METHODS AND DEVICES FOR MICRO-ISOLATION, EXTRACTION, AND/OR ANALYSIS OF MICROSCE COMPONENTS

Inventors: Emil P. Kartalov, Pasadena, CA (US); Darryl Shibata, Rolling Hills Estates, CA (US); Clive Taylor, Malibu, CA (US); Lawrence A. Wade, La Canada-Flintridge, CA (US)

Assignees: California Institute of Technology, Pasadena, CA (US); University of Southern California, Los Angeles, CA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 291 days.

Appl. No.: 13/010,761
Filed: Jan. 20, 2011

Prior Publication Data

Related U.S. Application Data

Int. Cl.
C12N 5/02 (2006.01)
C12N 5/00 (2006.01)
C12M 1/34 (2006.01)
C12N 13/00 (2006.01)
G01N 33/543 (2006.01)

U.S. Cl.
CPC C12N 13/00 (2013.01); G01N 33/5436 (2013.01)
USPC 435/395; 435/325; 435/381; 435/287.1; 435/288.3

Abstract
Provided herein are devices and methods for the micro-isolation of biological cellular material. A micro-isolation apparatus described can comprise a photomask that protects regions of interest against DNA-destroying illumination. The micro-isolation apparatus can further comprise photosensitive material defining access wells following illumination and subsequent developing of the photosensitive material. The micro-isolation apparatus can further comprise a chambered microfluidic device comprising channels providing access to wells defined in photosensitive material. The micro-isolation apparatus can comprise a chambered microfluidic device without access wells defined in photosensitive material where valves control the flow of gases or liquids through the channels of the microfluidic device. Also included are methods for selectively isolating cellular material using the apparatuses described herein, as are methods for biochemical analysis of individual regions of interest of cellular material using the devices described herein. Further included are methods of making masking arrays useful for the methods described herein.

9 Claims, 12 Drawing Sheets
References Cited

U.S. PATENT DOCUMENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor(s)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,802,489 B2</td>
<td>10/2004</td>
<td>Marr et al.</td>
<td>251/129.14</td>
</tr>
<tr>
<td>7,648,838 B2</td>
<td>1/2010</td>
<td>Yoo et al.</td>
<td>435/6</td>
</tr>
<tr>
<td>6,802,489 B2</td>
<td>10/2004</td>
<td>Marr et al.</td>
<td>251/129.14</td>
</tr>
<tr>
<td>7,648,838 B2</td>
<td>1/2010</td>
<td>Yoo et al.</td>
<td>435/6</td>
</tr>
</tbody>
</table>

Other Publications

Stevens et al., Lab Chip, 8:2038-2045 (2008).
Lee et al., Lab Chip, 6:886-895 (2006).

Tay, B. et al., “Science in Focus Biology ‘N’ Level”, Pearson Education South Asia Pte Ltd. 2007, p. 172.

* cited by examiner
FIGURE 2
FIGURE 3
FIGURE 10
FIGURE 12
METHODS AND DEVICES FOR MICRO-ISOLATION, EXTRACTION, AND/OR ANALYSIS OF MICROSCALE COMPONENTS

CROSS REFERENCE TO RELATED APPLICATIONS

This present application claims priority to U.S. Provisional Application No. 61/297,207, filed on Jan. 21, 2010, and U.S. Provisional Application No. 61/309,292, filed on Mar. 1, 2010, each of which is incorporated herein by reference in its entirety.

STATEMENT OF GOVERNMENT GRANT

The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected to retain title.

FIELD

The present disclosure relates to micro-isolation of microscale components such as tissue and/or cell samples. More specifically, it relates to methods and devices for such micro-isolation.

BACKGROUND

The isolation of certain microscale components is an important factor in several applications where the ability to differentially analyze properties exhibited by varying types of components (e.g. cell types) is desired.

For example, the ability to recognize properties typical of a component included in a matrix with other similar components can be of importance in various fields, including in particular biological fields. In particular, the ability to identify properties which cause a cell to behave in a certain way is expected to promote an understanding of how cells behave both normally and abnormally. For example, the ability to selectively analyze cancerous cells is expected to provide insight into the particular biochemical activities of those cells relative to normal cells.

