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4.1 Introduction

Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth’s
surface. They have a significant role in Earth’s radiative energy balance (Klein and
Hartmann, 1993) and hydrological cycle. Despite the fundamental role of low-level
warm water clouds in climate, our understanding of these clouds is still limited. In
particular, connections between their properties (e.g. cloud fraction, cloud water
path, and cloud droplet size) and environmental factors such as aerosol loading and
meteorological conditions continue to be uncertain or unknown. Modeling these
clouds in climate models remains a challenging problem. As a result, the influence
of aerosols on these clouds in the past and future, and the potential impacts of these
clouds on global warming remain open questions leading to substantial uncertainty
in climate projections. To improve our understanding of these clouds, we need
continuous observations of cloud properties on both a global scale and over a long
enough timescale for climate studies. At present, satellite-based remote sensing is
the only means of providing such observations.

The cloud droplet effective radius (re) is one of the most important cloud para-
meters that are routinely monitored from space. The re is defined as (Hansen and
Travis, 1974)

re(z) =

∫∞
0

r3n(r, z) dr∫∞
0

r2n(r, z) dr
, (4.1)

where n(r, z) is the cloud droplet size distribution (DSD) at altitude z in cloud. The
cloud droplet effective radius determines the optical thickness of cloud for a given
amount of water (Twomey, 1974). It also has a significant influence on precipitation
formation processes (Lebsock et al., 2008; Kubar et al., 2009). Therefore, it is
a key microphysical parameter required to estimate radiative effects of clouds,
study aerosol–cloud-precipitation interactions, and validate cloud parameterization
in global climate models.

Many remote sensing methods exist to infer cloud re from various types of
satellite instruments (e.g. Prabhakara et al., 1988; Nakajima and King, 1990; Austin
et al., 2009). Of particular interest in this review are cloud re retrievals fromMODIS
(or Moderate Resolution Imaging Spectroradiometer). MODIS is a key instrument
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aboard the Terra and Aqua satellites. Terra’s orbit around Earth is timed so that
it passes from north to south across the equator in the morning, while Aqua passes
south to north over the equator in the afternoon. Terra and Aqua MODIS are
viewing the entire Earth’s surface every one to two days, acquiring data in 36
spectral bands. A variety of cloud parameters, from cloud fraction to cloud top
height to cloud optical thickness (τ) and re, can be inferred from MODIS multi-
spectral observations (Platnick et al., 2003). The operational MODIS cloud retrieval
algorithm, as described in detail in the next section, is based on the so-called
bi-spectral solar reflective method (referred to as bi-spectral method hereafter),
which utilizes cloud reflectance measurements from two spectral bands to retrieve
cloud τ and re, simultaneously (Nakajima and King, 1990). One measurement is
usually made in the visible or near-infrared spectral region (e.g. 0.86 μm), where
water absorption is negligible and therefore cloud reflection is mainly determined
by τ , and the other in the shortwave infrared (SWIR) (e.g. 2.1 μm or 3.7 μm),
where water is significantly absorptive and cloud reflectance primarily decreases
with increasing cloud droplet size. The τ and re retrievals based on the bi-spectral
method are widely used for validating climate models (Kay et al., 2012; Pincus et
al., 2012), studying aerosol–cloud interactions (Quaas and Boucher, 2005; Quaas
et al., 2009) and facilitating other cloud remote sensing techniques (Lebsock and
L’Ecuyer, 2011).

Unlike cloud optical properties (such as τ) that can be spectrally dependent,
cloud re, a physical cloud parameter, should be independent of the observation
method or what spectral band is used. For example, the MODIS instrument has
three SWIR bands, centered at 1.6 μm, 2.1 μm, and 3.7 μm, respectively. In the
MODIS operational cloud product (MOD06) Collection 5 (C5) processing algo-
rithm, the combination of the 0.86 and 2.1 μm bands are used for τ and re retrievals
over open ocean (Platnick et al., 2003). Hereafter, we will refer to the re retrieval
based on the 2.1-μm band observation as re,2.1. Besides re,2.1, the MODIS also
provides two other re retrievals, one based on the 1.6-μm band and the other based
on the 3.7-μm band observations (hereafter referred to as re,1.6 and re,3.7). One
might expect these three re retrievals to be in close agreement. However, several
studies have found substantial differences between them (Nakajima et al., 2010a;
Seethala and Horváth, 2010; Zhang and Platnick, 2011). In particular, it is found
that:

– MODIS re,3.7 retrievals for marine warm clouds are generally smaller than re,2.1
(and re,1.6);

– Geographically, the differences between re,3.7 and re,2.1 based on MODIS Level 3
monthly mean product show strong dependence on cloud regimes, small varia-
tions (close to zero) over the costal stratocumulus regimes, and large variations
over the cumulus cloud regimes;

– At pixel level, the difference between re,3.7 and re,2.1 correlates with cloud τ ,
re, and the degree of sub-pixel inhomogeneity.

A detailed analysis of the differences between re,3.7 and re,2.1 MODIS retrievals will
be given in section 4.3. re,1.6 is not considered in this study, mainly because the
1.6-μm band on Aqua MODIS has nonfunctional or noisy detectors that lead to the
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striping issue (Wang et al., 2006). As a result, it is difficult to make pixel-to-pixel
comparisons between re,1.6 and other effective radius retrievals.

The spectral dependence of MODIS re raises many questions. The most impor-
tant one, for all the users of MODIS products, is whether the difference between
re,3.7 and re,2.1 is an artifact due to, say, algorithm issues and inherent limitations
of the retrieval method, or something meaningful that contains information about
the cloud. Several lines of evidence suggest that it is unlikely to be due to technical
issues (e.g. code bugs, ancillary data issues, etc.) of the operational MODIS cloud
retrieval algorithm. First, several studies based on independent retrieval algorithms
also found substantial differences between re,3.7 and re,2.1 that are similar to the
operational MODIS cloud product (Nakajima et al., 2010a; Minnis et al., 2011).
Second, both theoretical and numerical studies indicate that re,3.7 and re,2.1 are
expected to differ significantly under certain circumstances owing to their difference
sensitivities to, for example, cloud vertical structure (Platnick, 2000) , 3D radiative
effects (Zhang and Platnick, 2011; Zhang et al., 2012), and the presence of drizzle
drops in the cloud (Nakajima and King, 1990; Zhang, 2013).

The question is then: what has caused the differences between re,3.7 and re,2.1?
A number of recent studies have attempted to address this question from dif-
ferent perspectives (Platnick, 2000; Nakajima et al., 2010a, 2010b; Seethala and
Horváth, 2010; Zhang et al., 2010, 2012; Zinner et al., 2010; Zhang and Platnick,
2011; Zhang, 2013). Several mechanisms have been proposed to explain the above-
mentioned spectral dependence of MODIS re retrieval, which can be divided into
two categories based on their underlying physics and consequent implications. In
the first category are those mechanisms related to the fact that re,3.7 and re,2.1 have
different sensitivities to cloud vertical structure and the presence of large drizzle
drops in warm water clouds, with implications that the spectral difference actually
carries useful information about the cloud that can be used for remote sensing
and model validation. In the other category are those mechanisms related to the
inherent limitations of the bi-spectral method, such as, the lack of consideration of
3D radiative effects and sub-pixel inhomogeneity in the retrieval method. In such
cases, the spectral difference implies significant retrieval uncertainties should be
cautioned when using MODIS re retrieval products. Overall, these studies reveal
that the spectral difference of MODIS re retrievals is a complicated issue that has
complex causes.

