
State Event Models for the Formal Analysis of Human-Machine Interactions

Sébastien Combéfis ∗, Dimitra Giannakopoulou † and Charles Pecheur ∗
∗ICT, Electronics and Applied Mathematics Institute

Université catholique de Louvain, Louvain-la-Neuve, Belgium
Email: {sebastien.combefis, charles.pecheur}@uclouvain.be

†NASA Ames Research Center
Moffett Field, CA 94035, USA

Email: dimitra.giannakopoulou@nasa.gov

Abstract

The work described in this paper was motivated by our
experience with applying a framework for formal anal-
ysis of human-machine interactions (HMI) to a realistic
model of an autopilot. The framework is built around
a formally defined conformance relation called “full-
control” between an actual system and the mental model
according to which the system is operated. Systems are
well-designed if they can be described by relatively sim-
ple, full-control, mental models for their human oper-
ators. For this reason, our framework supports auto-
mated generation of minimal full-control mental mod-
els for HMI systems, where both the system and the
mental models are described as labelled transition sys-
tems (LTS). The autopilot that we analysed has been
developed in the NASA Ames HMI prototyping tool
ADEPT. In this paper, we describe how we extended
the models that our HMI analysis framework handles
to allow adequate representation of ADEPT models.
We then provide a property-preserving reduction from
these extended models to LTSs, to enable application of
our LTS-based formal analysis algorithms. Finally, we
briefly discuss the analyses we were able to perform on
the autopilot model with our extended framework.

Introduction
Despite the fact that the complexity of automated systems
constantly increases, it is important to be able to design in-
terfaces that enable human operators to control the system
in unambiguous ways. Our work is concerned with provid-
ing automated formal analysis techniques for HMI systems.
In particular, we have developed a formal framework for the
design and analysis of such systems, and have applied it to
a number of moderately sized case studies (Combéfis et al.
2011a).

Human operators typically interact with a system based
on a conceptual model that they carry in their mind, or that
is provided through documentation. In this work, we use the
term “mental model” to refer to such conceptual models,
not to be confused with cognitive models that are also used
in HMI research. Our analysis framework is built around a
formally defined conformance relation called “full-control”

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

between an actual system and a mental model according to
which it is operated. Systems are well-designed if they can
be described by relatively simple, full-control, mental mod-
els for their human operators. For this reason, our framework
supports automated generation of minimal full-control men-
tal models for HMI systems, where both the system and the
mental model are described as labelled transition systems
(LTS).

However, in applying our framework to system models
developed by HMI collaborators at NASA Ames, we re-
alised that LTSs are conceptually far from the way in which
HMI designers typically think about their systems. LTSs are
state machines that contain no information on their states
except for the transitions and behaviours that are enabled
starting from these states. Contrary to that, HMI designers
think of their systems in terms of a set of observable and
unobservable state variables; different combinations of val-
uations of these variables constitute the set of possible states
of the system, and transitions describe how user commands
or environmental events change the state of the system.

In this paper, we describe our work on extending LTSs
with state information, thus enabling a direct mapping of
ADEPT models into extended LTSs. We also discuss how
we extend our framework for HMI analysis to deal with such
models. We applied the extended framework to an ADEPT
autopilot model; this has been a challenging case study since
our techniques could not scale to the size of the full model.
Due to lack of space, we only summarise some of the results
obtained from our analysis.

Related Work
Campos et al. (2011; 2008) propose a framework for
analysing HMI using model-checking. They define a set of
generic usability properties (Campos and Harrison 2008),
such as the possibility to undo an action. These properties
can be expressed in a modal logic called MAL and checked
with a model checker on the system. This approach targets
specific, and precise usability properties whereas our ap-
proach uses a more generic definition of good systems, and
is complementary to their analysis.

Thimbleby et al. (2007; 2010) use graphs to represent
models. They study usability properties of the system by
analysing structural properties of graphs like the maximum
degree and the value of centrality measures. In their ap-

proach, there is no distinction among actions and there is
little focus on the dynamic aspects of the interaction.

Curzon et al. (2007) use a framework based on defin-
ing systems with modal logic. Properties of the model are
checked using a theorem prover. Similarly to Campos et al.,
properties of interest are more targeted to a specific usability
property while our approach is more generic.

Navarre et al. (2001; 2003) also developed a framework
to analyse interactive systems. Their focus is on the com-
bination of user task models and system models. We focus
mainly on the system model although we have also explored
an approach for checking whether a user task is supported
by a system model (Combéfis 2009).