However, separating different cell types and in particular cancerous cells from non-cancerous cells can be a difficult endeavor.

SUMMARY

Provided herein are apparatuses and methods for the micro-isolation of micro-scale components such as cellular material, which in several embodiments provide for the selective biochemical analysis of desired components.

According to a first aspect, a micro-isolation apparatus is provided. The micro-isolation apparatus comprises a support, a cellular material mounted upon the support, a photomask comprising a transparent region and a non-transparent blocking region, the non-transparent blocking region covering at least a portion of the transparent region, wherein the photomask is placed over the cellular material such that the blocking region is positioned to correspond to a region of interest of the cellular material to minimize damage to the cellular material in the region of interest by illumination.

According to a second aspect, a micro-isolation apparatus is provided. The micro-isolation apparatus comprises a support, a cellular material mounted upon the support, and a photosensitive material deposited on the cellular material wherein the photosensitive material comprises an access well positioned to correspond to a region of interest of the cellular material. Some embodiments can further include a chambered microfluidic device comprising at least one channel that provides access to the access well and is positioned adjacent to a photosensitive material located above the cellular material.

According to a third aspect, a micro-isolation apparatus is provided. The micro-isolation apparatus comprises a first photosensitive material deposited on cellular material adapted to be contained in the apparatus, wherein the first photosensitive material comprises a first access well positioned to correspond to a region of interest of the cellular material, a first chambered microfluidic device comprising at least one channel that provides access to the first access well and is positioned adjacent to the first photosensitive material, a second photosensitive material adapted to be deposited on the cellular material opposite to the first photosensitive material wherein the second photosensitive material comprises a second access well positioned to correspond to an opposing side of the region of interest of the cellular material, and a second chambered microfluidic device comprising at least one channel that provides access to the second access well and is positioned adjacent to the second photosensitive material. In some embodiments, the first chambered microfluidic device provides an input to the region of interest of the tissue and/or cells and the channel or channels of the second chambered microfluidic device provide an output from the region of interest of the tissue and/or cells.

According to a fourth aspect, a maskless micro-isolation apparatus is provided. The apparatus comprises cellular material, a first chambered microfluidic device comprising multiple channels, wherein each channel provides access to respective regions of interest of the cellular material, and a second chambered microfluidic device comprising multiple channels positioned to correspond to the regions of interest of the cellular material that are opposite to the regions of interest corresponding to the first chambered microfluidic device.

According to a fifth aspect, a method for selectively isolating cellular material is provided. The method comprises positioning cellular material on a support, placing a photomask comprising a blocking region covering at least part of a blocking support over the cellular material such that the blocking region corresponds to a region of interest of the cellular material, and exposing the cellular material to photons wherein the photons penetrate the blocking support without penetrating the blocking region so that the cellular material in the region of interest is preserved and the cellular material that is not in the region of interest is damaged.

According to a sixth aspect, a method for selectively isolating cellular material is provided. The method comprises positioning cellular material on a support, depositing a photosensitive material on the cellular material, applying a photomask comprising a blocking region onto the photosensitive material, exposing the photosensitive material through a light accessible region of the photomask to photons in order to generate a lithographic pattern on the photosensitive material, removing the photomask, and applying a developer to the photosensitive material in order to define an access well corresponding to a region of interest of the cellular material.

According to a seventh aspect, a method for selectively isolating cellular material is provided. The method comprises positioning cellular material on a support, depositing a photosensitive material on the cellular material, exposing the photosensitive material to photons in order to generate a lithographic pattern on the photosensitive material, removing the photomask, and applying a developer to the photosensi-
tive material in order to define an access well corresponding to a region of interest of the cellular material.

According to an eighth aspect, a method for selectively isolating cellular material is provided. The method comprises positioning cellular material on a support, and exposing an unwanted region of the cellular material to photons to selectively damage DNA in the unwanted region of the cellular material while not exposing a wanted region of the cellular material to minimize damage to the DNA in the wanted region.