This chapter provides an overview of the current understanding of the spectral
dependence of MODIS re retrievals. In section 4.2, we briefly revisit the opera-
tional MODIS cloud re retrieval algorithm to set the stage for later discussion. In
section 4.3, the MODIS re,3.7 and re,2.1 retrievals for MBL clouds are compared to
illustrate the spectral dependence of MODIS cloud re retrieval. Section 4.4 intro-
duces several potential mechanisms that may cause or contribute to the spectral
dependence of MODIS re retrieval. The relative role of these mechanisms in dif-
ferent cloud regimes is discussed in section 4.5. Current outstanding issues and an
overview for future work are given in section 4.6.
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4.2 Operational MODIS re retrieval algorithm

In order to set the stage for later discussion in this section, we briefly describe the
operational MODIS re and τ retrieval algorithm based on the bi-spectral method.
The retrieval makes use of a pair of measurements of cloud reflectivity, one from a
visible or near-infrared (VNIR) MODIS band (0.86-μm band over ocean) and the
other from a shortwave infrared (SWIR) band (e.g. 2.1 μm or 3.7 μm band) (Naka-
jima and King, 1990; Platnick et al., 2003). The visible band measurement provides
the information for τ retrieval because water absorption in the VNIR region is al-
most negligible and, as a result, cloud reflectivity is mainly determined by τ . The
SWIR measurement provides the information for re retrieval because significant
water absorption in SWIR makes cloud reflectance decrease with increasing cloud
re. In the operational algorithm, this method is implemented by using the so-called
look-up-table (LUT), as shown in Fig. 4.1. The LUT contains pre-computed cloud
reflectivities at visible and SWIR bands for various combinations of re and τ under
different Sun–satellite viewing geometries and surface reflectances. As illustrated in
Fig. 4.1, in practice. re and τ are retrieved by projecting the observed reflectivities
onto the LUT. Once re and τ are retrieved, the liquid water path (LWP) of the
cloud can be easily derived from the equation LWP = 2

3ρτre assuming that the
cloud layer is vertically homogenous and the extinction coefficient Qe of a cloud
droplet is about 2. The MODIS cloud re and τ retrievals have been shown to agree
reasonably well with other satellite products (e.g. Zhang et al., 2009; Minnis et al.,
2011; Pincus et al., 2012; Stubenrauch et al., 2012; Walther and Heidinger, 2012)
and in situ measurements (e.g. Painemal and Zuidema, 2011; King et al., 2012).

a) R (0.86 m) & R (2.1 m) LUT b) R (0.86 m) & R (3.7 m) LUT
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Fig. 4.1. Examples of the look-up-table of cloud bi-directional reflection function as
functions of cloud optical thickness and effective radius, based on the combination of (a)
0.86 and 2.1-μm bands, and (b) 0.86 and 3.7-μm bands.
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It is important to note that the bi-spectral method is based on several important
assumptions about the cloud (or the cloudy pixel):

1. Within the pixel, the cloud is vertically homogeneous. (referred to as the vertical
homogenous assumption).

2. Within the pixel, the cloud is horizontally homogenous. The cloud reflectance
of the pixel of interest is independent of the properties of surrounding pixels.
(referred to as the plane-parallel and homogeneous cloud assumption).

3. Within the pixel, the sizes of cloud droplets follow certain analytical distri-
butions, namely the following monomodal Gamma distribution (King et al.,
1998):

n(r) = Nr
1−3ve

ve exp

(
− 1

ve

r

re

)
, (4.2)

where n(r) is DSD, N is a constant, and ve is the effective variance assumed
to be 0.1 in the operational MODIS algorithm (monomodal Gamma DSD as-
sumption hereafter).

These assumptions are necessary because, at most, two independent pieces of in-
formation can be extracted from a pair of cloud reflectivities. Since the information
content has been used for re and τ retrievals, other aspects of cloud would have
to be assumed. These assumptions are justified for some clouds, particularly, non-
precipitating stratocumulus clouds (Martin et al., 1994; Di Girolamo et al., 2010).
However, for other clouds, they can be problematic. For example, it is known that
trade wind cumulus clouds can be far from plane-parallel (Liang et al., 2009; Di
Girolamo et al., 2010). The vertical homogeneous assumption and the monomodal
Gamma DSD often break down when precipitation begins to form within the cloud.
The warm rain processes, such as collision-coalescence, could broaden the DSD and
sometimes give rise to a second mode, the so-called drizzle or rain mode, leading to
a bi-modal DSD (Berry, 1967; Berry and Reinhardt, 1974; Pruppacher and Klett,
1997). In addition, the collision-coalescence processes make drizzle drops grow big-
ger as they fall from cloud top towards cloud base, inducing vertical structures
within the cloud (Pruppacher and Klett, 1997). When these conditions occur and
the above-mentioned assumptions break down, MODIS re and τ retrievals face
substantial uncertainties. It will be shown later in section 4.4 that the mechanisms
that cause significant differences between re,3.7 and re,2.1 are more or less connected
to breakdown of these fundamental assumptions about cloud made in MODIS re-
trieval.

4.3 Spectral dependence of MODIS re retrievals for
MBL clouds

As stated from the beginning, we focus only on the warm liquid-phase clouds over
ocean. Since such clouds reside mostly in the MBL, we will refer to them as MBL
clouds for simplicity. We attempt to identify a MODIS pixel as MBL cloud based
on the following criteria: (i) the pixel is labeled as ‘confident cloudy’ by the 1-km
MODIS cloud mask product (MOD35); (ii) over ocean; (iii) labeled as ‘liquid water’
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by the MODIS 1-km ‘Cloud Phase Optical Properties’ data set within MOD06;
(iv) cloud top temperature warmer than 273K. These conditions are expected to
remove most of the situations that may complicate the analyses, such as thin cirrus
overlapping lower clouds.

4.3.1 Geographical pattern

The monthly mean re,2.1 and re,3.7 for MBL clouds based on May 2007 MODIS/Aqua
data are shown in Fig. 4.2a and 4.2b, and their difference Δre,3.7−2.1 = re,3.7−re,2.1
in Fig. 4.2c respectively. Several well-known coastal stratocumulus regions, such as
off the coasts of California, Peru, and Namibia/Angola, are clearly seen in the figure.
One can also see from Fig. 4.2 that the transition from the coastal stratocumulus
cloud regimes to the offshore cumulus cloud regimes is quite sharp. Accompanying
this transition, re,2.1 increases substantially from 8 ∼ 10 μm near the coast to as
large as 20 ∼ 25 μm far offshore. However, re,3.7 is significantly smaller than its
counterparts. It is easily seen that Δre,3.7−2.1 shows an obvious dependence on
cloud regime. For example, over coastal stratocumulus cloud regions, Δre,3.7−2.1

is close to zero, or even slightly positive. However, over the broken cumulus cloud
regions, where water cloud fraction is small, re,3.7 is seen to be smaller than re,2.1
by as much as 5–10 μm on average.

4.3.2 Correlation with key cloud parameters

In the rest of this section, we explore the correlations between MODIS re retrieval
differences and several key factors. In doing so, we attempt to identify regimes
where the re retrieval differences can be attributed more to cloud physics, such
as drizzle, than to retrieval uncertainties and artifacts caused by, for example, 3D
radiative effects.

Figure 4.3a shows the joint histogram between re,3.7 and re,2.1 based on about
1.5 billion Level 2 marine water cloud pixels collected during May 2007 by Aqua
MODIS from 60S to 60N. Evidently, the density of points is highest along the one-
to-one line, attesting that pixel-level re,3.7 and re,2.1 modes agree reasonably well.
It is interesting to see that the bias between re,3.7 and re,2.1 is quite small when re is
smaller than about 12 ∼ 13 μm. However, when re is larger than about 15 μm, the
histogram distribution is clearly weighted toward the re,2.1 side and the deviation
from the one-to-one line increases with increasing re,2.1. Figure 4.3b presents the
same story, but from a different perspective. It shows the joint histogram between
Δre,3.7−2.1 and re,2.1. Note that, in order to reduce the data sampling impact on
the shape of the joint histogram, the histogram of Δre,3.7−2.1 at re,2.1 bin has been
normalized with respect to its peak value at that bin. Therefore, the red color in
Fig. 4.3b corresponds to the most frequent Δre,3.7−2.1 at a given re,2.1 bin. The
gray dotted line in Fig. 4.3b shows the PDF of re,2.1 derived from one month of
Level 2 data. Interestingly, the bin-normalized histogram of Δre,3.7−2.1 vs. re,2.1
not only shows an increasing spread in Δre,3.7−2.1 with increasing re,2.1, but also
a clear systematic transition, in terms of the most likely observed Δre,3.7−2.1 for a
given re,2.1 (i.e. the red area), from near-zero values when re,2.1 < 15 μm to larger
negative values when re,2.1 > 15 μm. The fact that this threshold-like behavior
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which is bin-normalized with respect to the PDF of re,2.1 (gray dashed line).

takes place at re ∼ 15 μm is particularly interesting because re ∼ 15 μm has
been suggested to be the threshold for the collision-coalescence process to take
place in marine water clouds (Gerber, 1996). However, further studies are needed
to determine whether this is simply a coincidence or due to more fundamental
physical reasons.

