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Objectives 

Determine the suitability of various inviscid flux schemes for 

DNS/LES of supersonic turbulent boundary layers - foundational for 

more complex turbulent flows in aerospace applications: 

 Shock-turbulent boundary layer interactions 

 Supersonic film cooling 
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2-D Compression Corner 

2-D Expansion-Compression Corner 

2-D Shock Impingement 

2-D Supersonic Film Cooling 

M∞ 



Approach 

A number of approaches for DNS or LES of supersonic turbulent 

boundary layers have been used over the past two decades 

 Fully spatially evolving simulations 
 Forced transition from laminar inflow BC 

 Quasi-turbulent inflow BC 

 Recycling of inflow BC from point further downstream 

 Extended temporally-developing simulations 

 Temporally-developing simulations 

 

Temporally-developing approach used here 

 Inexpensive: relatively small domain can be used  

 Allows spatial averaging and periodic boundary conditions in both 

streamwise (x) and spanwise (z) directions  

 Significant disadvantage is that the flow field is never truly statistically 

stationary – rather, the boundary layer slowly grows with time.  

However, Martin (2004, 2007) and Xu and Martin (2004) have shown 

that if a relatively short time window is chosen, good results can be 

obtained. 
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Temporally-Developing Turbulent Boundary Layer 

at Mach 2.889, Re = 1.93×106 m-1 
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t* = 0 t* = 30 

 t* is a normalized timescale t U∞ / 9.6L (domain flowthrough timescale) 



Scope 

Emphasis in this paper is on studying the basic resolving 

characteristics of spatial discretizations and inviscid flux 

schemes for this compressible flow problem, not on LES 

sub-grid scale (SGS) models 

Grid resolutions considered here are from DNS levels to fine-

grid LES levels 

Adiabatic wall BC selected as this case is well-understood 

and Morkovin’s hypothesis holds at Mach 5 and below 

Viscous discretization is 2nd-order accurate only (limited 

tests with higher-order accuracy do not appear to change 

results appreciably) 

Time advancement is 4-stage Runge-Kutta, limited by 

stability restrictions to time steps significantly smaller than 

those needed to resolve turbulence 
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Governing Equations of Fluid Mechanics 
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dU     dF(U) 

dt        dx 
+             = 0 

dU      dF(U) 

dt         dx 
=             - ΔUi = -(Δt/Δx)(Fi+½ - Fi-½) 

Conservative Differencing Forms the Flux at a Half-Point: 

dU     d(Fi – Fv)      d(Gi – Gv)     d(Hi – Hv) 
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Navier-Stokes Equations in Terms of Conservative Variables: 

Etc. 



Skew-Symmetric Central Difference Schemes 
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SSCD-2  Fi+½ = Favg(i,i+1) 

SSCD-4  Fi+½ = (4/3)Favg(i,i+1) – (1/6)[Favg(i-1,i+1) + Favg(i,i+2)] 

SSCD-6  Fi+½ = (3/2)Favg(i,i+1) – (3/10)[Favg(i-1,i+1) + Favg(i,i+2)] 

          +(1/30)[Favg(i-2,i+1) + Favg(i-1,i+2) + Favg(i,i+3)] 

SSCD-8  Fi+½ = (16/10)Favg(i,i+1) – (4/10)[Favg(i-1,i+1) + Favg(i,i+2)] 

          +(8/105)[Favg(i-2,i+1) + Favg(i-1,i+2) + Favg(i,i+3)] 

          -(1/140)[Favg(i-3,i+1) + Favg(i-2,i+2) + Favg(i-1,i+3) + Favg(i,i+4)] 
 

 

Favg(i1,i2) = ρavg uavg Vavg + Pavg 

where Vavg = [1, uavg, vavg, wavg, eavg + ½(uavg
2 + vavg

2 + wavg
2) + pavg/ρavg]   

and Pavg = [0, Pavg, 0, 0, 0] 

 

For any variable φ, φavg = ½(φi1 +  φi2).  This Favg is very similar to the skew-

symmetric scheme of Kennedy and Gruber (2008) (Also see Pirozzoli (2010)).  Note 

if Favg = (Fi1 + Fi2), then standard divergence form central differencing formulas result. 

i i+1 i+2 i-1 i-2 



Filtered Central Difference Scheme 

Combined with Compact Filtering Algorithm 

(Visbal and Gaitonde, 1999) at interior points, 

and High Order Boundary Filtering Algorithm 

(Gaitonde and Visbal, 2000) at the lower and 

upper domain boundaries. 