Bolton et al. (2008; 2011; 2010) developed a framework
used to help predicting human errors and system failures.
Models of the system are analysed against erroneous human
behaviour models. The analysis is based on task-analytic
models and taxonomies of erroneous human behaviour. All
those models are merged into one model which is then anal-
ysed by a model checker to prove that some safety properties
are satisfied.

Bredereke et al. (2002; 2005) formalised mode confusions
and developed a framework to reduce them. The formalisa-
tion is based on a specification/implementation refinement
relation. Their work is targeted on mode confusion while
the work presented here is targeted to more general control-
lability issues.

Model-based testing has been used to analyse sys-
tems modelled as Input-Output Labelled Transition Sys-
tems (IOTS) (Tretmans 2008). The IO conformance relation
(IOCO) is defined to describe the relationship between im-
plementations and specifications. The IOCO relation states
that the outputs produced by an implementation must, at any
point, be a subset of the corresponding outputs in the spec-
ification. This is triggered by the fact that IOCO is used in
the context of testing implementations. Outputs are similar
to observations in our context. The full-control property de-
fined in our work needs to consider commands (inputs) in
addition to observations.

Modelling and Analysing HMI systems
This section provides a brief overview of our previously
developed analysis framework for labelled transition sys-
tems (Combéfis et al. 2011a). In our framework, system
and mental models are modelled with enriched LTSs called
HMI-LTSs, which are essentially graphs whose edges are
labelled with actions. The difference with classical LTSs is
that three kinds of actions are defined; such distinction mat-
ters when concerned with controllability properties of sys-
tems (Heymann and Degani 2007; Javaux 2002):

1. Commands are actions triggered by the user on the sys-
tem; they are also referred to as inputs to the system;

2. Observations are actions autonomously triggered by the
system but that the user can observe; they are also referred
to as outputs from the system;

3. Internal actions are neither controlled nor observed by the
user; they correspond to internal behaviour of the system
that is completely hidden to the user.

Formally, HMI-LTSs are tuples 〈S,Lc,Lo, s0,→〉 where
S is the set of states, Lc and Lo are the sets of com-
mands and observations respectively, s0 is the initial state
and →⊆ S × (Lc ∪Lo ∪ {τ})× S is the transition relation.
Internal actions cannot be distinguished by the user and are
thus denoted with the same symbol τ , called the internal ac-
tion. The set of observable actions comprises commands and
observations and is denoted L = Lc ∪ Lo.

When a transition exists between states s and s′ with ac-
tion α, i.e., (s, α, s′) ∈ →, we say that the action α is en-
abled in state s and we write s

α−−→ s′. An HMI-LTS is de-
terministic if it has no internal transitions and its transition
relation is a function from (S × (Lc ∪ Lo)) to S. In other

words, if s
α−−→ s1 and s

α−−→ s2, then s1 = s2. The set
of commands that are enabled in a state s, denoted Γc(s),
contains all the commands α such that there exists a state
s′ with s

α−−→ s′. The set of enabled observations Γo(s) is
defined similarly.

Internal actions can occur between observable actions. A

weak transition s
α

==⇒ s′ corresponds to s
τ∗ατ∗

−−−−−→ s′,
where τ∗ means zero, one or more occurrences of τ . The set
of commands that are possible in a state s, denoted Ac(s),
corresponds to commands α such that there exists a state s′

with s
α

==⇒ s′. The set of possible observations, denoted
Ao(s), is defined similarly. A trace σ = 〈α1, . . . , αn〉 is a
sequence of observable actions in L that can be executed on

the system, that is, such that s0
α1===⇒ s1 . . . sn−1

αn===⇒ sn.
The set of traces of an LTS M is denoted Tr(M).

Full-control property
In our work, mental models are represented in terms of de-
terministic HMI-LTSs. They capture a simplified model of
the system, as perceived by a human operator. We then de-
fine the full-control property to capture the fact that an op-
erator’s mental model carries enough information to enable
proper control of the system. Full-control requires that, at
any time during the interaction between the user and the sys-
tem:

• the user knows exactly what are the possible commands
on the system: the set of possible commands is the same
on both the system and mental models;

• and the user is aware of at least the observations that can
occur: the set of possible observations according to the
mental model contains the ones possible on the system
model.