Figure 4.4 shows the bin-normalized joint histograms between Δre,3.7−2.1 and
cloud optical thickness (τ). One can easily note that, when clouds are optically thin
(e.g. τ < 5), Δre,3.7−2.1 varies quite remarkably from −15 μm to 10 μm. However,
when the cloud becomes sufficiently thick (τ > 5), the statistics of Δre,3.7−2.1

become stable and show little dependence on τ . The large variability of Δre,3.7−2.1

for thin clouds in Fig. 4.4 is likely a result of the combined effects of random retrieval
uncertainties (see section 4.4.1), 3D radiative effects (section 4.4.5), and the so-
called plane-parallel re retrieval bias (section 4.4.4). For thin clouds, the signal is
comparable or smaller than, the noise caused by instrument uncertainties, ancillary
data uncertainties, and discretization and interpolation of the LUT. As a result,
the uncertainty associated with the MODIS re retrievals for thin clouds is large.
In addition, thin and broken clouds often have significant horizontal heterogeneity,
providing favorable conditions for 3D radiative effects and plane-parallel re retrieval
bias. Caution must therefore be taken when interpreting the meaning of Δre,3.7−2.1

for clouds with τ < 5 because many factors other than cloud physics, such as
retrievals errors and artifacts, all play a significant role in this regime.

When analyzing the potential connection between cloud horizontal inhomogene-
ity and re retrieval failure, we will use a so-called sub-pixel inhomogeneity index
(Hσ) from MODIS. It is defined as (Liang et al., 2009)

Hσ =
stdev[Ri(0.86 μm, 250 m)]

mean[Ri(0.86 μm, 250 m)]
, (4.3)
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Fig. 4.4. Joint histogram of Δre,3.7−2.1 and cloud optical thickness (τ), bin-normalized
by the PDF of τ .

where stdev[Ri(0.86 μm, 250 m)] and mean[Ri(0.86 μm, 250 m)] indicate the
standard deviation and mean of the measured reflectances, respectively, for the
principle 16 250-m-resolution sub-pixels within the 1-km MODIS pixel retrieval
footprint. Thus, Hσ has a spatial resolution (i.e. 1 km) consistent with the cloud
property retrieval and increases with pixel inhomogeneity. Recent studies found
that the Hσ index derived from high-resolution (250-m) MODIS cloud reflectance
measurement provides an objective and quantitative measurement of the horizontal
inhomogeneity of 1-km MODIS pixel (Di Girolamo et al., 2010; Zhang and Platnick,
2011; Zhang et al., 2012). The Hσ index will be reported in the MOD06 product
in the coming Collection 6. The dependence of Δre,3.7−2.1 on cloud horizontal in-
homogeneity is shown in Fig. 4.5. Figure 4.5a and 4.5b show the bin-normalized
joint histograms of the sub-pixel cloud inhomogeneity (Hσ) defined vs. re,2.1 and
re,3.7, respectively. Figure 4.5c shows the bin-normalized joint histograms of the
Hσ vs. Δre,3.7−2.1. Optically thin clouds (τ < 5) are excluded from this figure for
the above-mentioned reason, but results are similar if we include thin pixels (not
shown). The most compelling feature in Fig. 4.5a is the sharp transition of re,2.1
at Hσ around 0.3 ∼ 0.5. When Hσ is smaller than 0.3, the most likely re,2.1 (i.e.
red area in Fig. 4.5a) for a given Hσ stays relatively constant, within 10 ∼ 15 μm.
However, when Hσ exceeds about 0.3, the most likely re,2.1 value increases dra-
matically with Hσ. Interestingly, this is not the case in Fig. 4.5b, where the most
likely value of re,3.7 shows only weak dependence on the sub-pixel inhomogeneity.
It is therefore not surprising to see in Fig. 4.5c the most likely values of Δre,3.7−2.1



144 Zhibo Zhang, Steven Platnick, Andrew S. Ackerman, and Hyoun-Myoung Cho

(a)

(b)

(c)

0.10 1.00
1.0

0.8

0.6

0.4

0.2

0.0

0.01 0.10 1.00

0.01 0.10 1.00

0.020

0.015

0.010

0.005

0.000

0.020

0.015

0.010

0.005

0.000

0.020

0.015

0.010

0.005

0.000

30

25

20

15

10

5

30

25

20

15

10

5

10

5

0

–5

–10

–15

–20

Hσ

Δr
e,

3.
7–

2.
1 

[μ
m

]
r e

,3
.7

 [μ
m

]
r e

2.
1 

[μ
m

]

Fig. 4.5. Joint histograms of (a) re,2.1 vs. sub-pixel inhomogeneity index (Hσ), (b) re,3.7
vs. Hσ, and (c) Δre,3.7−2.1 vs. Hσ. All histograms in this figure are bin-normalized with
respect to the PDF of Hσ. Note that thin clouds with τ < 5 have been excluded in this
figure, but results are similar if we include thin pixels (not shown).

shifting from near-zero to the negative side when Hσ exceeds about 0.3. The po-
tential reasons for the dependence of Δre,3.7−2.1 on cloud inhomogeneity Hσ will
be discussed later in sections 4.4.4 and 4.4.5.
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In addition to re, τ , and Hσ, we have also investigated the dependence of
Δre,3.7−2.1 on other factors such as cloud top temperature, solar zenith angle,
satellite viewing angle, scattering angle, surface reflectance, etc., none of which
shows an impact on Δre,3.7−2.1 as dramatic and clear as re, τ , and Hσ.

4.4 Potential reasons for the spectral difference

The fact that Δre,3.7−2.1 is correlated with several key cloud parameters, including
re, τ , and Hσ, indicates that the spectral dependence of the MODIS re retrieval is
a complex issue likely caused by multiple mechanisms. Indeed, several hypotheses
have been proposed to explain the causes of Δre,3.7−2.1 and its behaviors described
in the previous section. This section provides an overview of these hypotheses. It is
helpful to begin with a classification. The existing hypotheses can be grouped into
two categories based on their underlying mechanisms and consequent implications.
In one category are those related to the inherent limitations of the bi-spectral
method, such as retrieval uncertainties (section 4.4.1), the sub-pixel inhomogeneity
(section 4.4.4), and lack of consideration of 3D radiative effects (section 4.4.5) in
the retrieval method. In such cases, Δre,3.7−2.1 carries little, if any, information
about the microphysical property of the pixel, but is rather a retrieval artifact
indicating significant uncertainties in either re,2.1 or re,3.7, or both. In the other
category are those related to the fact that re,3.7 and re,2.1 have different sensitivities
to cloud vertical structure (section 4.4.2) and the presence of large drizzle drops
(section 4.4.3) in warm water clouds. The implication of this is that the spectral
re difference actually contains useful information about the cloud that can be used
and actually has been used for remote sensing and model validation.