 

The filter completely filters wavelengths at the 

spatial Nyquist frequency k = π (2 p.p.w.)  

 

The filter transfer function is > 0.999 at k = π/2 

(4 p.p.w.), and is > 0.99 at k = 2π/3 (3 p.p.w.)  

 

Filter is applied after one full Runge-Kutta 

timestep 
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Filter Transfer Function at Interior Points 

Eighth-Order Divergence Form Central Difference Scheme 

 

DCD-8  Fi+½ = [-3Fi-3 + 29Fi-2 - 139Fi-1 + 533Fi + 533Fi+1 – 139Fi+2 +29Fi+3 – 3Fi+4]/840 

Combination of DCD-8 with filtering algorithm 

is referred to DCD-8-F in this work 



Upwind-Biased Roe Schemes 
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Roe Flux using “left” and “right” interpolations for the half-node 

Fi+½ = ½(Fi+½,L + Fi+½,R) – ½|Aroe|(Ui+½,R – Ui+½,L) 

where Fi+½,L and Ui+½,L are formed from [ρ, u, v, w, P]i+½,L 

and Fi+½,R and Ui+½,R are formed from [ρ, u, v, w, P]i+½,R 

 

Primitive variable reconstruction for generic flow variable φ (no slope limiting) 

 

UBR-3  φi+½,L = (-φi-1 + 5φi + 2φi+1)/6 

UBR-5  φi+½,L = (4φi-2 - 26φi-1 + 94φi + 54φi+1 - 6φi+2)/120 

UBR-7  φi+½,L = (-6φi-3 + 50φi-2 - 202φi-1 + 638φi + 428φi+1 - 76φi+2 + 8φi+3)/840 

 

The φi+½,R values are formed from a flipped interpolation 

 

Note: none of the inviscid flux schemes used here, including the upwind-

biased methods, should be considered as “shock-capturing” (i.e. MUSCL or 

WENO methods) 

i i+1 i+2 i-1 i-2 



Fourier Analysis Characteristics 

 The dispersion (phase) characteristics of each UBR scheme are the same as the SSCD/DCD 

scheme of one higher order of accuracy 

 SSCD-2 has a limited range of phase accuracy, higher-order schemes get progressively better 

 Central schemes are non-dissipative, while all upwind schemes experience increasing 

dissipation error at higher wavenumbers 

 Higher-order upwind schemes have smaller dissipation error at lower wavenumbers than lower-

order upwind schemes 
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Real Part of Modified Scaled Wave-

number: Dispersion (Phase) 

Imaginary Part of Modified Scaled 

Wave-number: Dissipation 



Additional Numerical Details 
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Air at T∞ = 298.15 K, R = 287 J/Kg-K, γ = 1.4, cp = 1004.5 J/Kg-K,  

a∞ = 346.117 m/s, μ = Sutherland relation,  λ = Sutherland relation 

 

Domain: 0 ≤ x ≤ 9.6L, 0 ≤ y ≤ 10L, 0 ≤ z ≤ 4.8L, L = 0.01 m 

 

    Grid A: 128×97×128 

    Grid B: 192×129×192 

    Grid C: 256×145×256 

uniform spacing and periodic B.Cs. in x- and z-directions 

nonuniform spacing and adiabatic viscous wall B.C. (lower boundary) and 

non-reflecting characteristic B.C. (upper boundary) in y-direction 

 

4-stage Runge-Kutta time advancement 

 