Formally, a mental model H = 〈SH ,Lc,Lo, s0H ,→H〉
allows full-control of a given system S = 〈SS ,Lc,Lo,
s0S ,→S〉 if and only if:

∀σ ∈ L∗ such that s0S
σ

==⇒ sS and s0H
σ−−→ sH :

Ac(sS) = Ac(sH) and Ao(sS) ⊆ Ao(sH) (1)

The existence of a full-control mental model for a given
system model is guaranteed if the system is full-control
deterministic, or fc-deterministic. This property, defined
in (Combéfis and Pecheur 2009), requires that the non-
determinism in a system does not interfere with its control-
lability; in other words, a system can be non-deterministic,

so long as it is still possible to construct a full-control mental
model for it.

Interaction Analysis
Based on the full-control property, we proposed a frame-
work and methodology to analyse systems from an HMI
standpoint (Combéfis et al. 2011a). Two algorithms were
developed in (Combéfis and Pecheur 2009; Combéfis et al.
2011b), which are focused on the automatic generation of a
minimal full-control mental model for a given system. The
first is based on the definition of a bisimulation-based rela-
tion between the states of the system, stating which of them
can be merged together because they can be handled simi-
larly from the standpoint of the operator. The second uses
a learning algorithm which iteratively builds mental model
guesses. The algorithm relies on a teacher to answer whether
proposed execution sequences must, may or cannot be part
of the mental model. The teacher uses the system model to
answer such queries.

As the main input is a model of the system, the analy-
sis can be performed and used in different steps of the HMI
design process. In the evaluation phase, the analysis gives
feedback regarding whether the model of the system is con-
trollable by an operator. If it is not controllable, the analysis
provides an example of a problematic interaction. The analy-
sis can also be used at the end of the design process, once the
system has been validated, in order to build artefacts such as
user manuals, trainings, etc.

ADEPT
ADEPT (Automatic Design and Evaluation Prototyping
Toolset) (Feary 2010) is a Java-based tool developed at
NASA Ames, which supports designers in the early proto-
typing phases of the design of automation interfaces. The
tool also offers a set of basic analyses that can be performed
on the model under development. An ADEPT model is com-
posed of two elements: a set of logic tables, coupled with
an interactive user interface (UI). The logic tables describe
the dynamics of the system as state changes in reaction to
user actions or to environmental events. For example, Fig-
ure 1 shows a screenshot of the autopilot model opened in
ADEPT. The left part of the window shows one of the logic
tables and the right part shows the user interface.

The UI is composed of a set of components that are en-
coded as Java objects representing graphical widgets. The
logic tables can refer to the elements of the UI and to the
other components through their Java instance variables, and
interact with them through their methods, using Java syntax.
In particular, UI events are seen as boolean variables that are
set to true when the event occurs.

Behind the scene, an ADEPT model is compiled into a
Java program that can be executed in order to directly try
the encoded behaviour with the user interface. That tool is
meant to be used as a rapid prototyping tool. The models can
then be tested and simulated by the designers, but can also
be analysed by systematic and rigorous techniques. Possi-
ble analyses include validity checks on the structure of logic
tables, for example. Our aim is to extend the analysis capa-
bilities of ADEPT with our framework, which requires the

Figure 1: The autopilot model opened in ADEPT, with one
logic table in the left part of the window and the user inter-
face on the right part.

translation of ADEPT tables into the models that our frame-
work can handle.

Figure 2 shows one of the logic tables of the au-
topilot model. The table example illustrates the way it
can interact with elements of the UI. Each light grey
line of the table corresponds to a variable of the sys-
tem. The variables can be related to a component of the
UI (such as pfdAirspeedTargetTape.currentValue), or they
can be state variables of the model (such as indicatedAir-
Speed) or they can relate to the internal logic of the system
(airspeedSystemTable.outputState). The latter kind of vari-
ables can be seen as a description of the mode of a particular
component of the system (the airspeed part in this example).
For example, the two first lines of the output part of the logic
table example mean that the value of the currentValue field
of the pfdAirspeedTargetTape component of the UI is up-
dated with the value of the indicatedAirspeed state variable.
Moreover, each column of an ADEPT table corresponds to
a transition scenario. From any state of the system that sat-
isfies the condition described by the input part of the table,
the system can move to the state of the system that results
in applying the update instructions described by the output
part of the table.

