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System Engineering Research 
Consortium Focus
 System Engineering of Complex Systems is not well understood

 System Engineering of Complex Systems is Challenging
 System Engineering can produce elegant solutions in some instances
 System Engineering can produce embarrassing failures in some instances
 Within NASA, System Engineering is frequently unable to maintain complex system designs within 

budget, schedule, and performance constraints

 “How do we Fix System Engineering?”
 Michael D. Griffin, 61st International Astronautical Congress, Prague, Czech Republic, September 27-

October 1, 2010
 Successful practice in System Engineering is frequently based on the ability of the lead system engineer, 

rather than on the approach of system engineering in general
 The rules and properties that govern complex systems are not well defined in order to define system 

elegance

 4 characteristics of system elegance proposed as:
 System Effectiveness
 System Efficiency
 System Robustness
 Minimizing Unintended Consequences



Approach

 Define basis of System Engineering as an Engineering Discipline

 Three (3) thrusts to accomplish this
 System Works

 Understanding objectively what works in current system development (SLS)
 Follow SLS through DCR to study full development phase (once in 40 year opportunity)

 Distill the laws governing system engineering in complex systems by studying this approach through 
a combination of academic research with practicing system engineers

 Document the laws governing complex system interactions identified in the research
 Capture practical guidance from the research in a System Engineering Practitioner’s Guide

 System Design
 Apply the laws of governing Complex Systems in an elegant manner in the next major complex 

system development (Mars Transportation System)
 Apply and refine guidance in System Engineering Practitioner’s Guide

 System Academy
 Train new and practicing system engineers in the engineering basis of the discipline

 Preliminary Academic Curriculum
 Current work force training courses



Consortium

 Research Process
 Multi-disciplinary research group that spans systems 

engineering areas 
 Selected researchers who are product rather than 

process focused

 List of Consortium Members
 UAH – Phil Farrington, Paul Collopy, Dawn Utley, Laird 

Burns, Wes Colley, Bryan Mesmer, Bob Ryan, & Joey 
Shelton
 System Cost Modeling – Paul Collopy
 System Exergy – PJ Benefield, Bryan Mesmer, Joey 

Shelton
 System Complexity, Chief Engineer Interviews – Laird 

Burns
 Program/Engineering Decision Making – Dawn Utley

 UCCS– Disciplinary Formalization of System 
Engineering - Stephen Johnson 

 Texas A&M – Designing Robust Engineered Systems -
Richard Malak

 MIT – Informal representation and team decision-
making in Complex Engineering Systems - Maria Yang 

 Iowa State – SE Processes Evaluation - Paul 
Componation

 University of Dayton – System Exergy – John Doty

 Missouri University of Science and Technology - System 
Exergy – Dave Riggins

 GWU Space Policy Institute – Application of Policy 
and Law – Zoe Szajnfarber

 Schafer Corporation – Mike Griffin

 Previous Consortium Members
 Stevens Institute of Technology – Dinesh Verma
 Spaceworks – John Olds (Cost Modeling Statistics)
 Alabama A&M – Emeka Dunu (Supply Chain 

Management)
 George Mason – John Gero (Agent Based Modeling)
 Oregon State – Irem Tumer (Electrical Power Grid 

Robustness)
 Arkansas – David Jensen (Failure Categorization)

20 graduate students and 3 undergraduate students supported to date



System Engineering Framework 
Mapping
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System Complexity:  Natural or 
Engineered?
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 Complex systems are the result of human engineering efforts
 Space Launch System
 Electrical Power Plants
 Ships

 Complex systems/Complex Adaptive Systems naturally 
occur in nature
 Cell Structure
 Ecosystems
 Meteorology
 Cosmology

 Do these Complex Systems follow the same relationship 
rules?