According to a ninth aspect, a method to analyze a biological sample is provided. The method comprises forming microfluidic access wells in a substrate, filling the microfluidic access wells with a reaction mixture comprising digestion agents and components necessary for a desired reaction, evaporating the mixture to uniformly decrease the reaction mixture level, aligning a support comprising cellular material facing downward on top of the microfluidic access wells such that the cellular material is exposed to the reaction mixture, vertically turning over the access wells comprising the support and cellular material, allowing the reaction mixture to flow by gravity to cover the cellular material, allowing the digestion agents to break down the cellular material, releasing contents from the cellular material into the microfluidic access wells, and performing the reaction simultaneously but separately in each of the microfluidic access wells.

According to a tenth aspect, a method to isolate a region of the cellular material to preserve the DNA or cellular material is provided. The method comprises positioning cellular material mounted upon the support, a photosensitive material over an unwanted region of interest of the cellular material while leaving a region of interest of the cellular material intact. The method comprises positioning cellular material on a support, identifying a region of interest of the cellular material, and generating an active array of micro-isolation apparatus is provided. The method comprises forming a micro-isolation apparatus comprising a support, cellular material mounted upon the support, a photosensitive material mounted upon the support, and components necessary for a desired reaction, allowing the reaction mixture along a first axis, directing the illumination light through (e.g. liquid crystal) polarizer elements that are aligned or programmed in such a way that the illumination light is absorbed in the polarizer elements over regions of interest of the cellular material while allowing the illumination light to damage DNA or cellular material in an unwanted region of the cellular material to preserve the DNA or cellular material in the region of interest of the cellular material.

According to an eleventh aspect, a method to isolate a region of the cellular material to selectively damage DNA in the unwanted region of interest of the cellular material, and generating an active array of illuminators that target unwanted regions of the cellular material while allowing the region of interest of the cellular material to be non-illuminated.

According to a twelfth aspect, a method for selectively isolating cellular material is provided. The method comprises positioning cellular material on a support, depositing a negative photosensitive material on the cellular material, capturing an image of the cellular material through the negative photosensitive material as reflected on a processing mirror or mirror array, positioning the processing mirror or programming a mirror array, such that photons are directed to an unwanted region of the cellular material to damage DNA in the unwanted region of the cellular material while leaving DNA in a cellular region of interest intact.

According to a thirteenth aspect, a method for making a micro-isolation apparatus is provided. The method comprises positioning cellular material on a support, identifying an unwanted region of interest of the cellular material, converting a selection into a digital image, transferring the digital image to a plate comprising a layer of photosensitive material over a metal, using a laser to trace a digital mask on the photosensitive material, developing the photosensitive material to remove exposed photosensitive material, chemically etching the metal in the area where the photosensitive material has been removed, and removing remaining photosensitive material to produce a plate comprising a layer of metal in a pattern where the metal is absent corresponding to the unwanted region of interest of the cellular material and the metal remaining corresponds to a region of interest of the cellular material.

According to a fourteenth aspect, a method of making an active masking array is provided. The method comprising positioning cellular material on a support, identifying a region of interest of the cellular material, polarizing an illumination light along a first axis, directing the illumination light through (e.g. liquid crystal) polarizer elements that are aligned or programmed in such a way that the illumination light is absorbed in the polarizer elements over regions of interest of the cellular material while allowing the illumination light to damage DNA or cellular material in an unwanted region of the cellular material to preserve the DNA or cellular material in the region of interest of the cellular material.

According to a fifteenth aspect, a method of making an active array is provided. The method comprising positioning cellular material on a support, identifying a region of interest of the cellular material, and generating an active array of illuminators that target unwanted regions of the cellular material while allowing the region of interest of the cellular material to be non-illuminated.

According to a sixteenth aspect, a method of analyzing a biological sample is provided. The method comprising positioning cellular material on a support, depositing a negative photosensitive material on the cellular material, applying a photomask comprising a blocking region onto the negative photosensitive material, exposing the negative photosensitive material to photons in order to generate a lithographic pattern on the negative photosensitive material, removing the photomask, applying a developer to the negative photosensitive material to remove the negative photosensitive material, depositing a support comprising cellular material on the support, and performing a reaction simultaneously but separately in each well of the array.