State Event Models
As already mentioned, HMI-LTSs are event-based, meaning
that their states contain no information except for the be-
haviour in terms of events enabled in these states. On the
other hand, as discussed above, ADEPT models combine
state with transition information. Systems are composed of
a set of variables, each system state corresponding to an as-
signment of values to the variables. Some variables are ob-
servable through the user interface, and tables describe the
possible transitions from each state as a result of reacting
to user commands or environmental events. A direct trans-
lation of ADEPT models into HMI-LTSs proved challeng-
ing, and for this reason we decided to extend HMI-LTSs
by adding information on the states in the style of Kripke
structures (Clarke Jr., Grumberg, and Peled 1999). In order
to represent observable information on states, HVSs enrich
HMI-LTSs with a set of state-values and with a mapping

0 1
L airspeedFeedbackTable

INPUTS
L airspeedSystemTable.outputState

Maintain Airspeed Target •
Capture Airspeed Target •
Hold Current Airspeed •
Protect Airspeed Target •

OUTPUTS
C pfdAirspeedTape.currentValue

V indicatedAirspeed • •
C cautionLabel.background

255, 204, 0 •
C autothrottleModeFailureBar.opaque

False •
True

C pitchModeFailureBar.opaque
False •
True

C pfdAirspeedTape.preSelectedTarget
V selectedSpeedTarget •

C pfdAirspeedTape.selectedTarget
V selectedSpeedTarget •

Figure 2: An example of a logic table: the airspeed feedback
table of the autopilot model contains the logic related to the
update of the UI for the airspeed part.

function associating each state to one state-value.

Definition 1 (HMI state-Valued System model (HVS))
A HMI state-valued system model (HVS) is a tuple
〈S,Lc,Lo, s0,→,Lv,O〉 where 〈S,Lc,Lo, s0,→〉 is an
HMI-LTS, Lv is a finite set of state-values and O : S
→ Lv

is a state-value mapping function. The three sets Lc, Lo and
Lv are disjoint.

The set of state-values Lv and function O describe, for
each state, the observations that can be made by the opera-
tor when the system is in that state. The difference between
the state and transition related observations is in the inter-
pretation according to a human-machine interaction point of
view. The observations that can be made on the state may
be ignored by the operator while interacting with the sys-
tem. In contrary, observations occurring on a transition are
output by the system and are expected to be seen by the op-
erator for the interaction to proceed according to the chosen
definition. Note that we do not model the possibility for the
operator to get distracted and miss the observation.

Mental models are similarly enriched to include state in-
formation. Observations can be event-based (observations
on transitions) or state-based (state-values on states). State-
values are taken into account in the human model by action
guards, that is, conditions on the state-value that must be
verified in the current state of the system. In order to rep-
resent mental models, HVMs are HMI-LTSs enriched with
state-values on the transitions. Moreover, as already stated,
mental models are considered deterministic and free of τ -
transitions in this work.

Definition 2 (HMI state-Valued Mental model (HVM))
A HMI state-valued mental model (HVM) is a tuple
〈S,Lc,Lo, s0,→,Lv〉 where Lv is a finite set of state-
values, →⊆ S×Lv×L×S and 〈S,Lv×Lc,Lv×Lo, s0,→〉
is a deterministic HMI-LTS without τ -transition. The three
sets Lc, Lo and Lv are disjoint.

HVSs and HVMs do not handle state observation in the
same way. That distinction is a result of the meaning of both
models in terms of human-machine interaction. The opera-
tor must always have the ability to make an observation on
the machine, depending on its state. Concerning the mental
model, the state-value is used to condition the actions that
the operator may execute. In one given state, the operator
may have several actions with guarded with different state-
values.

For an HVS and HVM that share the same alphabet of
actions and state-observations, their interaction is defined as
follows:

Definition 3 (Interaction between an HVS and HVM)
Given an HVS S = 〈SS ,Lc,Lo, s0S ,→S ,Lv,O〉 and
an HVM H = 〈SH ,Lc,Lo, s0H ,→H ,Lv〉, the inter-
action between S and H, denoted S ‖I H , is an LTS
I = 〈SI ,Lc ∪ Lo, s0I ,→I〉 where SI ⊆ (SS × SH),
s0I = (s0S , s0H) and →I ⊆ SI × (Lc ∪ Lo ∪ {τ})× SI is
defined so that:

• (sS1
, sH1

)
α−−→ (sS2

, sH2
) if and only if sS1

α−−→ sS2
and

sH1

[v]α−−−−→ sH2
with v = O(sS1

)

• and (sS1 , sH1)
τ−−→ (sS2 , sH1) if and only if sS1

τ−−→
sS2 .

