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Introduction: We present the hypothesis that hal-
ite may play a role in methane sequestration on the
martian surface. In terrestrial examples, halite deposits
sequester large volumes of methane and chloro-
methane. Also, examples of chloromethane-bearing,
~4.5 Ga old halite from the Monahans meteorite show
that this system is very stable unless the halite is dam-
aged. On Mars, methane may be generated from car-
bonaceous material trapped in ancient halite deposits
and sequestered. The methane may be released by
damaging its halite host; either by aqueous alteration,
aeolian abrasion, heating, or impact shock. Such a sce-
nario may help to explain the appearance of short-lived
releases of methane on the martian surface [1]. The
methane may be of either biogenic or abiogenic origin.
If this scenario plays a significant role on Mars, then
martian halite deposits may contain samples of organic
compounds dating to the ancient desiccation of the
planet, accessible at the surface for future sample re-
turn missions.

Halite as a Methane Sequestration Host in Ter-
restrial Settings: Halite is known to host methane
and/or chloromethane in a wide variety of terrestrial
sites. Chloromethane escaping from salt beds in the
Aral Sea has been observed by remote sensing [4].
Methane has also been noted in halite deposits in Ga-
bon [5], subterranean deposits in East Siberia [6], Po-
land [7], and elsewhere. Chloromethane was also
found in halite of ~4.5 Ga age in the Monahans mete-
orite, demonstrating the stability of halite as a methane
sequestration host [8].

Methane is commonly present in fluid inclusions in
halite, and evidence from the Monahans meteorite
suggests that chloromethane forms as methane dis-
solves in the halite (Figure 2). The methane may arise
from carbonaceous inclusions entrained in the halite,
perhaps arising from UV irradiation as has been
demonstrated with the Murchison meteorite [9]. Me-
thane may also be added to halite deposits via the for-
mation of secondary fluid inclusions.

Release Mechanisms: Once entrained in halite,
methane can be released by damaging the halite host.
There are four major ways this can occur:

Aqueous Alteration: Halite is susceptible to disso-
lution in aqueous solution.

Aeolian Abrasion: Halite outcrops can release me-
thane upon mechanical wear.

Heating: 1f the methane is entrained in fluid inclu-
sions, the fluids will migrate by dissolving and re-
precipitating their surrounding matrix. This effect be-
comes significant at only ~25°C [10], so subterranean
thermal events of modest magnitude might contribute
to this release mode.

Impact/Shock: Mechanical damage can release me-
thane from halite fluid inclusions. Halite is a brittle
material of low strength, but such a mechanism obvi-
ously has to be combined with an impact event.

Implications: If halite plays a significant role in
sequestering methane on Mars, then the following im-
plications arise (among others):

Figure 2: Chloromethane preserved in ~4.5 Ga halite in
the Monahans meteorite. Large image: Transmitted
light image of a carbonaceous inclusion in the halite.
Inset: Raman image of macromolecular carbon (Red)
and chloromethane (Blue). Chloromethane is dissolved
in the halite matrix. From [8].

- The methane detected by remote observation
and MSL rover may have an ancient source.

- The methane may arise from a near-surface
source, perhaps massive halite deposits noted
by remote sensing imagery. Such material may
be available at the surface for future Mars
sample return.
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