Initial condition obtained from prescribed turbulent mean flow profile and 

velocity fluctuations obtained from channel flow simulations (see paper) 

 



Summary of Freestream Conditions and Cases Run 

Nominal Reynolds Number Cases 

U∞ 

(m/s) 

M∞ P∞ 

(Pa) 

Re∞ 

(m-1) 

SSCD UBR DCD-8-F 

-2 -4 -6 -8 -3 -5 -7 

50 0.144 25331 8.05×105 B B B B B B B B 

250 0.722 5066 8.05×105 B B B B B B B B 

 

500 

 

1.445 

 

3800 

 

1.21×106 

A A 

B B B B B B B B 

C C 

 

750 

 

2.167 

 

3800 

 

1.81×106 

A A 

B B B B B B B B 

C C 

 

1000 

 

2.889 

 

4560 

 

2.90×106 

A A 

B B B B B B B B 

C C 
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Grid A = 128×97×128 Δyw
+ ≈ 0.33, Δx+ ≈ 24, Δz+ ≈ 12 

Grid B = 192×129×192  Δyw
+ ≈ 0.33, Δx+ ≈ 16, Δz+ ≈ 8 

Grid C = 256×145×256 Δyw
+ ≈ 0.33, Δx+ ≈ 12, Δz+ ≈ 6 

Note: only 

SSCD-8 and 

UBR-7 were run 

on grids A and C 



Summary of Freestream Conditions and Cases Run 

Nominal Reynolds Numbers Cases (Cont’d) 

U∞ 

(m/s) 

M∞ P∞ 

(Pa) 

Re∞ 

(m-1) 

SSCD UBR DCD-8-F 

-2 -4 -6 -8 -3 -5 -7 

 

1250 

 

3.612 

 

5066 

 

4.03×106 

A 

B B B B B B 

C C 

 

1500 

 

4.334 

 

6333 

 

6.04×106 

A 

B B B B 

C 

1750 5.056 7599 8.46×106 B B B B 

C 
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Note: only SSCD-8 and UBR-7 were run on grids A and C 

 

Grid A = 128×97×128 Δyw
+ ≈ 0.33, Δx+ ≈ 24, Δz+ ≈ 12 

Grid B = 192×129×192  Δyw
+ ≈ 0.33, Δx+ ≈ 16, Δz+ ≈ 8 

Grid C = 256×145×256 Δyw
+ ≈ 0.33, Δx+ ≈ 12, Δz+ ≈ 6 



Summary of Freestream Conditions and Cases Run 

Reduced Reynolds Number Cases 

U∞ 

(m/s) 

M∞ P∞ 

(Pa) 

Re∞ 

(m-1) 

SSCD UBR DCD-8-F 

-2 -4 -6 -8 -3 -5 -7 

 

500 

 

1.445 

 

2533 

 

8.05×105 

A A 

B B 

C C 

 

750 

 

2.167 

 

2533 

 

1.21×106 

A A 

B B 

C C 

 

1000 

 

2.889 

 

3040 

 

1.93×106 

A A 

B B 

C C 
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Note: only SSCD-8 and UBR-7 were run at these conditions 

 

Grid A = 128×97×128 Δyw
+ ≈ 0.23, Δx+ ≈ 16, Δz+ ≈ 8 

Grid B = 192×129×192  Δyw
+ ≈ 0.22, Δx+ ≈ 11, Δz+ ≈ 5 

Grid C = 256×145×256 Δyw
+ ≈ 0.22, Δx+ ≈ 8, Δz+ ≈ 4 



Summary of Freestream Conditions and Cases Run 

Reduced Reynolds Number Cases (Cont’d) 

U∞ 

(m/s) 

M∞ P∞ 

(Pa) 

Re∞ 

(m-1) 

SSCD UBR DCD-8-F 

-2 -4 -6 -8 -3 -5 -7 

 

1250 

 

3.612 

 

3378 

 

2.68×106 

A A 

B B 

C C 

 

1500 

 

4.334 

 

4222 

 

