WSi₂ in Si_{1-x}Ge_x composites: processing and thermoelectric properties

Jon Mackey

Mechanical Engineering, University of Akron

Alp Sehirlioglu

Materials Science and Engineering, Case Western Reserve University

Fred Dynys

RXC, NASA Glenn Research Center

NASA Cooperative Agreement: NNX08AB43A

NASA/USRA Contract: 04555-004

Processing

Properties

Thermoelectricity

- •Study of the coupled transport of electrical and thermal energy.
- Solid-state phenomenon requires no moving parts or working fluids, and generates no noise, torque, or vibrations.
 - As a result thermoelectric devices are extremely reliable.
- Power Generation
 - Spacecraft, automotive, aerospace, gas pipelines, well sites, and offshore platforms.
- Refrigeration
 - On chip cooling, electronics, and automotive.
- High reliability, low conversion efficiency.

Spacecraft Power

- Radioisotope thermoelectric generators (RTG) have powered 45 spacecraft.
 - Voyager (1977), Ulysses (1990),
 Cassini (1997), New Horizons (2006), and Curiosity (2011).

Lange et al. Energy Conversion and Management 49 (2008) 391-401.

GPHS-RTG (Galileo/Ulysses)

Bennett et al. AIP Proceedings 969 (2008) 663-671.

 As a result thermoelectric devices are extremely reliable.

Processing

na Curiosity (ZOII).

Bennett et al. AIP Proceedings **969** (2008) 663-671.

vibrations.

Silicon Germanium Alloys

- Popular choice for RTG systems:
 - High temperature, mechanically robust, stable in air or vacuum, reasonable ZT, Stivers (1964).
 - N- and p-type doped with P and B, respectively.
 - Enhancement from Si/Ge alloy phonon scattering, Abeles et al. (1962), Abeles (1963).
- Traditional samples were solidified and homogenized with zone-leveling, Dismukes et al. (1964).

$$ZT_{Material} = \frac{S^2 \sigma T}{k}$$

Enhancing Si/Ge

- Powder processing provides some microstructure control.
- Grains of 2-5 μ m show 10% ZT improvement over large grains, Rowe et al. (1993).
- Original nano-structuring theory developed by Hicks and Dresselhaus (1993).
 - Reduce lattice conductivity, enhance power factor.
- •SOA, Nano sized grains show 30% ZT improvement, Joshi et al. (2008), Wang et al. (2008).
 - •Thermally induced grain growth can hinder practical usefulness.

Processing

Properties

Silicide in Si/Ge Approach

- •Thermally stable silicide nanoprecipitates in Si/Ge.
- Precipitate size can preferentially scatter phonons over charge carriers.
- Experimentally verified for:
 - CrSi₂-Si₈₀Ge₂₀, Zamanipour & Vashaee (2012).
 - MoSi₂-Si₉₂Ge₈, Favier et al. (2014).

Silicide in Si/Ge Theory

FIGURE: Mingo et al. Nano Letters 9 (2009) 711-715.

Processing

Properties

Powder Processing

- Planetary milling:
 - •8 hours @ 300-580 rpm
 - Ball to powder ratio 3-5
- Spark plasma sintering:
 - •800-1100°C
 - •70-90 Mpa
 - •5-10 min hold
- Powders handled under Argon atmosphere.

Test Matrix

2% Dopant P-Type, B		Si/Ge at% Ratio			
N-Type, P		70/30	80/20	90/10	
Tungsten Silicide Volume Fraction	0%				
	1%				
	2%				
	5%				

- Aggressive milling alloys Si and Ge, but does not form the WSi₂ phase.
- •WSi₂ phase formed during sintering.

Microstructure

Scale Bar 15µm

- •Study on milling profile.
 - •a) Milled powder profile 1
 - •c) Milled powder profile 2
 - •b) Sintered pellet of powder a)
 - •d) Sintered pellet of powder c)

Processing

Properties

Silicide Precipitate Size

Scale Bar 15µm

- Silicide precipitate size ranged from<90 nm to micron range.
- Difficult to control with powder processing.

Sintering Study

W Source	Dopant	Strain Rate*	Density	95% Time**
		(%/min)	(%)	(min)
Micron Powder	P	2.9	97.0	3.1
Nano Powder	P	5.1	97.1	2.5
None	P	6.6	95.8	2.6
Micron Powder	В	5.9	95.8	2.3
Nano Powder	В	8.5	95.8	2.2
None	В	9.1	95.5	1.9

^{*}Strain rate calculated at the beginning of the dwell step during the SPS run.

- Analyzed ram travel data from SPS.
- •W influences sintering kinetics by lowering the sintering strain rate and increasing required dwell time.

^{**}Time to 95% of maximum ram travel

Processing

Processing

Processing

Processing

Processing

Processing

Properties

P-Type Oxygen Contamination

- Investigated influence of oxygen contamination on samples.
- Loaded SPS dies in both Argon and Air.
- Silica formation did not alter electrical properties significantly.

P-Type Oxygen Contamination

- Silica formation reduced lattice thermal conductivity.
- Lower thermal conductivity leads to 10-40% ZT improvement.
- N-type samples are not as sensitive to oxygen contamination.

Bernard-Granger et al. Scripta Materialia 93 (2014) 40-43.

Processing

Properties

P-Type Oxygen Contamination

- · Loadeu 3r3 ules III botil Algoli allu All.
- Silica formation did not alter electrical properties significantly.
- Lower thermal conductivity leads to
- 10-40% ZT improvement.
- N-type samples are not as sensitive to oxygen contamination.

Bernard-Granger et al. Scripta Materialia 93 (2014) 40-43.

Two Couple Device

- Fabricated 2-couple proof of concept device.
- Operated in air for over 5 months.

Device Characterization

Conclusion

- Silicide phase successfully reduces lattice thermal conductivity.
- Increased ZT for silicide composites as compared to baseline Si/Ge.
- Oxygen contamination further reduces lattice thermal conductivity.
- Tungsten silicide phase offers tuning of carrier concentration.
- Silicide phase does not hinder thermal stability.

<u>Acknowledgements</u>

Tom Sabo, Ray Babuder, Ben Kowalski, Clayton Cross NASA Glenn Research Center

Dr. Michael Cinibulk

AFRL Wright Patterson Air

Force Base

Dr. Sabah Bux, Dr. Jean-Pierre Fleurial
JPL

NASA Cooperative Agreement: NNX08AB43A