Intuitively, the operator can perform a visible action (com-
mand or observation) if the state-value of the current state of
the system agrees with the action guard that is present on the
mental model.

For enriched models, the full-control property is defined
based on the above interaction model. The difference with
the definition based on HMI-LTS is that possible commands
and observations have to be considered in pair with the as-
sociated state-value (from the source state for HVSs and on
the action guard for HVMs).

Definition 4 (Full-Control Property) For HVS S = 〈SS ,
Lc,Lo, s0S ,→S ,Lv,O〉 and HVM H = 〈SH ,Lc,Lo, s0H ,
→H ,Lv〉, H is said to allow full-control of S , which is de-
noted H fcS , if and only if for all reachable (sS , sH) ∈
S ‖I H:
• Ac(sS) = Ac(sH);
• and Ao(sS) ⊆ Ao(sH)

where Ac(s) = {(v, c) | ∃s τ∗
−−→ s′ c−−→ s′′ ∧ v = O(s′) ∧

c ∈ Lc} for HVSs and Ac(s) = {(v, c) | ∃s [g]c−−−→ s′ ∧ v |=
g ∧ c ∈ Lc} for HVMs. The Ao(s) set is defined similarly.

Enriched models can be expanded into HMI-LTSs so that
the full-control property is preserved. The motivation for
such an expansion is to make it possible to perform the same
reasoning and analyses that can be done on HMI-LTSs. The
expansion operation transforms state-values into observation
actions.

The expansion of an HVS is based on the mapping shown

on Figure 3. Every non-τ transition s
α−−→ t is expanded

so that the state-value v is checked before the occurrence of
the action, that is, a new state sv is added to the expanded

model with the sequence of transitions s
v−−→ sv

α−−→ t. For

τ -transitions, no transformation occur, they are preserved in
the expanded HMI-LTS.

s t
α ⇒ s sv t

v α

Figure 3: Transition mapping for HVS to HMI-LTS trans-
lation for non-τ transitions. The transition from the original
system model (on the left) induces two transitions in the ex-
panded system model (on the right), where v = O(s).

Definition 5 (Expansion of an HVS to an HMI-LTS)
The expansion exp(S) of HVS S = 〈SS ,Lc,Lo, s0S ,→S ,
Lv,O〉, is an HMI-LTS E = 〈SE ,Lc,
Lo
E , s0S ,→E〉 where Lo

E = Lo ∪ Lv and:

• SE = SS ∪ {sv | s ∈ SS , v = O(s) and Γ(s) �= ∅};
• →E= {(s, τ, t) | (s, τ, t) ∈ →S}

∪ {(s, v, sv), (sv, α, t) | (s, α, t) ∈ →S and v = O(s)}.

By construction, the states of the expanded HMI-LTS can
be partitioned into two sets:

• Observation states are those from the original HVS and
intuitively correspond to the fact that the operator must
check the state-value before the occurrence of a visible
action on the system. Those states can have outgoing τ -
transitions and at most one outgoing transition labelled
with a state-value. An observation state s is characterised
by |Ao(s)| = 1, Ao(s) ⊆ Lv and Ac(s) = ∅.

• Action states are the states added to the HVS. Those states
have outgoing transitions with commands and observa-
tions that correspond to those from the original HVS.
They do not have any τ -transitions. An action state s is
characterised by A(s) ⊆ L.

Transitions outgoing from an observation state lead to an
action state, except for τ -transitions that lead to another ob-
servation state. And conversely, transitions outgoing from an
action state always lead to an observation state.

HVMs can also be expanded into HMI-LTSs, so as to
make enriched traces explicit. The expansion is based on the
intuition that the operator must always first check whether
the action guard is satisfied before doing any visible action.
Figure 4 shows the mapping between the transitions from
the HVM and the corresponding expanded HMI-LTS. Ev-

ery transition s
[v]α−−−→ s′ is expanded so that the state-value

v is checked before performing the α action, that is, a new
state sv is added to the expanded model with the sequence

of transitions s
v−−→ sv

α−−→ s′.

s t
[v] α ⇒ s sv t

v α

Figure 4: Transition mapping for HVM expansion. The tran-
sition from the HVM (on the left) induces two transitions in
the expanded HMI-LTS (on the right).

