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A area of cross-section PME precious metal electrode  
BME base metal electrode  PWB printed wiring board 

C capacitance  RT room temperature 
CTE coefficient of thermal expansion STD standard deviation  
DCL direct current leakage  t thickness of the dielectric 
DWV dielectric withstanding voltage  telectr electrification time 

E Young’s modulus Tg glass transition temperature 
Ea activation energy TSD terminal solder dip  

HALT highly accelerated life testing  Tsold melting temperature of solder 
HT high temperature  VBR breakdown voltage  
HV high voltage  VBR75 third quartile of VBR distribution  
IR insulation resistance  VBRmin minimal VBR in the group 
LV low voltage  VO

++ charged oxygen vacancy  
MLCC multilayer ceramic capacitor  VR rated voltage  

N number of layers XRF X-Ray Fluorescence 



Abstract
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High volumetric efficiency of commercial base metal electrode (BME) ceramic
capacitors allows for a substantial reduction of weight and sizes of the parts compared
to currently used military grade precious metal electrode (PME) capacitors. Insertion
of BME capacitors in space applications requires a thorough analysis of their
performance and reliability. In this work, six types of cases size 0603 BME capacitors
from three vendors have been evaluated. Three types of multilayer ceramic
capacitors (MLCCs) were designed for automotive industry and three types for
general purposes. Leakage currents in the capacitors have been measured in a wide
range of voltages and temperatures, and measurements of breakdown voltages (VBR)
have been used to assess the proportion and severity of defects in the parts. The
effect of soldering-related thermal shock stresses was evaluated by analysis of
distributions of VBR for parts in “as is” condition and after terminal solder dip testing at
350°C. Highly Accelerated Life Testing (HALT) at different temperatures was used to
assess the activation energy of degradation of leakage currents and predict behavior
of the parts at life test and normal operating conditions. To address issues related to
rework and manual soldering, capacitors were soldered onto different substrates at
different soldering conditions. The results show that contrary to a common
assumption that large-size capacitors are mostly vulnerable to soldering stresses,
cracking in small size capacitors does happen unless special measures are taken
during assembly processes.
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Two major issues with MLCC:
 Insulation Resistance (IR) degradation related to oxygen vacancies.
 Failures related to soldering induced cracking.

Due to the difference in electro-chemical behavior of Ni and 
Ag/Pd and formed products, the probability of low-voltage 
failures for BME is less than for PME capacitors. 

BME PME

Intrinsic wear-out failures caused by 
oxygen vacancies typically do not 
cause failures during applications.
Concentration of VO

++ should be 
under control to reduce the probability 
of failures in the presence of defects.
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Degradation in the presence of defects

Results of electro-chemical migration in PME and BME capacitors
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 In most cases distributions of VBR for BME capacitors are bimodal.
 The high voltage (HV) mode has tight distributions (STD/Mean 

~4%) indicating intrinsic breakdown.
 The presence of low voltage (LV) 

subgroup is due to defects.

BME capacitors with bimodal distributions
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 The interception point of VBR distribution indicates the 
proportion of defects, and the spread of VBR towards low 
voltages indicates the significance of defects.

 Lot acceptance criterion: VBRmin/VBR75 > 0.5.
 Migration of VO

++ in capacitors with defects results in IM failures.

VBR intrinsic

VBR 
defect
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X-Ray Fluorescence (XRF) analysis showed that barium 
titanate ceramics (BaTiO3) doped with different elements 
(mostly Zr, Y, W) is used in all parts.
Same size and nominal auto and general purpose MLCCs 

have similar design and materials.

application Mfr. C, µF VR, V t, µm N 
plates

Margins, µm
End Cover Side

auto C 0.1 50 8 60 180 110 170

auto M 0.1 50 9 62 125 70 120

auto A 0.1 50 10 46 115 140 110

general C 0.1 50 8 120 150

general M 0.01 25 18 19 170 140 180

general C 0.01 50 15 17 160 220 160



Absorption and Leakage Currents

8
Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov presented by Alexander Teverovsky at the 
Components for Military and Space Electronics, Conference and Exhibition (CMSE), Los Angeles, CA, March 1-3, 2015.

 Direct Current Leakage (DCL) at room temperature (RT) decreases 
with the electrification time, as ~1/telectr.

 Absorption currents at VR prevail during first hours of electrification 
and depend mostly on the value of capacitance.

 Absorption currents are reproducible, increase with voltage, and 
stabilize at V > ~2VR.

 The larger telectr. the better the sensitivity of the DCL/IR testing to 
the presence of defects.

 No significant difference in DCL for generic and auto capacitors.