4.03×106 

A 

B B 

C C 

 

1750 

 

5.056 

 

5066 

 

5.64×106 

A 

B 

C 
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Note: only SSCD-8 and UBR-7 were run at these conditions 

 

Grid A = 128×97×128 Δyw
+ ≈ 0.23, Δx+ ≈ 16, Δz+ ≈ 8 

Grid B = 192×129×192  Δyw
+ ≈ 0.22, Δx+ ≈ 11, Δz+ ≈ 5 

Grid C = 256×145×256 Δyw
+ ≈ 0.22, Δx+ ≈ 8, Δz+ ≈ 4 



Turbulent Boundary Layer at Mach 2.889, Re = 1.93×106 m-1 

Iso-surfaces of Q-criterion 

 Simulation run using SSCD-8 scheme on Grid C: 256×145×256 points 

 Iso-surfaces colored by normalized velocity magnitude U/U∞ and temperature T/T∞ 

 t* is a normalized timescale t U∞ / 9.6L (domain flowthrough timescale) 

 Turbulent flow structure is evident, as are sharp gradients near wall 
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Normalized Velocity Normalized Temperature 



Turbulent Boundary Layer at Mach 2.889, Re = 1.93×106 m-1 

Contour Plots in x-z plane at y+ = 12.6 

 Velocity magnitude and temperature are normalized by freestream values 

 This x-z cutting lane at y+  =12.6 is the location of peak velocity fluctuations 

 Elongated streaky structures characteristic of near-wall turbulence are easily 

observed, along with sharp fluctuations in temperature 
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Normalized Velocity Normalized Temperature 



Turbulent Boundary Layer at Mach 2.889, Re = 1.93×106 m-1 

Scatter Plots in x-z plane at y+ = 12.6 

 Streamwise velocity and temperature are normalized by freestream values 

 The green line and symbols indicates a results extracted from a single line at x / L = 4.8  

 The blue lines indicate the average value as well as ± one standard deviation 

 The streaky structures are quite evident in the constant x-station spanwise profiles 

 As the calculation of the inviscid flux involves computing derivatives of variables 

involving ρ, u, v, w and p, the need for adequate grid resolution and high numerical 

accuracy in computing these types of flows is obvious 
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Normalized Streamwise Velocity Normalized Temperature 



Turbulent Boundary Layer at Mach 2.889, Re = 1.93×106 m-1 

Normalized Fluctuations along X / L = 4.8 Line at y+ = 12.6 

 In left panel, normalized streamwise velocity and temperature fluctuations are 

compared spanwise along the x / L = 4.8 line at y+ = 12.6 

 The two fluctuations are generally anti-correlated.  Also shown is a plot of the 

“fluctuation” form of the Strong Reynolds Analogy for comparison.  At the y+ = 12.6 

plane, the value of the RMS form of the SRA is 0.897 – a strong correlation on average. 

 In the right panel, two expressions for the fluctuating Mach number are compared.  

The effect of the temperature/sound speed fluctuations (anti-correlated with u) is 

evident. 
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Fluctuating u and T Fluctuating Mach Numbers 



Comparison of Non-Dissipative SSCD Schemes  

at Mach 0.144, Re = 8.05×105 m-1 on Grid B  

 All four SSCD schemes generally compare quite well with the transformed (van Driest 

II) Karman-Schoenherr relation for skin friction at this condition 

 All four similarly match the laminar sublayer, log law, and incompressible DNS velocity 

profile of Simens et al. (2009) and Jimenez et al. (2010) at Reδ2 = 1551 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Non-Dissipative SSCD Schemes  

at Mach 0.722, Re = 8.05×105 m-1 on Grid B  

 All four SSCD schemes generally compare quite well with the transformed (van Driest 

II) Karman-Schoenherr relation for skin friction at this condition 

 All four similarly match the laminar sublayer, log law, and incompressible DNS velocity 

profile at Reδ2 = 1551 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Non-Dissipative SSCD Schemes  

at Mach 1.445, Re = 1.21×106 m-1 on Grid B  

 The SSCD-4, -6 and -8 schemes generally compare quite well with the transformed (van 

Driest II) Karman-Schoenherr relation for skin friction at this condition.  SSCD-2 

exhibits a skin friction slightly higher than the relation. 