Definition 6 (Expansion of an HVM to an HMI-LTS)
The expansion exp(H) of an HVM H = 〈SH ,Lc,Lo,

s0H ,→H ,Lv〉, is an HMI-LTS E = 〈SE ,Lc,Lo
E , s0H ,→E〉

where Lo
E = Lo ∪ Lv and:

• SE = SH ∪ {sv | s ∈ SH , (s, v, α, t) ∈ →H};
• →E= {(s, v, sv), (sv, α, t) | (s, v, α, t) ∈ →H}.

Similarly to HVSs, two kinds of states are identifiable by
construction: observation states and action states. The obser-
vation states intuitively correspond to the check of the action
guard by the user. They are characterised by Γ(s) ⊆ Lv and
their outgoing transitions always lead to an action state. The
action states correspond to those from the HVM. They are
characterised by Γ(s) ⊆ L. Their outgoing transitions are
labelled with commands and observations and always lead
to an observation state.

According to the following theorem, proven in (Combéfis
2013), it is possible to reduce the check that an HVM al-
lows full control of an HVS, to the equivalent check that the
expanded mental model allows full-control of the expanded
system model.

Theorem 7 Given an HVS S = 〈SS ,Lc,Lo, s0S ,→S ,
Lv,O〉 and an HVM H = 〈SH ,Lc,Lo, s0H ,→H ,Lv〉:

H fcS ⇐⇒ exp(H) fc exp(S)

Experience with the Autopilot model
The ADEPT autopilot partially models the behaviour of the
autopilot of a Boeing 777 aircraft. The full autopilot ADEPT
model has a total of 38 logic tables. Three major groups of
tables can be identified in the model, namely one for the lat-
eral aspect, one for the vertical aspect and finally one for the
airspeed aspect. For each of these aspects, the logic tables
are further partitioned into three groups: the action tables,
the system tables and the feedback tables, successively exe-
cuted in that order. Action tables determine actions from UI
events, system tables update the state of the system accord-
ing to the performed action, and feedback tables reflect the
state of the system to UI elements. Our analyses focus on the
system tables.

Due to space limitations, we are not able to fully report on
our experience with the autopilot case study. Details of the
system and our analysis results can be found in (Combéfis
2013). However, we outline in this section some of the re-
sults we obtained and observations we made.

First of all, by extending our HMI models with state in-
formation, we were able to automatically translate the au-
topilot tables, which would have been very hard to perform
reliably by hand, given the size of the system. Moreover,
our techniques cannot scale to the full size of such a large
and complex model, the main reason being related to the
large number of system variables with large domains caus-
ing a state explosion issue. Therefore, our analyses were per-
formed on parts of the autopilot model, each analysis consid-
ering subsets of the system tables. As is typical with formal
techniques, we additionally had to abstract the infinite data
domains involved in the models.

Using the outputState as a mode indicator, we performed
mode confusion analysis, and detected a potential mode con-
fusion on the airspeedSystemTable.

This was identified during the minimal model generation
phase, where the generation algorithm produced an error
trace witnessing the fact that the system model was not fc-
deterministic. By analysing the error trace manually, we lo-
calised the erroneous behaviour in the involved ADEPT ta-
bles.

One of the models that was analysed was an HVS with
7680 states and 66242 transitions, among which 57545 are
labelled with commands and 8697 are internal τ -transitions.
The obtained minimal mental model has 25 states and 180
transitions.

Finally, the semantics and translation algorithms that we
have developed are only a first step towards effectively inte-
grating our techniques with ADEPT. While we have worked
on translating ADEPT models to HVSs, we still need to be
able to directly relate the results of our analyses with the
original ADEPT models. In the future, we therefore plan on
working on a better integration of our analysis tools with
ADEPT, better visualisation of the analysis results, and on
increasing scalability of our analysis algorithms.

References
Bastide, R.; Navarre, D.; and Palanque, P. 2003. A tool-
supported design framework for safety critical interactive
systems. Interacting with Computers 15(3):309–328.

Bolton, M., and Bass, E. 2010. Using task analytic mod-
els and phenotypes of erroneous human behavior to discover
system failures using model checking. In Proceedings of the
54th Annual Meeting of the Human Factors and Ergonomics
Society, 992–996.

