloy Fatigue Life Reduced by corrosion pits (and typical coatings)

Ref: Gabb, et al., J. of Mat. Engineer. Perf. V. 19, 77, 2010. "The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy,"

Pitting Suppressed in Cr₂AlC 1.0 mg/cm², 60 Na₂SO₄- 40 MgSO₄ **5(0.1 % SO₂/O₂)/95Ar**; 700°C, 24 h

Cr₂AlC, Ti₂AlC MAX Phases for Turbines

5) Minimal 700° C Type II LTHC of Cr₂AlC.

(Co,Ni)- Na low melting sulfates precluded.

4) Hybrid Diffusion Couples survive 1000 h at 800C.

 β -NiAl-TaC-Cr₇C₃ interdiffusion zone Little growth at 800°C.

3) YSZ TBCs show extensive furnace life @1200°C for Ti_2AIC

2) Ti₂AlC durable 1100-1300°C high pressure burner tests. Cubic scale growth, volatile CO/CO₂, (minimal water vapor losses ?)

1) Rate Control by Al₂O₃ Grain boundary diffusion:

 $\delta D_{gb,O}$ MAX phases \cong FeCrAl Constant $\Pi = k_{p,i}G_i = 12 \ \delta D_{gb,O}$ Protective Al₂O₃ with fast TiO₂ transients Cubic kinetics due to grain growth

Cr₂AIC, Ti₂AIC MAX Phases for Turbines: Recap

- 1. Rate Control by Al_2O_3 Grain boundary diffusion.
- 2. Ti₂AIC durable in 1100-1300°C high pressure burner tests.
- 3. YSZ TBCs extensive furnace life @1200°C for Ti_2AIC .
- 4. Hybrid Diffusion Couples survive 1000 h at 800C.
- 5. Minimal 700° C Type II LTHC of Cr₂AIC

Intriguing alumina formers. Coatings, complete systems need to be verified.