 All three high-order methods similarly match the laminar sublayer, log law, and 

incompressible DNS velocity profile at Reδ2 = 1551.  SSCD-2 begins to exhibit a slightly 

smaller wake strength than the others. 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Non-Dissipative SSCD Schemes  

at Mach 2.167, Re = 1.81×106 m-1 on Grid B  

 The SSCD-4, -6 and -8 schemes generally compare quite well with the transformed (van 

Driest II) Karman-Schoenherr relation for skin friction at this condition.  SSCD-2 

exhibits a skin friction higher than the relation. 

 All three high-order methods similarly match the laminar sublayer, log law, and 

incompressible DNS velocity profile at Reδ2 = 1551.  SSCD-2 exhibits a smaller wake 

strength than the others, and also starts to fall slightly below the log law line. 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Non-Dissipative SSCD Schemes  

at Mach 2.889, Re = 2.90×106 m-1 on Grid B  

 The SSCD-4, -6 and -8 schemes generally compare quite well with the transformed (van 

Driest II) Karman-Schoenherr relation for skin friction at this condition.  SSCD-2 

exhibits a skin friction higher than the relation. 

 All three high-order methods similarly match the laminar sublayer, log law, and 

incompressible DNS velocity profile at Reδ2 = 1551.  SSCD-2 exhibits a smaller wake 

strength than the others, and also starts to fall slightly below the log law line. 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Non-Dissipative SSCD Schemes  

at Mach 3.612, Re = 4.03×106 m-1 on Grid B  

 The SSCD-6 and -8 schemes generally compare quite well with the transformed (van 

Driest II) Karman-Schoenherr relation for skin friction at this condition.  SSCD-2 and -4 

were not stable at this condition. 

 The two high-order methods similarly match the laminar sublayer, log law, and 

incompressible DNS velocity profile at Reδ2 = 1551 

 Note that the boundary layer thickness (at equivalent Reδ2) has grown noticably 

shorter in wall coordinates than was the case for the subsonic cases 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Dissipative UBR and DCD-8-F Schemes  

at Mach 0.144, Re = 8.05×105 m-1 on Grid B  

 The UBR-7 and DCD-8-F schemes generally compare quite well with the transformed 

(van Driest II) Karman-Schoenherr relation for skin friction at this condition 

 They similarly match the laminar sublayer, log law, and incompressible DNS velocity 

profile at Reδ2 = 1551 

 UBR-5 does less well, and UBR-3 does poorly.  This can be traced to the excessive 

dissipation in the basic Roe scheme at low Mach numbers.  Fixes for this published in 

recent years bring UBR-3 close to UBR-5 for this case. 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Dissipative UBR and DCD-8-F Schemes  

at Mach 0.722, Re = 8.05×105 m-1 on Grid B  

 The UBR-7 and DCD-8-F schemes generally compare quite well with the transformed 

(van Driest II) Karman-Schoenherr relation for skin friction at this condition 

 They similarly match the laminar sublayer, log law, and incompressible DNS velocity 

profile at Reδ2 = 1551 

 UBR-5 is now nearly as good as UBR-7 and DCD-8-F, rising slightly over the log law line 

 UBR-3 is better than it was at Mach 0.144, but still has an unacceptable velocity profile 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Dissipative UBR and DCD-8-F Schemes  

at Mach 1.445, Re = 1.21×106 m-1 on Grid B  

 The UBR-7 and DCD-8-F schemes generally compare quite well with the transformed 

(van Driest II) Karman-Schoenherr relation for skin friction at this condition 

 They similarly match the laminar sublayer, log law, and incompressible DNS velocity 

profile at Reδ2 = 1551.  Both do not predict quite the same wake strength that SSCD-8 

did. 