Bolton, M.; Bass, E.; and Siminiceanu, R. 2008. Using
formal methods to predict human error and system failures.
In Proceedings of the Second International Conference on
Applied Human Factors and Ergonomics (AHFE 2008).
Bolton, M.; Siminiceanu, R.; and Bass, E. 2011. A system-
atic approach to model checking human-automation interac-
tion using task analytic models. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part A: Systems and Humans
41(5):961–976.

Bredereke, J., and Lankenau, A. 2002. A rigorous view
of mode confusion. In Proceedings of the 21st Interna-
tional Conference on Computer Safety, Reliability and Se-
curity (SAFECOMP 2002), 19–31. Springer.

Bredereke, J., and Lankenau, A. 2005. Safety-relevant mode
confusions — modelling and reducing them. Reliability En-
gineering & System Safety 88(3):229–245.

Campos, J. C., and Harrison, M. D. 2008. Systematic analy-
sis of control panel interfaces using formal tools. In Graham,
T. N., and Palanque, P. A., eds., Proceedings of the 15th In-
ternational Workshop on Design, Specification and Verifica-
tion of Interactive Systems (DSV-IS 2008), volume 5136 of
Lecture Notes in Computer Science, 72–85. Springer.

Campos, J. C., and Harrison, M. D. 2011. Model checking
interactor specifications. Automated Software Engineering
8(3):275–310.

Clarke Jr., E. M.; Grumberg, O.; and Peled, D. A. 1999.
Model Checking. The MIT Press.

Combéfis, S., and Pecheur, C. 2009. A bisimulation-based
approach to the analysis of human-computer interaction. In
Calvary, G.; Graham, T. N.; and Gray, P., eds., Proceedings
of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS 2009), 101–110. New York, NY,
USA: ACM.

Combéfis, S.; Giannakopoulou, D.; Pecheur, C.; and Feary,
M. 2011a. A formal framework for design and analysis
of human-machine interaction. In Proceedings of the 2011
IEEE International Conference on Systems, Man, and Cy-
bernetics (SMC 2011), 1801–1808. IEEE.

Combéfis, S.; Giannakopoulou, D.; Pecheur, C.; and Feary,
M. 2011b. Learning system abstractions for human oper-
ators. In Proceedings of the 2011 International Workshop
on Machine Learning Technologies in Software Engineering
(MALETS 2011), 3–10. New York, NY, USA: ACM.

Combéfis, S. 2009. Operational model: Integrating user
tasks and environment information with system model. In
Proceedings of the 3rd International Workshop on Formal
Methods for Interactive Systems, 83–86.

Combéfis, S. 2013. A Formal Framework for the Analysis of
Human-Machine Interactions. Ph.D. Dissertation, Univer-
sité catholique de Louvain.

Curzon, P.; Sėnas, R. R.; and Blandford, A. 2007. An
approach to formal verification of human-computer interac-
tion. Formal Aspects of Computing 19(4):513–550.

Feary, M. S. 2010. A toolset for supporting iterative
human–automation interaction in design. Technical Report
20100012861, NASA Ames Research Center.

Heymann, M., and Degani, A. 2007. Formal analysis and
automatic generation of user interfaces: Approach, method-
ology, and an algorithm. Human Factors: The Journal of the
Human Factors and Ergonomics Society 49(2):311–330.

Javaux, D. 2002. A method for predicting errors when
interacting with finite state systems. How implicit learning
shapes the user’s knowledge of a system. Reliability Engi-
neering and System Safety 75:147–165.

Navarre, D.; Palanque, P.; and Bastide, R. 2001. Engineering
interactive systems through formal methods for both tasks
and system models. In Proceedings of the RTO Human Fac-
tors and Medicine Panel (HFM) Specialists’ Meeting, 20.1–
20.17.

Thimbleby, H., and Gow, J. 2007. Applying graph the-
ory to interaction design. In Gulliksen, J.; Harning, M. B.;
Palanque, P.; van der Veer, G.; and Wesson, J., eds., Proceed-
ings of the Engineering Interactive Systems Joint Working
Conferences EHCI, DSV-IS, HCSE (EIS 2007), volume 4940
of Lecture Notes in Computer Science, 501–519. Springer.

Thimbleby, H. 2010. Press On: Principles of Interaction
Programming. The MIT Press.

Tretmans, J. 2008. Model based testing with labelled tran-
sition systems. In Hierons, R.; Bowen, J.; and Harman, M.,
eds., Formal Methods and Testing, volume 4949 of Lecture
Notes in Computer Science. Springer. 1–38.