4.4.1 Random error

As shown in Fig. 4.4, Δre,3.7−2.1 for clouds with τ < 5 varies more widely than
that for thicker clouds. The large variation of Δre,3.7−2.1 for thin clouds is likely
caused by random retrieval uncertainties. There are many sources of uncertainty
in the MODIS retrieval, such as instrument uncertainties, ancillary data uncertain-
ties, and discretization and interpolation of the LUT. These sources are usually
uncorrelated, leading to random errors in the observed cloud reflectances. When
the cloud is thin, the signal from the cloud is comparable to, or even smaller than,
the retrieval uncertainties, which can result in large errors in re,2.1 and re,3.7, and
a highly variable Δre,3.7−2.1. An example to illustrate the impact of random un-
certainties on MODIS τ and re retrievals is given in Fig. 4.6. In the example, one
point in the MODIS operational LUT, with τ = 4.1 and re = 16 μm, (i.e. the cen-
ter of the cross in Fig. 4.1), is chosen for the purpose of illustration. Uncorrelated
random errors, which are assumed to follow the normal distribution with standard
deviation σ = 10%, are added to the reflectances of this point at all three bands to
mimic the above-mentioned retrieval uncertainties. The magnitude (one standard
deviation) of error is indicated by the size of the crosses in Fig. 4.1. One million
such samples are generated and then used to obtained τ and re retrieval samples.
The probability density functions (PDF) of τ retrievals are shown in Fig. 4.6a.
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The two τ retrievals, one based on 0.86-μm and 2.1-μm band LUT and the other
based 0.86-μm and 3.7-μm band LUT, both vary closely around the true value
of τ = 4.1 and they agree with each other very well. The PDFs of re,2.1, re,3.7,
and Δre,3.7−2.1 are shown in Fig. 4.6b. Interestingly, re,2.1 has a narrower PDF
than re,3.7, even though the same magnitude of error (i.e. 10% in reflectance) is
given to the two bands. This difference is mainly due to the fact that the 0.86-
μm and 2.1-μm band LUT (LUT 0.86&2.1 hereafter) is generally more condensed
in the re direction than the 0.86-μm and 3.7-μm band LUT (LUT 0.86&3.7) (i.e.
|∂ lnR(2.1 μm)/∂re| < |∂ lnR(3.7 μm)/∂re|). As a result, the same magnitude of
reflectance error (e.g. 10%) leads to different re error. The fact that LUT 0.86&2.1 is
generally less orthogonal than LUT 0.86&3.7 also plays a role. The orthogonality of
LUT is determined by the extent to which the cloud reflectance in the SWIR band
is independent from that in the 0.86-μm band. Because is generally more orthogo-
nal than (i.e. |∂R(2.1 μm)/∂R(0.86 μm)| > |∂R(3.7 μm)/∂R(0.86 μm)|), error in
the 0.86-μm band has less impact on re,3.7 than re,2.1, which contributes to the
PDF difference between re,2.1 and re,3.7 in Fig. 4.6b. This effect of LUT orthogo-
nality is demonstrated in Fig. 4.6c and 4.6d, which shows the PDFs of τ retrievals
(Fig. 4.6c), re,2.1, re,3.7, andΔre,3.7−2.1 (Fig. 4.6d) when we only add random errors
to R(0.86 μm) but not to R(2.1 μm) and R(3.7 μm). Due to the LUT orthogonality
difference, the error, which is solely in the R(0.86 μm), causes only a small error
in re,3.7 but causes a significant error in re,2.1 retrievals. This difference in error
between the two bands leads to Δre,3.7−2.1 varying between −5 μm and 5 μm. It
is worth mentioning here that the orthogonality of LUT also plays an important
role in the so-called plane-parallel bias that will be discussed in section 4.4.4. As
a result, the widths of the re,2.1, re,3.7, and the Δre,3.7−2.1 PDFs in Fig. 4.6b are
quite wide, which suggests that retrieval uncertainties caused by instrument un-
certainties, ancillary data uncertainties, etc. probably play an important role in
causing the large variation of Δre,3.7−2.1 for thin clouds in Fig. 4.4.

As shown in Fig. 4.6, random error in reflectance tends to result in random
error in re,2.1 and re,3.7, which in turn leads to a Δre,3.7−2.1 with a mean value
close to zero. Therefore, the random retrieval uncertainties cannot explain why
re,3.7 is systematically smaller than re,2.1, especially when cloud is thick (i.e. high
signal-to-noise ratio).

4.4.2 Vertical cloud structure

Several studies have shown that re,2.1 and re,3.7 retrieval have different sensitivities
to the in-cloud vertical structure of cloud droplet microphysics, leading to spec-
tral difference in re retrieval (Platnick, 2000; Kokhanovsky, 2004; Nakajima et al.,
2010a; Zhang et al., 2010). The concept of ‘weighting function’ developed by Plat-
nick (2000) provides a convenient framework to assess the sensitivity of re retrieval
based on the bi-spectral method to the vertical structure of cloud. One of the two
weighting functions introduced in Platnick (2000) is based on the maximum pene-
tration depth of photon into cloud. This weighting function, wm(τ, τc), is defined
as

wm(τ, τc) =
1

R(τc)

dR(τ)

dτ
, (4.4)
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Fig. 4.6. An example to illustrate the impact of random error in cloud reflectance on τ
and re retrievals. In (a) and (b), random error is assigned to both the 0.86-μm band and
the SWIR band (2.1-μm or 3.7-μm band). In (c) and (d), random error is only assigned to
the SWIR band. Impacts on τ retrievals are shown in (a) and (c). Impacts on re retrievals
and Δre are shown in (b) and (d). See text for details.

where τc is the total cloud optical thickness, τ is the optical depth of a level in
cloud from cloud top, R(τc) is the cloud reflectance, and dR(τ) = R(τ +dτ)−R(τ)
represents the fraction of all reflected photons that penetrate to a maximum optical
depth between τ and τ + dτ . As shown in Platnick (2000), the shape of wm(τ, τc)
can be used to quantitatively interpret the impact of the in-cloud vertical structure
on MODIS retrievals. Additionally, it is shown that the value predicted from the
equation

r∗e =

∫ τc

0

re(τ)wm(τ, τc) dτ , (4.5)

where r∗e , is the expected re retrieval value based on the vertical weighting, agrees
to within ±1 μm with the value from full radiative transfer simulation. Note
that the vertical structure of cloud has little impact on cloud optical thickness
retrieval.

Figure 4.7 shows an example of wm(τ, τc) for re2.1 (black line) and re3.7 (red line)
for a cloud layer with adiabatic cloud vertical structure, as shown by the dashed
re(τ) line. The wm(τ, τc) for re3.7 peaks at cloud top, while wm(τ, τc) for re2.1
peaks lower in the cloud. This difference and Eq. (4.5) suggest that re3.7 retrieval
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has more sensitivity to the cloud microphysics at the uppermost part of cloud while
re2.1 retrieval penetrates deeper into the cloud with maximum sensitivity at about
τ ∼ 2 or 3. For the case in Fig. 4.7, re2.1 and re3.7 predicted from wm(τ, τc) based
on Eq. (4.5) are 15.2 μm and 16.1 μm. Both agree well with full retrievals.

It is important to note that the general shape of the weighting function is not
sensitive to the detailed cloud vertical structure. Zhang et al. (2010) demonstrated
that the weighting functions for two cases, one with re(τ) increasing and the other
decreasing from cloud top toward cloud base, are quite similar to each other. The
invariance of the weighting function shape, according to Eq. (4.5), suggests that
the retrieved r∗e is largely determined by cloud vertical structure re(τ). And so
is Δre,3.7−2.1 as far as cloud vertical structure is concerned. As a consequence,
re,3.7 > re,2.1 (Δre,3.7−2.1 > 0) according to Eq. (4.5) when the cloud droplet size
increases from cloud base toward cloud top, and vice versa when cloud droplet
size decreases from cloud base toward cloud top. Various microphysical processes
can affect cloud vertical structure, such as adiabatic growth, entrainment mixing,
collision-coalescence, and sedimentation. It is therefore important to understand
the influence of these processes on the vertical structure of cloud microphysics and
their consequent impact on Δre,3.7−2.1.

In a classic adiabatic growth model (Brenguier et al., 2000), cloud re increases
monotonically from cloud base to cloud top. In such a case, re,3.7 should be larger
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than re,2.1, as shown in the example in Fig. 4.7. Indeed, some recent studies, such
as Painemal and Zuidema (2011) and Zhang and Platnick (2011), have found
some positive Δre,3.7−2.1, which is qualitatively consistent with the classic adia-
batic growth model as shown in Fig. 4.7. However, as mentioned in section 4.3,
only a small fraction of MODIS MBL cloud observations have positive Δre,3.7−2.1.
Moreover, because the adiabatic condensation growth becomes less efficient as the
droplet grows larger, the droplet growth rate dre/dz remains relative small over
the upper portion of the water cloud (Brenguier et al., 2000). As a result, the mag-
nitude of Δre,3.7−2.1 induced by adiabatic cloud vertical structure is expected to
be small, generally smaller than 2 μm (Platnick, 2000).

Cloud top entrainment could lead to a decreasing-with-height re structure
at cloud top. Several recent studies speculated that this cloud top entrainment-
induced structure plays an important role in causing smaller re,3.7 retrieval than
re,2.1 (Breon and Doutriaux-Boucher, 2005; Seethala and Horváth, 2010). It should
be pointed out that the decreasing-with-height re structure at cloud top assumed
in these studies seems to indicate a homogenous mixing process (Baker et al.,
1980). On the contrary, observational studies have actually found more inhomoge-
neous mixing cases than homogenous mixing cases (Gerber et al., 2005). A couple
of recent studies analyzed in situ measurements of MBL clouds off the coast of
Peru made during the VOCALS-REx (or American Monsoon Systems (VAMOS)
Ocean-Cloud-Atmosphere-Land Study Regional Experiment) campaign (Painemal
and Zuidema, 2011; King et al., 2012). They did not observe the decreasing-with-
height re structure at cloud top. In addition, the strong correlation of Δre,3.7−2.1

with re,2.1 and the threshold behavior of Δre,3.7−2.1 at re,2.1 ∼ 15 μm (Fig. 4.3) do
not easily fit into the cloud top entrainment structure argument.