Relaxation of leakage currents at room temperature
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 At 125°C intrinsic currents prevail after ~ 100 sec of electrification.
 IR measurements in LV capacitors during mass production is a 

challenge. The test voltage should be increased.
 IR values for 0603 capacitors are within the range of values typical 

for different types of BME MLCCs, but some are out of the MIL limit.
 MIL requirements for IR do not allow sufficient margin for high 

volumetric efficiency BME capacitors.  Murata auto limits are more 
reasonable.
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Variations of leakage currents with voltage at different temperatures
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At high temperatures I-V characteristics in all 
parts can be described with a power law, I ~Vm.
The exponent m decreases with temperature.
At 125°C 1.8 < m < 2.2 and at 175°C m ~ 1.5.
DCL at HT can be explained based on the 

space charge limiting model.
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 For BME capacitors activation energy of 
intrinsic leakage currents decreases with 
voltage.

 Ea for BME is less than for PME capacitors.
 Voltage and temperature dependencies for 

auto and general type capacitors are similar.

0

0.3

0.6

0.9

1.2

1.5

0 50 100 150 200 250

ac
tiv

at
io

n 
en

er
gy

, e
V

voltage, V
Mfr.Ca 0.1uF 50V Mfr.Ma 0.1uF 50V
Mfr.Aa 0.1uF 50V M123 1uF 50V
Mfr.Mg 0.01uF 25V Mfr.Cg 0.1uF 50V
Mfr.Cg 0.01uF 50V M123 0.1uF 100V

PME

BME

1eV

0.61eV

0.55eV

0.47eV

0.42eV

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

0.002 0.0022 0.0024 0.0026 0.0028 0.003

cu
rre

nt
, A

1/T, 1/K

Mfr.A auto, 0603, 0.1uF, 50V
25V
50V
100V
150V
200V

0.87eV
0.73eV

0.6eV 0.55eV

0.52eV

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

0.002 0.0022 0.0024 0.0026 0.0028 0.003

cu
rre

nt
, A

1/T, 1/K

Mfr.M auto, 0603, 0.1uF, 50V

25V
50V
100V
150V
200V

0.9eV
0.69eV

0.57eV

0.51eV

0.47eV

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

0.002 0.0022 0.0024 0.0026 0.0028 0.003

cu
rre

nt
, A

1/T, 1/K

Mfr.C auto, 0603, 0.1uF, 50V

25V
50V
100V
150V
200V

Variations of leakage currents with temperature at different voltages



Breakdown and Rated Voltages

12
Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov presented by Alexander Teverovsky at the 
Components for Military and Space Electronics, Conference and Exhibition (CMSE), Los Angeles, CA, March 1-3, 2015.

Tested lots did not have gross defects: VBRmin/VBR75 > 0.5.
Thickness of the dielectric is not the only factor determining VBR.
No significant difference between automotive and general types of 

BME capacitors.
VR is 20 to 30 times less than VBR.  One of the limiting factors for 

VR is voltage dependence of capacitance.

Distributions of VBR for 0603 BME MLCCs
Case size 0603 general type BME capacitors
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At 125°C some degradation was observed in 
0.1µF 50V capacitors only.
At 150°C degradation in 0.1µF 50V capacitors 

was noticeable and some parts failed.
All 0.1µF 50V capacitors failed at 175°C, but 

0.01 µF capacitors, both 25V and 50V,  
increased currents ~ 50% only.

 Step stress HALT was carried out at T = 22°C, 125°C, 150°C, and 
175°C, for 100hr and 200V at each step. 

 Leakage currents were monitored through the testing.
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No current increase for capacitors from Mfr.M that had minimal IR.  It 
is possible that large intrinsic currents mask degradation.
Some degradation can be observed at 125°C for Mfr.A and C.
Degradation and failures in parts from Mfr.C at 150°C are similar to 

generic capacitors from the same manufacturer.
Comparison of results for Mfr.C 0.1µF and 0.01µF capacitors 

indicates the effect of dielectric thickness on degradation processes.

Variations of leakage currents in 0.1µF 50V size 0603 BME auto capacitors at 
200V with time at 125°C and 150°C
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Activation energy of degradation is consistent with the migration of 
positively charged oxygen vacancies model.
Degradation at life test and operating conditions is negligibly small.

At Ea ~1.6 eV, the predicted degradation rate at 125°C and 200V is ~ 1.3×10-13 A/sec. Using 
a conservative estimation for the voltage acceleration constant, n = 3, the rate at 2VR would 
be ~ 1.5×10-14 A/sec.  At this rate it would take ~2×106 years for the current to increase by 
1 µA during life testing.

Time dependence of DCL 
approximated with linear functions.

Temperature dependence of  
degradation rates for 3 samples.
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Parts with higher rate of degradation had a more substantial decrease 
of VBR.
Post-HALT degradation of VBR is consistent with the defect-related 

failure model:
An IM failure occurs when accumulation of VO

++ at a defect site would 
be sufficient to increase current density to a level necessary to initiate 
a local thermal run-away process.

V0
++

defect

Effect of HALT on general type BME 0603 MLCC
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 30 capacitors of each type were stressed by the terminal solder dip 
testing at a solder pot temperature of 350°C (10 cycles).

 The effect was evaluated by visual examinations and by comparing 
initial and post-terminal solder dip (TSD)350 distributions.