 UBR-5 is nearly as good as UBR-7 and DCD-8-F 

 UBR-3 is better than it was at Mach 0.144, but still has an unacceptable velocity profile 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Dissipative UBR and DCD-8-F Schemes  

at Mach 2.167, Re = 1.81×106 m-1 on Grid B  

 The UBR-7 and DCD-8-F schemes generally compare well with the transformed (van 

Driest II) Karman-Schoenherr relation for skin friction at this condition 

 They similarly match the laminar sublayer, log law, and incompressible DNS velocity 

profile at Reδ2 = 1551.  Both do not predict quite the same wake strength that SSCD-8 

did. 

 UBR-5 is nearly as good as UBR-7 and DCD-8-F 

 UBR-3 is better than it was at Mach 0.144, but still has an unacceptable velocity profile 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 

 



Comparison of Dissipative UBR and DCD-8-F Schemes  

at Mach 2.889, Re = 2.90×106 m-1 on Grid B  

 The UBR-7 and DCD-8-F schemes generally compare quite well with the transformed 

(van Driest II) Karman-Schoenherr relation for skin friction at this condition 

 They similarly match the laminar sublayer, log law, and incompressible DNS velocity 

profile at Reδ2 = 1551.  UBR-7 does not predict quite the same wake strength that 

SSCD-8 did. 

 UBR-5 is nearly as good as UBR-7 and DCD-8-F 

 UBR-3 is better than it was at Mach 0.144, but still has an unacceptable velocity profile 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Dissipative UBR and DCD-8-F Schemes  

at Mach 3.612, Re = 4.03×106 m-1 on Grid B  

 The UBR-7 and DCD-8-F schemes generally compare quite well with the transformed 

(van Driest II) Karman-Schoenherr relation for skin friction at this condition 

 They similarly match the laminar sublayer, log law, and incompressible DNS velocity 

profile at Reδ2 = 1551.  UBR-7 does not predict quite the same wake strength that 

SSCD-8 did. 

 UBR-5 is nearly as good as UBR-7 and DCD-8-F 

 UBR-3 is better than it was at Mach 0.144, but still has an unacceptable velocity profile 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Dissipative UBR and DCD-8-F Schemes  

at Mach 4.334, Re = 6.04×106 m-1 on Grid B  

 The UBR-7 and DCD-8-F schemes generally compare quite well with the transformed 

(van Driest II) Karman-Schoenherr relation for skin friction at this condition 

 They similarly match the laminar sublayer, log law, and incompressible DNS velocity 

profile at Reδ2 = 1551.  DCD-8-F exhibits a slightly higher wake strength than UBR-7. 

 UBR-5 is nearly as good as UBR-7 and DCD-8-F 

 UBR-3 is better than it was at Mach 0.144, but still has an unacceptable velocity profile 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Comparison of Dissipative UBR and DCD-8-F Schemes  

at Mach 5.056, Re = 8.46×106 m-1 on Grid B  

 The UBR-7 and DCD-8-F schemes generally compare quite well with the transformed 

(van Driest II) Karman-Schoenherr relation for skin friction at this condition 

 They similarly match the laminar sublayer, log law, and incompressible DNS velocity 

profile at Reδ2 = 1551. DCD-8-F exhibits a slightly higher wake strength than UBR-7. 

 UBR-5 is nearly as good as UBR-7 and DCD-8-F 

 UBR-3 is better than it was at Mach 0.144, but still has an unacceptable velocity profile 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Fluctuating RMS Mach Number Profiles 

Nominal Reynolds Number Cases on Grid B 

 Clear increase in fluctuating Mach number with freestream Mach number 

 Some differences in the profiles are evident between the two numerical methods at 

supersonic conditions.  UBR-7 predicts a higher fluctuating Mach number near the wall 

than SSCD-8 does. 