Warm rain processes (e.g. collision-coalesce) give rise to embryo drizzle drops
at cloud top, and also make them grow bigger as they fall from the cloud top,
potentially leading to a decreasing-with-height re structure from cloud top toward
cloud base (Berry, 1967; Berry and Reinhardt, 1974; Pruppacher and Klett, 1997).
Therefore, cloud vertical structure induced by warm rain processes has been argued
in many studies to be the primary reason for the large negative Δre,3.7−2.1 (Chang
and Li, 2002, 2003; Chen et al., 2007; Nakajima et al., 2010a, 2010b; Kokhanovsky
and Rozanov, 2011). Some behaviors of Δre,3.7−2.1 shown in section 4.3 seem in
favor of this argument. For example, it is seen in Fig. 4.3b that Δre,3.7−2.1 is
close to zero when re,2.1 < 15 μm and decreases quickly with re,2.1 when re,2.1 >
15 μm. This threshold behavior could be explained as a result of increasing drizzle
probability when cloud re becomes larger than 15 μm (Gerber, 1996; Nakajima et
al., 2010a, 2010b). Although there is increasing evidence indicating that warm rain
processes play an important role in causing the large negative Δre,3.7−2.1, there are
also studies suggesting otherwise. For example, a couple of case studies based on
large-eddy simulation of MBL clouds and radiative transfer simulations found only
a negligible impact of drizzle on both re retrievals and thereby Δre,3.7−2.1 (Zinner
et al., 2010; Zhang et al., 2012). Although it is difficult to draw any statistical
conclusions from these case studies, they demonstrated a new path toward better
understanding the impact of drizzle on MODIS re retrieval that is worthy of further
exploration.
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Finally, it should be noted that some Δre,3.7−2.1 behaviors, the correlation of
Δre,3.7−2.1 with cloud horizontal inhomogeneity index Hσ shown in section 4.3 in
particular, cannot be easily explained by cloud vertical structure. This indicates
that other factors also have a role.

4.4.3 Cloud droplet size distribution

As mentioned in section 4.2, in the operational MODIS retrieval algorithm, cloud
DSD follows the monomodal Gamma distribution with fixed effective variance
ve = 0.1 (i.e. Eq. (4.2)). Several studies have shown that, when cloud microphysics
deviates from what is assumed in the MODIS retrieval algorithm, the retrieved re
also deviates from the true re. Invalid microphysics assumptions affect re,2.1 and
re,3.7 retrievals to a different extent, leading to spectral differences (Chang and Li,
2001; Minnis et al., 2004; Zhang, 2013).

The monomodal Gamma distribution assumption for cloud DSD is especially
problematic when MBL clouds are precipitating, because warm rain processes (e.g.
collision-coalescence) could broaden cloud DSD and even give rise to a second mode,
the so-called drizzle or rain mode, creating bi-modal DSD (Berry, 1967; Berry and
Reinhardt, 1974; Pruppacher and Klett, 1997). In such a case, the MODIS retrieval
process is to find an r∗e (the superscript * is to indicate that it is a retrieved value
under monomodal DSD assumption) that satisfies the following equation:

Rλ,LUT

(
r∗e
)∣∣

ve
= Rλ[n(r)] , (4.6)

where Rλ is the observed SWIR band cloud reflectance that is a function of the
true bi-modal cloud DSD n(r) and Rλ,LUT is the SWIR band cloud reflectance
in the LUT which is pre-computed based on the monomodal DSD assumption.
Additionally, λ denotes the wavelength of the SWIR band used for re retrieval
(e.g. 2.1 μm or 3.7 μm).

Recently, Zhang (2013) developed a semi-analytical model to explain and pre-
dict MODIS re retrieval results from Eq. (4.6). In a numerical test, the re retrievals
predicted by this model agree well with numerical solutions based on radiative
transfer simulations (Zhang, 2013). The model is based on the fact that depen-
dence of Rλ on cloud microphysics arises mainly from the dependence of cloud
single-scattering albedo ωλ on cloud microphysics (Zhang et al., 2009). Figure 4.8a
shows the ω2.1 μm (solid blue line) and ω3.7 μm (solid red line) of individual cloud
droplets computed using a MIE code (Wiscombe, 1979) as a function of droplet
radius over the range r ∈ [1 μm, 1000 μm]. Figure 4.8b shows the so-called bulk
scattering albedo ω2.1 μm,LUT and ω3.7 μm,LUT in the MODIS LUT, which are
averaged over monomodal Gamma DSD, for re ∈ [5 μm, 30 μm]. Zhang (2013)
expanded ω2.1 μm and ω3.7 μm into polynomials of r:

ωλ(r) =

Nλ∑
i=0

ki,λr
i , (4.7)

where ki,λ are fitting constants given in Table 4.1, and ω2.1 μm,LUT and ω3.7 μm,LUT

into a linear function of re:

ωλ(re) ≈ k0,λ + k1,λre , (4.8)
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Table 4.1. Fitting coefficients in Eq. (4.7) and the coefficients (values in parentheses) for
each nonlinear term in Eq. (4.9). The unit of droplet radius in Eq. (4.7) is micron.

k0 k1 k2 k3 k4 k5
(r0) (k1/k1) (k2/k1) (k3/k1) (k4/k1) (k5/k1)

2.1 μm 9.952E-01 −1.736E-03 2.442E-06 −1.187E-09
(1.17 μm) (9.266E-01) (−1.303E-03) (6.335E-07)

3.7 μm 9.623E-01 −6.443E-03 3.348E-05 −7.606E-08 7.757E-11 −2.907E-14
(1.74 μm) (9.314E-01) (−4.840E-03) (1.099E-05) (−1.121E-08) (4.201E-12)

where fitting constants k0,λ and k1,λ are given in Table 4.2. Without going into de-
tail, Zhang (2013) arrived at the following equation to explain and predict MODIS
re retrieval results from Eq. (4.6):

r∗e,λ = r0,λ +
k1,λ

k1,λ
re +

Nλ∑
i=2

ki,λ

k1,λ

〈
ri+2

〉
〈r2〉 , (4.9)

where r∗e,λ is the predicted MODIS re retrieval,
〈
ri
〉
=

∫∞
0

rin(r) dr is the ith mo-

ment of the true DSD, and r0,λ = (k0,λ−k0,λ)/kλ is a constant. With the coefficients
known, r∗e can be easily solved from the above equation once the

〈
ri+2

〉
/
〈
r2
〉
terms

are derived from any given DSD.

Table 4.2. Fitting coefficients in Eq. (4.8). The unit of droplet radius in Eq. (4.8) is
micron.

k0 k1

2.1 μm 9.974E-01 −1.874E-03
3.7 μm 9.744E-01 −6.918E-03

It can be seen from Table 4.1 that k1,λ/kλ is close to unity, which suggests
that r∗e should be close to the true value of re, if the higher-order terms, namely(
ki,λ

〈
ri+2

〉)
/
(
kλ

〈
r2
〉)
, in Eq. (4.9) are small. The magnitude of higher-order

terms is determined by two competing factors. On one hand, the
〈
ri+2

〉
/
〈
r2
〉
term,

which is in the same order of magnitude as rie, increases algorithmically with i. On
the other hand, as seen in Table 4.1, the ki,λ/k1,λ term decreases with polynomial
order i. Provided that re ranges generally from a few to a few tens of microns, the
decrease of ki,λ/k1,λ terms can be expected to be dominant, leading to a decreasing
impact of nonlinear terms on r∗e with increasing order i. Therefore, the most im-
portant nonlinear term is the second-order term (i = 2). Because k2,λ/k1,λ < 0 (see
Table 4.1) and

〈
r4
〉
/
〈
r2
〉
> 0, the sign of this term is negative, implying that r∗e

tends to underestimate the true value when this term is significant. Physically, this
term is a result of the nonlinear relationship between ωλ and r. As seen in Fig. 4.8a,
ωλ decreases monotonically with r, and the rate becomes slower as ωλ approaches
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a) Single-scattering properties vs. r b) Bulk scattering properties vs. re
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Fig. 4.8. (a) The single-scattering albedo of cloud droplet in the 2.1-μm (blue) and
3.7-μm (red) band, and the asymmetry factor in the 0.86-μm band (black) plotted as
a function of cloud droplet radius. The dashed lines indicate polynomial fitting to the
single-scattering albedos based on Eq. (4.7). (b) The bulk single-scattering albedo in the
2.1-μm (blue) and 3.7-μm (red) band, and the asymmetry factor in the 0.86-μm band
(black) plotted as a function of cloud droplet effective radius. The dashed lines indicate
polynomial fitting to the single-scattering albedos based on Eq. (4.8). In the computation,
monomodal Gamma size distribution with ve = 0.1 is assumed.

the asymptotic value of 0.5. Thus, the curvature of the relationship between ωλ

and r results in the negative value of the k2,λ/k1,λ term. The magnitude of this
term is determined by the ratio

〈
r4
〉
/
〈
r2
〉
which can be shown to be equivalent

to r2e(1 + ve). This relationship reveals that the impact of the second-order term
depends on re and to a much lesser extent on ve, namely the width of the cloud
DSD. This relationship also implies that, in order for the nonlinear term to signif-
icantly affect ωλ, both re and ve have to be sufficiently large. Interestingly, such
conditions happen to be favored in precipitating clouds, as they tend to have larger
re and precipitating processes (e.g. collision-coalescence) tend to broaden the DSD
(i.e. increase ve) (Berry, 1967; Berry and Reinhardt, 1974; Pruppacher and Klett,
1997).