Ikata Nuclear Power Plant, Japan, 
Wikipedia

USS Enterprise, 
Wikipedia

Elmhurst College

Bromeliad
Wikipedia

Hubble Extreme Deep 
Field Image - NASASpace Launch 

System (SLS)

Atmospheric True Color 
Data - NOAA



System Complexity:  Natural or 
Engineered or Both?
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 Do these Complex Systems follow the same relationship rules?
 This is a question still to be answered.

 Complex Systems/Complex Adaptive Systems originate from human 
engineering and naturally
 Systems Engineers seek to produce a system for some benefit to society 

and culture (exploration, trade, defense)
 These are becoming more complex systems and complex adaptive systems
 Complex systems/complex adaptive systems are engineered by natural 

complex systems (organizations)
 Natural systems provide a learning ground for understanding complex 

systems and complex adaptive systems
 These natural systems are believed to have the same basic properties of 

complexity that human engineered systems seek to attain
 This is a point that needs further definition and mathematical proof

Atmospheric True Color 
Data - NOAA



System Complexity Definition

 Complexity:  A measure of a system’s intricacy and 
comprehensibleness in interactions within itself and 
with its environment.



System Complexity Properties

 Properties:  
 Complex systems have a propensity to exhibit unexpected performance 

of intended function
 Complex systems are aggregations of less complex systems
 Complex systems exhibit properties not present in the individual 

subsystems but present in the integration of subsystems (emergent 
property)

 Complex system interactions form networks within the system and with 
the system environments
 Complex system interactions can be understood through control theory

 Complex systems exhibit nonlinear responses to system stimuli
 Complex systems are difficult to predict

 Complex systems have local optimums
 (Organizational Efficiency Determines ability to achieve local optimum)

 Complex systems can be analyzed using two concepts: 
 laws (rules of interaction)
 states (current state and prior history)



Systems Engineering Complexity
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 Complex System Properties:  
 In general, it may be possible to optimize some CS for known design 

requirements but not for complex adaptive systems (CAS) (Holland, 2012).

 Predictions of CS and CAS are challenging (Simon, 1996)

 System engineering teams are organic systems with biological properties

 Perpetual novelty is a characteristic of most CAS (Holland, 2014)

 Recurring patterns are characteristics of CS (Holland, 2014)

 CS can be analyzed using two concepts: laws (rules of interaction) and states 
(current state and prior history) (Holland, 2014)

*Compiled by UAH/Laird Burns



System Engineering Complexity 
Modeling Properties
 All Engineered Systems are designed, built, and operated to achieve goals.

 Goals are expressions of intent of the designers, builder, and operators.
 The intentions, and hence the goals of system designers, builders, and operators can and 

often do differ. They may or may not be compatible, and may or may not be explicitly 
documented.

 Expectations of system behavior are based on models. Models can be formal or 
informal.

 Formal modeling of system behaviors using mathematics, physical, and logic is less 
mistake-prone than methods that do not use formal models. This is primarily because 
formal models either reject invalid inputs, or if invalid inputs are accepted, can be 
searched for mistakes, or yield outputs that can be assessed for validity.

 Functions are defined as mappings of input states of state variables to output states 
of state variables, y = f(x).
 If the input states map to identical output states of a hypothesized function, there is no 

function.
 Goals are expressed as constraints on the ranges of output state variables of a function. 

Goal = rl < y < rh , where y = f(x).
 Failure is defined as the unacceptable control of an output state variable of a function.  

Failure = rl > y, or y > rh, where y = f(x). 
 Requirements are formal written statements of goals.

*Developed by UCCS/Stephen Johnson



System Engineering Complexity 
Modeling Properties
 System goals can be represented hierarchically, due to the hierarchical nature of intentions. 

Some goals define the ultimate intentions for the system, and other goals exist only to support 
them.
 Since goals can be modeled hierarchically, and since goals are expressed as constraints on the ranges 

of output state variables of a function, functions can be modeled hierarchically as well.

 A system design implements the means by which functions operate and goals are achieved.
 System design models are not hierarchical.
 State variables are the primary connection between functional and design representations of the 

system, as they exist in both representation types.