 The results suggest that fluctuating Mach numbers above 0.34 are problematic for 

non-dissipative schemes, while dissipative schemes can handle values up to 0.5 
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SSCD-8 UBR-7 



Effect of Grid Resolution on Skin Friction and 

Velocity Profiles at Mach 3.612 

 Grid B at nominal Reynolds number had Δyw
+ ≈ 0.33, Δx+ ≈ 16, Δz+ ≈ 8 

 Grid C at reduced Reynolds number had Δyw
+ ≈ 0.22, Δx+ ≈ 8, Δz+ ≈ 4 

 Little difference between the two grid resolutions (in wall coordinates) is evident in the 

results for SSCD-8 

 Higher grid resolution (in wall coordinates) does appear to improve the prediction of 

skin friction for UBR-7, and also increase the wake strength 
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Skin Friction Mean Velocity Profiles 

(van Driest-transformed) 



Effect of Grid Resolution on  

RMS Velocity Components at Mach 3.612 

 Grid B at nominal Reynolds number had Δyw
+ ≈ 0.33, Δx+ ≈ 16, Δz+ ≈ 8 

 Grid C at reduced Reynolds number had Δyw
+ ≈ 0.22, Δx+ ≈ 8, Δz+ ≈ 4 

 UBR-7 at either grid resolution (in wall coordinates) appears to predict higher near-wall 

peak values of uvd’+ than SSCD-8 does – the difference may narrow at higher resolution 

 Note comparatively lower values of uvd’+ in some of the outer layer (wake region) at the 

coarser grid resolution – may possibly help explain reduced wake strength 
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Comparison in Wall Coordinates Comparison in Outer Coordinates 



Effect of Grid Resolution on  

Coles’ Wake Strength Parameter 

 The wake strength is the difference between the velocity profile and the log law line at 

the outer edge of the boundary layer – here the 99% boundary layer thickness was used 

 Coles’ Profile for wake strength as a function of ReΘ was compiled from a large set of 

the available experimental data in the early 1960s 

 The differences between the SSCD-8 and UBR-7 schemes at the coarser grid resolution 

are evident.  The differences narrow considerably at higher grid resolution. 
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Nominal Reynolds Number Cases 

(Δyw
+ ≈ 0.33, Δx+ ≈ 16, Δz+ ≈ 8) 

Reduced Reynolds Number Cases 

(Δyw
+ ≈ 0.22, Δx+ ≈ 8, Δz+ ≈ 4) 



Effect of Grid Resolution on  

Boundary Layer Shape Factor 

 The boundary layer shape factor, H, is the ratio between the displacement thickness, δ*, 

and the momentum thickness, Θ 

 Michel’s curve for H (Gatski, 2009) is simple for an adiabatic turbulent boundary layer: 

H = Hinc + 0.4 M∞
2 

 Both numerical schemes show excellent agreement with Michel’s curve.  Very little 

effect from grid resolution is evident. 
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Nominal Reynolds Number Cases 

(Δyw
+ ≈ 0.33, Δx+ ≈ 16, Δz+ ≈ 8) 

Reduced Reynolds Number Cases 

(Δyw
+ ≈ 0.22, Δx+ ≈ 8, Δz+ ≈ 4) 



Effect of Assuming Constant cp with  

Sutherland Formulas for μ and λ 

 This combination of assumptions leads to unrealistically low Prandtl numbers at 

elevated temperatures – should have used variable cp, or assumed constant Pr and 

calculated λ from it (λ = μ cp / Pr) 
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Effect of Grid Resolution, Numerical Scheme and λ on 

Turbulent Boundary Layer Recovery Factor 

 The turbulent boundary layer recovery factor is a measure of how much of the total 

temperature of the flow is actually recovered at the wall in adiabatic flow 

 An additional 11 simulations were run at the highest grid resolution with the 

assumption of fixed Pr = Pr (298.15 K), and λ = μ cp / Pr 

 The effect of this assumption on recovery factor is significant 

 Finer wall-normal grid spacing appears to help bring the observed recovery 

temperature closer to expected values 

 Also note that UBR-7 is typically slightly better here than SSCD-8 
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SSCD-8 UBR-7 



Summary 

 Four non-dissipative skew-symmetric central difference  (SSCD-2, SSCD-4, SSCD-6 

and SSCD-8) schemes, three upwind-biased Roe (UBR-3, UBR-5 and UBR-7) 

schemes, and one filtered divergence form central difference (DCD-8-F) scheme 

were evaluated on a temporally-developing compressible turbulent boundary layer 

problem.  