Focusing now on the spectral dependence of Eq. (4.9), it is seen from Ta-
ble 4.1 that the magnitude of ki,2.1μm/k1,2.1μm is substantially smaller than
ki,3.7μm/k1,3.7μm. It indicates a stronger impact of the nonlinear terms on re re-
trieval in the 3.7-μm band than the 2.1-μm band. For the r∗e,2.1μm retrieval, only the
second-order nonlinear term is significant. But, for the r∗e,3.7μm retrieval, higher-
order terms need also to be included, although the second-order term is still the
dominant nonlinear term. As discussed above, the second-order nonlinear term
tends to result in underestimated r∗e retrieval. This underestimation is expected
to be stronger in the 3.7-μm band than in the 2.1-μm band, resulting in negative
r∗e,3.7μm − r∗e,2.1μm. This theoretical prediction is consistent with the numerical re-
sults in Minnis et al. (2004) and Nakajima et al. (2010a). It was found in these stud-
ies that increasing rain mode in a bi-modal DSD leads to underestimated reretrieval
and the underestimation is more severe in the 3.7-μm band than the 2.1-μm band.

In summary, Zhang (2013) illustrated that re retrieval-based monomodal DSD
assumption tends to underestimate the re of bi-modal DSD, due to the nonlinear
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relationship between cloud droplet single-scattering albedo and cloud droplet size.
The underestimation is stronger for re,3.7μm than for re,2.1μm, leading to a negative
Δre,3.7−2.1.

4.4.4 Plane-parallel re bias

As mentioned in section 4.2, one of the fundamental assumptions made in the
MODIS retrieval algorithm is that a cloudy 1 km × 1 km pixel is horizontally
homogenous. However, it is known that clouds can have significant horizontal
variability at smaller scales, leading to sub-pixel inhomogeneity (e.g. Davis et al.,
1994; Marshak et al., 1995). When the (horizontally) homogeneous pixel assump-
tion breaks down, both MODIS τ and re retrievals face challenging issues. For τ
retrieval, for example, sub-pixel inhomogeneity can cause the well-known plane-
parallel albedo bias. That is, the τ retrieval based on the average reflectance of a
heterogeneous cloudy pixel tends to be smaller than the average of the sub-pixel
scale τ (e.g. Cahalan et al., 1994; Barker, 1996; Oreopoulos and Davies, 1998).
Sub-pixel inhomogeneity also affects re retrieval in various ways, one of which is
the so-called plane-parallel re bias (Zhang and Platnick, 2011; Zhang et al., 2012).
Plane-parallel re bias tends to result in overestimation of re and it affects the
re2.1 retrieval more than re3.7, therefore leading to spectral difference (negative
Δre,3.7−2.1) (Zhang and Platnick, 2011; Zhang et al., 2012).

The plane-parallel re bias is defined as the impact of small-scale variability
in τ on re retrievals that use area-averaged reflectance (Zhang and Platnick, 2011;
Zhang et al., 2012). This bias is illustrated using two idealized examples in Fig. 4.9,
which shows forward calculations of reflectances in 0.86-μm, 2.1-μm and 3.7-μm
bands. In Fig. 4.9a and 4.9b, we assume that half of a MODIS pixel overlying a
black surface is covered by a cloud with τ1 = 2.8 and re = 8 μm and the other
half is covered by a cloud with τ2 = 30.8 and re = 8 μm. Panels c and d assume
the same optical thickness but use re = 18 μm. Focusing on the τ retrieval, the
figure illustrates the well-known ‘plane-parallel albedo bias’ (Cahalan et al., 1994):
the retrieved τ based on the mean reflectance of inhomogeneous pixels tends to be
smaller than the mean of the sub-pixel τ . In this example the value of retrieved
from the averaged reflectance (τ = 10.8) is substantially smaller than the average
value (τ = 16.8).

This problem is more acute for retrievals of re because the reflectance used to
infer re also depends on τ over much of the range of plausible values, as has been
shown in section 4.4.1. If the reflectance at non-absorbing and absorbing wave-
lengths depended only on τ and re, respectively (i.e. if the LUT was orthogonal),
reflectance at absorbing wavelengths would be uniform in our example and parti-
cle size could be retrieved perfectly. As Fig. 4.9 demonstrates, however, the LUT
is not orthogonal. The nonlinearity leads to a simultaneous underestimation of τ
(plane-parallel-albedo bias) and overestimation of re (plane-parallel re bias). The
area over which this is true is larger in the less-absorbing band, which explains why
re,3.7 is smaller than re,2.1. The impact becomes more pronounced as re increases:
in Fig. 4.9c and 4.9d, the true re = 18 μm while re,2.1 and re,3.7 retrieved from
averaged reflectances are 24 μm and 18.1 μm, respectively, resulting in a Δre,3.7−2.1

around −6 μm.



154 Zhibo Zhang, Steven Platnick, Andrew S. Ackerman, and Hyoun-Myoung Cho

0.0        0.2         0.4        0.6         0.8        1.0
R (0.86 m)

0.0        0.2         0.4        0.6         0.8        1.0
R (0.86 m)

0.0        0.2         0.4        0.6         0.8        1.0
R (0.86 m)

0.0        0.2         0.4        0.6         0.8        1.0
R (0.86 m)

0.4

0.3

0.2

0.1

0.0

0.6

0.4

0.2

0.0

R
 (

3.
7 

m
)

R
 (

2.
1 

m
)

0.4

0.3

0.2

0.1

0.0

0.6

0.4

0.2

0.0

R
 (

3.
7 

m
)

R
 (

2.
1 

m
)

a) b)

c) d)

Fig. 4.9. Two theoretical cases to illustrate the nonlinearity effect in re retrievals resulting
from sub-pixel cloud inhomogeneity. Numbers on top of the Nakajima–King look-up-table
(LUT) curves correspond to values of τ contour lines in the LUT and the numbers on the
right of the curves correspond to values of re contour lines in the LUT.

Recently, Zhang et al. (2012) developed a numerical MODIS retrieval simulator
based on the combination of an LES model with bin microphysics (Ackerman et al.,
2004; Fridlind and Ackerman, 2010) and radiative transfer models (both 1D and
3D). In the case study based on this simulator, they confirmed that the re plane-
parallel bias, as conceptually illustrated in Fig. 4.9, indeed play an important role
in causing the spectral difference between re,2.1 and re,3.7, especially for those pixels
with high sub-pixel inhomogeneity.

As shown earlier in Fig. 4.5a, the statistics of MODIS re,2.1 show a strong
dependence on the sub-pixel inhomogeneity index, Hσ. When a cloud is relatively
homogeneous (i.e. Hσ < 0.3) the peak of the PDF of MODIS re,2.1 is around
12 ∼ 14 μm. When Hσ becomes larger than about 0.3, the peak increases quickly
withHσ, by up to about 20 μm whenHσ is about unity. Interestingly, MODIS re,3.7
shows little dependence in Fig. 4.5b, leading to significant negativeΔre,3.7−2.1 when
Hσ > 0.3. The behaviors of re,2.1, re,3.7 and Δre,3.7−2.1 in Fig. 4.5 are consistent
with the concept of re plane-parallel bias as shown Fig. 4.9, therefore suggesting
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re plane-parallel bias is an important factor causing the Δre,3.7−2.1. On the other
hand, Fig. 4.5 also suggests that the impact of re plane-parallel bias is limited to
those highly inhomogeneous pixels, with Hσ larger than about 0.3.