No substantial variations in distributions of breakdown voltages 
after thermal shock testing.
TSD_350 does not generate cracks on 0603 BME capacitors.
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 It is often assumed that large size MLCCs (1210 and above) are more 
susceptible to cracking. 

 Insertion of BME MLCCs in hi-rel applications means extensive use of 
small size capacitors ( below 0805). Are they less vulnerable to cracking?

Experiment: Groups with 14 to 12 samples of 0.1µF, 50V, size 0603 BME MLCCs 
were soldered manually onto FR4 PWBs using recommended precautions and a 
soldering iron set to 315°C.

MLCC Open circuit Short circuit Intermittent Total failures

Mfr. C 3/14 2/14 0/14 5/14
Mfr. M 1/14 2/14 5/14 8/14
Mfr. A 3/12 0/12 2/12 5/12

Manual soldering can cause failures of small size capacitors.
 Out of 40 samples of 0603 size MLCCs soldered with a soldering 

iron at 315°C 70% were electrical failures.

Post-manual-soldering test results
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Effects of manual and reflow soldering were compared by measurements 
of  VBR for case size 0603 BME 0.01uF, 25V capacitors from Mfr.M
soldered onto the same FR4 PWB.

Manual soldering was carried out with different tip sizes (0.03” and 0.08”) 
and different temperatures of the board (cold,  22°C, and hot, 150°C).

No defects were observed in MLCCs after solder reflow and after 
manual soldering onto a board preheated to 150°C.
Soldering iron tips of larger size increase the probability of failures 

from ~20% for 0.03” to ~70% for 0.08”.

0.01uF 25V capacitors failed after 
manual soldering   

crack
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case 
size

reflow 
FR4

cold 
PWB 
FR4

reflow 
alumina

cold 
alumina

0603 32.6 -107 -45.8 -181
2225 17.3 -56.7 -37.8 -149

Board

MLCC
Solder

Compressive stress

CTEPWB > CTECAP

 Tensile strength of X7R ceramics is 70 to 250 MPa.
 PWB with coefficient of thermal expansion (CTE)PWB > CTEcap

create compressive stresses (σ > 0) in MLCCs after reflow 
soldering.

 Ceramic substrates with CTEPWB < CTEcap create tensile stresses 
(σ < 0) that are much more dangerous.

 The level of stresses caused by  solder reflow and manual 
soldering onto a cold board can be estimated using a one-
dimensional model:

Material E, GPa CTE, 
ppm/oC Tg/Tsold

PWB (FR4) 17 15 150
Alumina 360 7.7 230
MLCC 100 10

Mechanical characteristics used for stress 
calculations

Mechanical stresses in MLCCs assembled by reflow 
and manual soldering (3mm FR4, 1mm alumina) 

Reflow soldering onto a PWB creates relatively small compressive 
stresses in case of FR4 and tensile stresses in case of alumina board.
Manual soldering onto cold PWB creates significant tensile stresses.
Post manual soldering stresses are greater for small size MLCCs.
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Manual soldering onto alumina board resulted in less damage 
compared to FR4 PWB.  A contradiction with the model is likely due to a 
much higher thermal conductivity of alumina (increase T of the board).
All case size 0603 0.01 µF 50V capacitors passed DWV test after 

reflow soldering.  However, contrary to 0.1 µF 50V MLCCs, ~10% of 
capacitors had defects.

BME 0603 0.01uF 25V capacitors Mfr.M
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0.01uF 25V capacitors were soldered onto 
alumina and FR4 PWBs manually (350°C)

Mfr.C BME 0603 0.01uF 50V.  Effect of soldering.
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0.01uF 50V capacitors were soldered 
onto an FR4 PWB by solder reflow
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cracks

Typical soldering thermal 
shock cracks in large MLCCs

Contrary to the annular thermal stress cracks 
in large size capacitors, cracks in 0603 
capacitors occur along the terminations.
Termination cracks are not specific for BME 

MLCCs only.  They were also observed in 
small-size PME capacitors.

Size 2225

PME 0402

Size 0603

Post soldering cracks in small size 
MLCCs
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Design, materials, leakage currents and breakdown voltages in 
automotive and general application capacitors are similar.
Leakage currents:
 at RT absorption currents prevail over intrinsic conduction currents that are several 

orders of magnitude less than currents measured within 2 min of electrification;
 Ea decreases with voltage from ~ 0.9 eV at 0.5VR to ~ 0.5 eV at 4VR. 
 I-V characteristics at HT follow a power low with the exponent decreasing from ~3 at 

85°C to ~ 1.5 at 175°C.
Degradation of DCL and failures were observed during HALT in 

parts having minimal thickness of the dielectric. Activation energy 
of degradation is large, ~1.6 eV, so no intrinsic wear-out failures 
are expected at life testing or normal operating conditions.
0603 MLCCs are vulnerable to manual soldering and more than 

50% of capacitors can fail in case of soldering onto a cold PWB.
Board preheating is critical to reduce the probability of failures.
Post-soldering fracturing along the terminals is a specific feature 

of small-size capacitors.
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