

#### **Bistatic Optical Photometry of GEO Objects**

Patrick Seitzer Department of Astronomy University of Michigan pseitzer@umich.edu

Edwin S. Barker (LZ Technology, Inc), Heather Cowardin (Jacobs), Susan M. Lederer (NASA/JSC), Brent Buckalew (Jacobs)

Presented at 33<sup>rd</sup> IADC WG1, Houston, 30 March – 2 April 2015.

Work supported by NASA's Orbital Debris Program Office, Johnson Space Center, Houston, Texas. National Aeronautics and Space Administration

#### Acknowledgements



**Dave Monet** 

**Marc Murison** 

US Naval Observatory Flagstaff Station

**Thomas Kelcey** 

Boeing Corp.

# **Bistatic Observations of GEO objects**



- Photometry of GEO objects from different topocentric phase angles:
  - Same incident angle of sunlight.
  - Two different reflection angles.
  - What can be learned about shape, change in attitude, and materials?

National Aeronautics and Space Administration

#### North: USNO 1.3-m, Flagstaff, Arizona, USA





W 111.7 N 35.2



# South: MODEST 0.6-m, Cerro Tololo, Chile





W 70.8 S 30.2



# **Summary of Observations**



- 4 hours of coordinated observations night of 22 Feb 2014 UT.
- USNO 1.3-m in North, MODEST 0.6-m in South
  - Delta longitude = 40.9 deg.
  - Delta latitude = 65.4 deg
  - GEO Parallax factor > 10 degrees
  - Baseline ~ 7800 km
- Coordinated observations of same region of GEO during same 30 minute time span - 8 sets of observations. All exposures on both telescopes 3 seconds.
- Observations with telescope drives off GEO survey mode. Started with cataloged GEO object in field for test – insure our first observations work!
- 1 controlled object SSN 28644 plus 7 uncontrolled objects.

#### **Observing Geometry: 0230 UT 22 Feb 2014**





#### MODEST image 182 at 02:44:54 UT





#### USNO image 063 at 02:44:30 UT





# Photometry from bistatic data



- Today: calibrated magnitudes for one controlled and 7 uncontrolled objects to Landolt R.
- Filters:
  - MODEST broad R.
  - USNO SDSS r.
- No correction for any geometric effects:
  - No correction to standard range.
  - No correction for phase angle.
- Plots show full 30 minute observing window if less data than this plotted, object went out of field of view before 30 minute window closed.
- Errors are size of the points typically 0.05 or less.
- Only measurements not confused with star trails plotted.

### **SSN28644 SPACEWAY 1** (incl = 0.03 deg)







Colocated 31862 (Direct TV 10) and 36131 (Direct TV 12) show similar light curves.

# SSN14307 RADUGA 13 (incl = 15.6 deg)







Increases in brightness at different times!

# SSN13056 EKRAN 8 (incl = 14.7 deg)







# SSN15384 LEASAT 1 (incl = 13.7 deg)







Very different magnitudes and light curves.

### SSN20945 SATCOM C1 (incl = 8.9 deg)







#### SSN20945 – Periodogram Analysis







USNO

MODEST

# SSN23199 BRAZILSAT B1 (incl = 6.4 deg)





# SSN23846 MSAT M1 (incl = 6.1 deg)







#### Well behaved!

# SSN28417 GSAT 3 (incl = 3.2 deg)







# Summary



 Proof of concept observations on known objects to judge advantages of doing bistatic GEO observations.

#### • Photometry:

- Observed optical brightness depends on time *and* location.
- Very different light curves depending on object.
- Light curve for any one object qualitatively similar as observed at two sites, but amplitude and timing can be quite different.