4.4.5 3D radiative transfer effect

As shown in a couple of recent studies (Zhang and Platnick, 2011; Zhang et al.,
2012), 3D radiative transfer effects generally influence re,2.1 and re,3.7 retrievals to
different extents. This makes 3D radiative transfer a potentially important factor in
causing the spectral dependence of MODIS re retrieval as described in section 4.3.

As mentioned in section 4.2, the MODIS retrieval algorithm assumes the so-
called plane-parallel cloud model. However, clouds in reality have significant hor-
izontal structures and variabilities at various scales, from thousands of kilometers
to a few meters (Cahalan et al., 1994; Davis et al., 1994; Wood and Hartmann,
2006; Wood et al., 2008). Horizontal cloud variability gives rise to horizontal photon
transport (Davis and Marshak, 2010), which makes the observed reflectance depen-
dent on not only the property of pixels within the field of view, but also the proper-
ties of surroundings (Marshak et al., 1995). In such circumstances, cloud properties
retrieved under the plane-parallel cloud assumption are subject to significant er-
rors. This is the so-called 3D radiative transfer effect. Take the so-called ‘shadowing
effect’, for example (Várnai and Marshak, 2002; Marshak et al., 2006). Consider,
for example, a cloudy pixel that is in the shadow of an adjacent pixel. The dark-
ening of the pixel would be fallaciously interpreted under the plane-parallel cloud
assumption, leading to underestimated τ and overestimated re retrievals (Várnai
and Marshak, 2002; Marshak et al., 2006; Zhang and Platnick, 2011; Zhang et al.,
2012).

It was shown in a couple of recent studies (Zhang and Platnick, 2011; Zhang et
al., 2012) that 3D radiative transfer effects generally have a stronger impact on the
re,2.1 retrieval than on the re,3.7 retrieval. For example, when the shadowing effect
leads to an overestimation of re, the magnitude of overestimation is larger for re,2.1
than for re,3.7. The reason for this is two-fold. First, 3D radiative transfer effect
results from horizontal photon transport and the strength of droplet absorption in
the 3.7-μm band exerts a stronger limit on horizontal photon transport than the
weaker 2.1-μm band absorption. Secondly, as shown in sections 4.4.1 and 4.4.4,
the LUT for the 0.86-μm and 2.1-μm combination is less orthogonal than that for
the 0.86-μm and 3.7-μm combination. As a consequence, the re,2.1 retrieval is more
sensitive to 3D radiative transfer effects on the 0.86-μm band reflectance than re,3.7
retrieval.

Recently, Zhang et al. (2012) studied the impact of 3D radiative effects, as well
as other factors, on MODIS cloud property retrievals using an LES model with
a binned microphysical scheme (Ackerman et al., 2004; Fridlind and Ackerman,
2010) coupled with a 3D radiative transfer model (Cahalan et al., 2005; Pincus and
Evans, 2009). Figure 4.10 shows one of the LES cases in this study, which is based
on an idealized case study (Stevens et al., 2001) from the Atlantic Trade Wind
Experiment (ATEX), with an average cloud droplet concentration (weighted by
liquid water mixing ratio) of about 30 cm−3. For more details about this LES case
and the configurations of radiative transfer models, readers are referred to Zhang
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et al. (2012). Figure 4.10a provides a planar view of the cloud τ derived from the
LES for this case. Figure 4.10b shows the cloud extinction coefficient along the
vertical cross-section indicated by the red dashed line in Fig. 4.10a. In radiative
transfer simulations, solar zenith angle is assumed to be 20◦ and viewing zenith
angle to be 0◦. The 1D and 3D simulations of cloud reflectances along the cross-
section for the 0.86-μm, 2.1-μm and 3.7-μm bands are shown in Figs. 4.10c, 4.10d
and 4.10e, respectively. Although 1D and 3D simulations are in general agreement,
the influence of horizontal photon transport can be clearly seen in a few regions,
especially in Fig. 4.10c. For example, at x = 7 km the 0.86-μm cloud reflectance
based on 1D simulation is substantially larger than 3D simulation. But, on both
sides of this reflectance peak (i.e. x = 6.5 km and x = 7.5 km), 3D reflectance is
larger than 1D. These differences between 1D and 3D simulations are the result of
horizontal photon transport due to multiple scattering (Várnai and Davies, 1999).
Interestingly, this horizontal photon transport effect is much reduced in the 2.1-μm
and 3.7-μm simulations. This is because the absorption in the SWIR bands limits
multiple scattering and therefore reduces the horizontal transport of photons.

Figure 4.11 shows the impacts of 3D radiative transfer effects on re,2.1 and
re,3.7 for the case in Fig. 4.10. In the figure, we use the difference between the
τ retrieval based on 3D radiative transfer simulation (referred to as ‘3D τ ’) and
that based on 1D radiative transfer simulation (referred to as ‘1D τ ’) as an index
of the 3D radiative transfer effects. By definition, 3D τ > 1D τ in the case of
illumination, and 3D τ < 1D τ in the case of shadowing. As expected, the re
retrievals based on 3D radiative transfer simulation (‘3D re’) appear smaller than
those based on 1D radiative transfer simulation (‘1D re’) in the case of illuminating
effect (i.e. 3D re − 1D re < 0), and vice versa in the case of shadowing effect (i.e.
3D re−1D re > 0). What is interesting in Fig. 4.11 is that the impact of 3D radiative
effects on re,2.1 is generally stronger than on re,3.7, for the reasons discussed earlier
in this section. Another important point to note in Fig. 4.11 is that illuminating
and shadowing effects naturally come in pairs and tend to cancel each other out
(Marshak et al., 2006). Therefore, 3D radiative effects seem unlikely to cause large
systematic bias in re retrieval. Moreover, since 3D radiative effects are a result of
horizontal photon transport, its impact on MODIS retrievals is limited to pixels
with large horizontal inhomogeneity. In addition, when a cloud pixel has strong
horizontal inhomogeneity, both 3D radiative effects and the plane-parallel re bias
discussed in section 4.4.4 may play a role at the same time, creating either positive
or negative Δre,3.7−2.1 (Zhang et al., 2012).

4.5 Discussion

In the previous section, we reviewed several mechanisms that could cause significant
difference between MODIS re,2.1 and re,3.7 retrievals for MBL clouds. But the most
fundamental reason is that MBL clouds in reality do not always satisfy the ideal
cloud model (e.g. plane-parallel and homogenous) on which MODIS is based. When
the cloud deviates from the ideal model, the deviation affects the re,2.1 and re,3.7
retrievals to different extents or in different ways, leading to significant difference
between the two. From this perspective, spectral dependence is an inherent and
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Fig. 4.10. (a) Planar view of the cloud τ of the ATEX clean case at 6 h of simulation
time. (b) The cross-section of cloud extinction coefficient (β) along y = 2 km in (a). Cloud
bi-directional reflectance along the cross section is shown for the (c) 0.86-μm, (d) 2.1-μm,
and (e) 3.7-μm MODIS bands simulated using 1D (blue) and 3D (red) radiative transfer
models.
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Fig. 4.11. The difference between 3D and 1D τ retrieval vs. the difference between (a)
3D re,2.1 and 1D re,2.1 at LES resolution, (b) 3D re,3.7 and 1D re,3.7 at LES resolution.

inevitable feature of the re retrieval based on the bi-spectral method. On one
hand, it reflects the limitations of the method but, on the other, it indicates that the
operational MODIS retrieval results are generally consistent with our expectations.