 Systems theory concepts of hierarchy and recursion apply to DSE, based on the hierarchical 
nature of intentionality.

 Control theory is an integral theory of DSE, since goals are achieved by controlling the output 
states of state variables of functions within intended ranges.
 Control of state variables can be achieved either passively through design margins, or actively through 

closed-loop or open-loop control systems.

 Knowledge about the parts of the system is generally constructed and maintained in 
disciplinary and institutional organization structures.

 The vast majority of system failures are caused by individual human cognitive or performative 
mistakes, or by human social lack of communication or miscommunication.
 Mistakes due to lack of communication and miscommunication most frequently occur at institutional and 

disciplinary boundaries.

*Developed by UCCS/Stephen Johnson



Mars Mission simplified GFT Example



Model Selection Lessons Learned
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 Biological, Ecological, Meteorological, Zoological 
studies have dealt with large populations/data and 
changes to these populations/data over many 
years

 This can generate very large data sets
 The statistical analysis techniques for these large 

data sets (big data) provide good insight into  
model selection for complex systems and complex 
adaptive systems

Bar-tailed Godwit 
Migration, Wikipedia

Bird Migration Radar, 
Wikipedia

Atmospheric True Color 
Data - NOAA



Model Selection Lessons Learned
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 Models must have a scientific basis for their selection
 Parsimony

 “Everything should be made as simple as possible, but no simpler” – attributed to Albert Einstein
 Avoid over fitting the data and under fitting the data

 Avoid Over Analysis of data sets
 A-priori model candidates defined before data set testing
 Post-priori identification of models can lead to over emphasis of secondary or tertiary effects or the 

under emphasis of primary effects (or the failure to identify these)
 “It is widely acknowledged by empirical researchers that data [dredging] is a dangerous practice to be 

avoided…” (White, G. C., “Population viability analysis:  data requirements and essential analysis”, in 
Research Techniques in Animal Ecology:  Controversies and Consequences”, Boitani, L., Fuller, T. K. (eds.), 
Columbia University Press, 2000)

 Over fitting, spurious parameter estimates, inclusion of unimportant variables

 Model Selection Bias
 Bias to overemphasize or underemphasize model parameters

 Meteorological examples (Miller, A. J, Subset Selection in Regression, Chapman and Hall, London, 1990)

 Model Selection Uncertainty
 Uncertainty in parameter and variable estimates can lead to higher confidence intervals than data 

actually supports

 Reference:  Burnham, K. P., Anderson, D. R., Model Selection and Multimodel Inference:  A 
Practical Information Theoretic Approach, 2nd edition, Springer, NY, 2002.



Concept of Model Complexity 
Supporting Decisions

• Which sub/system  What information model is important?

Exergy-Based Information for Systems 
Analysis, Doty

Safe?
Let Sensor A be continuous data (e.g. Temperature)
Let Sensor B be discrete data (e.g. Fluid Level)
Let Sensor C be binary data (e.g. Pump ‘on’ = 1, ‘off’ = 0)

Sensor Inputs (Information) DecisionInformation Model

Sensors / LocationStandard Method

Need ALL sensor data and complex model 
to assess state of system and make 

decision:
Model = f(A, B, C, AB, AC, BC, ABC)

Proposed Method

Only include relevant 
information to decision 

with same efficacy:
Model = f(A) 

Required Sensor: ARequired Sensors: A, B, C

A

B

C
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Summary
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 Natural Systems provide the best examples of Complex 
Systems and Complex Adaptive Systems

 Biological, Ecological, Meteorological, and Zoological 
studies have dealt with large populations and “big 
data” for decades

USS Enterprise, 
WikipediaHubble Extreme Deep 

Field Image - NASA Elmhurst College

Bird Migration Radar, 
Wikipedia

Bar-tailed Godwit 
Migration, Wikipedia

Atmospheric True Color 
Data - NOAA