 The schemes were tested at Mach numbers ranging from effectively incompressible 

(Mach 0.144) to hypersonic (Mach 5.056).  Three different grid sizes were used, and 

case sets at two different unit Reynolds numbers were run for all of the supersonic 

cases.  The schemes were evaluated in terms of agreement with well-established 

skin friction and velocity profiles. 

 There are clear benefits to higher-order methods for this problem.  Among the non-

dissipative methods, at the baseline grid resolution in wall coordinates used for 

much of this work (Δx+ ≈ 16, Δz+ ≈ 8), the SSCD-2 scheme clearly became less 

accurate as the Mach number increased.  Further, both SSCD-2 and SSCD-4 became 

unstable for cases at Mach 3.612 and higher.  SSCD-6 and SSCD-8 remained stable 

at Mach 3.612, and SSCD-8 was stable at Mach 4.334 at the two highest grid 

resolutions (in wall coordinates) tested.  The results suggest that fluctuating Mach 

numbers above 0.34 become problematic for a non-dissipative scheme, though it 

appears that fluctuating Mach numbers of 0.43 can be tolerated with higher grid 

resolution. 
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Summary 

 Among the dissipative schemes, UBR-7 offers clear improvements over UBR-3, and 

to a lesser extent UBR-5, across the entire Mach number range.  UBR-3 performed 

particularly poorly at the lowest Mach number tested, likely due to the relatively 

higher dissipation characteristics of the Roe solver at low speeds.  The DCD-8-F 

scheme appeared to perform similarly to UBR-7, and possibly slightly better.  UBR-7 

and DCD-8-F appear to have an excellent combination of accuracy and robustness.  

The dissipative UBR-7 scheme handled fluctuating Mach numbers up to 0.5 without 

difficulty.  

 The SSCD-8 and UBR-7 schemes generally performed very similarly on this problem.  

Some differences between these schemes were noted with respect to turbulence 

intensities and wake strength at nominal grid resolution in wall coordinates (Δx+ ≈ 8, 

Δz+ ≈ 4).  These differences diminished considerably at higher grid resolution (Δx+ ≈ 

8, Δz+ ≈ 4).  The SSCD-8 scheme at both grid resolutions, and the UBR-7 scheme at 

higher grid resolution, exhibited reasonably good agreement with Coles' fit for wake 

strength as a function of ReΘ.  The SSCD-8 and UBR-7 results also agree well with 

Michel's formula for boundary layer shape factor as a function of Mach number.  

Some small differences between the two schemes were noted for the turbulent 

boundary layer recovery factor.  A reduction in Δyw
+ from ≈ 0.33 to ≈ 0.22 also had a 

significant effect on the recovery factor. 
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Turbulence Modeling Strategies 
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DNS  Directly resolve all scales of turbulent motion.  There is no 

eddy viscosity, and the intrinsic dissipation of the inviscid 

flux must be << laminar viscosity. 

 

LES/ILES Directly resolve largest scales of turbulent motion, and 

model the smaller scales using one of two approaches:    

A) classic LES - a subgrid-scale (SGS) turbulence model, 

requiring that the intrinsic dissipation of the inviscid flux is 

<< SGS eddy viscosity, or B) ILES – where the intrinsic 

dissipation of a 2nd order accurate inviscid flux 

approximately mimics the SGS eddy viscosity. 

 

HRANS-LES Attempts to directly resolve turbulence only in regions 

with adequate grid resolution, otherwise turbulence is 

modeled.  In LES regions the algorithmic requirements 

would be consistent with the above description.  

   

RANS Turbulence is entirely modeled. 