4.5.1 Which one is better?

If spectral dependence is inevitable in MODIS re retrieval, then a natural question
arises: which one, re,2.1 or re,3.7, is better or more correct? Unfortunately, there is
no simple answer to this question. As shown in section 4.4.1, re,3.7 is less affected
by random retrieval uncertainties, if uncertainties associated with 2.1-μm and 3.7-
μm band observations are of similar magnitude. Also, in comparison with re,2.1,
re,3.7 is generally less affected by the plane-parallel re and 3D radiative effects as
discussed in sections 4.4.4 and 4.4.5. In these cases, re,3.7 is expected to perform
better than re,2.1. However, as discussed in section 4.4.2, from the perspective
of vertical weighting, re,2.1 and re,3.7 simply reflect different parts of the cloud.
Simply put, there is no right or wrong. Moreover, as discussed in section 4.4.3,
when the true cloud DSD is bi-modal, both re,2.1 and re,3.7 tend to underestimate
the true re, but the underestimation is more severe in the re,3.7 than in the re,2.1.
Therefore, whether to use re,2.1 or re,3.7 depends on the intended application and
the geographical location of interest. For example, several studies have attempted
to retrieve the vertical profile of MBL clouds utilizing the combination of re,2.1
and re,3.7 retrievals from MODIS (Chang and Li, 2002, 2003; Kokhanovsky and
Rozanov, 2011). For these applications, both re,2.1 and re,3.7 are needed and their
difference serves as a useful signal rather than a data issue. As shown in Fig. 4.2,
re,2.1 and re,3.7 agree quite well over the coastal stratocumulus regions. So, if those
regions are of interest, it perhaps makes little difference which retrieval is used.
In contrast, over broken cloud regions where clouds have significant horizontal
heterogeneity, re,3.7 would be less affected by plane-parallel re bias and 3D radiative
effect and therefore might be a better choice than re,2.1.
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It should be noted here that re,3.7 is reported as having a respective difference
to successful re,2.1 retrieval in the Collection 5 of MODIS cloud product. Thus, in
Collection 5, the sampling of re,3.7 is biased by the success of re,2.1. In addition,
although retrieved in Level 2 products, re,3.7 is not aggregated to Level 3 products.
In the current Collection 6 of MODIS cloud product, these sampling biases will be
removed and re,3.7 will be sampled independently and aggregated to Level 3 data.
These changes will facilitate the use of re,3.7.

4.5.2 Cloud regime classification

Summarizing the discussions in the previous section, one can see that none of
the hypotheses can uniquely explain all of the Δre,3.7−2.1 features shown in sec-
tion 4.3. This is surprising because all these mechanisms are more or less entangled
together in the retrieval. For example, when a cloud pixel has strong horizontal
inhomogeneity, both the plane-parallel re bias (section 4.4.4) and 3D radiative ef-
fects (section 4.4.5) may play a role at the same time. When warm rain processes
begin to develop in MBL clouds, it can lead to both cloud vertical structure and
bi-model DSD, in which case both the vertical weighting effect (section 4.4.2) and
the DSD sensitivity effect (section 4.4.3) will influence MODIS re retrievals. Thus,
for a better understanding, we need to untangle these mechanisms and sort out
their relative importance in different cloud regimes. By ‘cloud regimes’, we mean
groups of MBL clouds with different characteristics in terms of optical (e.g. τ), mi-
crophysical (e.g. re), and macrophysical (e.g. horizontal properties). An attempt of
such cloud regime classification and analysis has been made in Fig. 4.12. It shows a
color contour of the mean value of Δre,3.7−2.1 projected on sub-pixel heterogeneity
index Hσ and re,2.1 for MBL clouds with τ > 5. The black contour lines indicate
the joint frequency histogram of Hσ and re,2.1 based on one month of MODIS ob-
servation. Based on the combination of re,2.1 and Hσ, MBL cloud pixels observed
by MODIS can be classified into the following three regimes:

– Regime 1 : MBL cloud pixels in this regime have low horizontal heterogeneity
(Hσ < 0.3) and relatively small effective radius (re,2.1 < 20 μm). Low Hσ

index suggests that the plane-parallel re bias and 3D radiative effects should
be small in this regime. Small re,2.1 suggests that the probability of warm rain
precipitation is relatively small because the critical value of re for collision-
coalescence to occur is around 15 μm (Gerber, 1996; Rosenfeld et al., 2012).
As a result, the vertical weighting effect and the DSD sensitivity effect can be
expected to be small. It now becomes clear that MBL cloud pixels in this regime,
with low horizontal heterogeneity and low possibility of precipitation, satisfy
those assumptions made in MODIS cloud retrieval mentioned in section 4.2.
For this reason, it is not surprising to see good agreement between re,2.1 and
re,3.7 in this regime (Δre,3.7−2.1 is within ±2 μm), although a small difference,
probably due to random retrieval uncertainties, may still exist.

– Regime 2 : MBL cloud pixels in this regime are characteristic with high hori-
zontal heterogeneity (Hσ > 0.3). Retrieval uncertainties, plane-parallel re bias,
and 3D radiative effects may all play a role in this regime. Note that these ef-
fects have different impacts on re retrievals and therefore Δre,3.7−2.1. Retrieval
uncertainties, as discussed in section 4.4.1, are most likely to cause random
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Fig. 4.12. The color contour of monthly mean Δre,3.7−2.1 for clouds with τ > 5 on the
space specified by re,2.1 and Hσ. The black lines indicate the relative frequency of each
grid box, specified by certain combinations of re,2.1 and Hσ (unity corresponds to the
most frequently observed combination of re,2.1 and Hσ). See text for details on cloud
regime classification and implications for MODIS effective radius retrievals.

errors, rather than bias, in Δre,3.7−2.1. Similarly, as discussed in section 4.4.5,
3D radiative effects can cause either positive or negative Δre,3.7−2.1, depend-
ing on the nature (e.g. illuminating or shadow) of the 3D effect. In contrast,
the plane-parallel re bias, as discussed in section 4.4.4, tends to cause negative
Δre,3.7−2.1.

– Regime 3 : MBL cloud pixels in this regime have low horizontal heterogeneity
(Hσ < 0.3) and relatively large effective radius (re,2.1 > 20 μm). Large effective
radius suggests that MBL clouds in this regime are possibly precipitating. The
warm rain process can give rise to the vertical weighting effect and the DSD
sensitivity effect, as discussed in section 4.4.2 and 4.4.3 respectively. Because
both effects tend to make re,2.1 larger than re,3.7, thus the bias of this regime
is large and negative, as seen in Fig. 4.12.

4.6 Outlook of future work

Recently, the spectral dependence of MODIS re retrievals for MBL clouds has re-
ceived significant and increasing attention. A number of recent studies reviewed
in this chapter have significantly improved our understanding of the nature and
potential causes of this issue. Nevertheless, many outstanding questions remain
and future work is needed particularly in the following areas: (i) More quantitative
understanding : Together ,those hypotheses reviewed in section 4.4 provide a quali-
tative explanation for the re,2.1 and re,3.7 differences. However, a more quantitative
understanding is still lacking. It remains unclear whether the threshold behavior
of Δre,3.7−2.1 at re,2.1 ∼ 15 μm in Fig. 4.3 is a coincidence or a result of warm rain
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process. In order to answer questions like this, hypotheses must be evaluated in a
more quantitative way in future work. (ii) Independent measurements: For more
objective and quantitative evaluation of MODIS re,2.1 and re,3.7 retrievals, inde-
pendent measurements are needed. For example, several studies have investigated
the impact of 3D radiative effects on cloud masking (Zhao and Di Girolamo, 2006),
cloud optical thickness, and cloud effective radius retrievals (Marshak et al., 2006)
using the high spatial resolution ASTER (Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer) observations. The ASTER observation may prove
useful in future analyses to understand the relative importance of the impacts of
3D radiative effects and plane-parallel re retrieval bias on cloud property retrievals.
Several studies have demonstrated that high temporal-spatial resolution cloud DSD
measurements from air-borne in situ instruments, collocated with MODIS obser-
vation, are very helpful for understanding the errors and uncertainties in MODIS
retrievals. Other remote sensing measurements, in particular those from A-Train
satellite sensors (e.g. CloudSat, POLDER, and CALIPSO), would add unique and
valuable perspectives on MBL cloud microphysics that are worthy of exploration
in future work. (iii) Combining observations with numerical models: Every re-
mote sensing method has its limitations. Even though a combination of various
methods, such as those available from A-Train sensors, provides a complementary
perspective, there will always be gaps that cannot be covered by observations. As
shown in a number of recent studies, a combination of LES models with satellite
retrieval simulators provides a flexible and powerful tool for understanding the
impact of various factors on MODIS cloud property retrievals (e.g. Zinner et al.,
2010; Zhang et al., 2012). This new avenue of research should be further explored
in future work. (iv) Implication studies : MODIS cloud products are popularly used
in climate change studies, aerosol indirect effect studies, and climate model valida-
tions. The implications of the spectral dependence of MODIS re retrievals for these
‘down-stream’ applications should be investigated in future work. (v) Novel use of
re,2.1 and re,3.7: As discussed in sections 4.4.2 and 4.4.3, in certain circumstances,
the difference between re,2.1 and re,3.7 actually contains useful information about
MBL clouds. Actually, a number of studies have attempted to retrieve the vertical
profile of precipitating MBL clouds utilizing the combination of effective radius
retrievals from different spectral bands (Chang and Li, 2002, 2003; Kokhanovsky
and Rozanov, 2011). Further work is needed along these lines to fully explore the
potential of MODIS observations.
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