According to a seventeenth aspect, a micro-isolation apparatus is provided. The apparatus comprising a support, cellular material mounted upon the support, a photosensitive mate-
related to FIG. 3, and illustrates a top view of a standardized region of interest of the cellular material, positioning a photosensitive material on the cellular material, exposing the photosensitive material through a light accessible region of the photomask to photons in order to generate a lithographic pattern on the photosensitive material, removing the photomask, applying a developer to the photosensitive material in order to define an access well corresponding to a region of interest of the cellular material, positioning a microfluidic device that provides access to the access well and is positioned adjacent to a photosensitive material located above the cellular material, and analyzing cellular material from the regions of interest.

According to a nineteenth aspect, a method for selectively isolating cellular material is provided. The method comprises positioning cellular material on a support, depositing a photosensitive material on the cellular material, applying a photomask comprising a blocking region onto the photosensitive material, exposing the photosensitive material through a light accessible region of the photomask to photons in order to generate a lithographic pattern on the photosensitive material, removing the photomask, applying a developer to the photosensitive material in order to define an access well corresponding to a region of interest of the cellular material, positioning a microfluidic device that provides access to the access well and is positioned adjacent to a photosensitive material located above the cellular material, and analyzing cellular material from the regions of interest.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present disclosure and, together with the detailed description and the examples, serve to explain the principles and implementations of the disclosure.

FIG. 1 shows a cross-sectional view of a series of steps in which tissue masking selectively destroys DNA.

FIG. 2 shows a cross-sectional view of a series of steps where tissue isolation or masking is performed through lamination with a photosensitive material.

FIG. 3 shows a top view of an embodiment in which tissue isolation targets multiple areas of interest occurring by lamination with a photosensitive material.

FIG. 4 shows a cross-sectional view where a tissue is integrated with microfluidic elements.

FIG. 5A is related to FIG. 3, and illustrates a top view of a customized chambered microfluidic device. FIG. 5B is related to FIG. 3, and illustrates a top view of a standardized chambered microfluidic device.

FIG. 6 shows a cross-sectional view of an embodiment where tissue encapsulation is performed.

FIG. 7 illustrates an embodiment in which a maskless chambered microfluidic device encapsulates a tissue without customized photomasking while specificity of micro-isolation is achieved through active control of arrays of valves allowing specificity of microisolation to be achieved through active control of arrays of valves.

FIG. 8 illustrates a top view of a matrix of microfluidic wells.

FIG. 9 shows a series of steps for the parallel processing of isolated tissue subsections.

FIG. 10 shows a series of steps for the parallel processing of isolated tissue subsections that allows step-wise administration of biochemical agents.

FIG. 11 illustrates an optical setup for dynamic optical array masking.

FIG. 12 provides optical microscopy optical microscope images as an example of the techniques described herein.

DETAILED DESCRIPTION

Methods and systems are provided herein that allow in several embodiments the integration of microfluidic techniques with micro-isolation of light sensitive microscale components, such as cells and/or tissue.

The term “microfluidic” refers to a system or device for handling, processing, ejecting and/or analyzing a fluid sample including at least one channel having microscale dimensions. Microfluidic tissue isolation can be customized morphologically, functionally, and a combination of the two.

The term “micro-isolation” refers to the isolation of microscale components (components having a size or measure in the order of micrometers) and in particular of light sensitive microscale components, which includes, but is not necessarily limited to, one or more biological components. A biological component refers to any organized substance forming part of a living matter, e.g. a cell, cellular material, membranes, organelles, proteins, nucleic acids and/or living organisms of any dimensions or a part thereof (e.g. tissues or various cell extracts). Micro-isolation as used herein can refer to the isolation of a single nucleus, a single cell or a biological component thereof, a group of individual cells, or a cluster of cells, or a group of clusters of cells, or a specific region of a tissue or a portion thereof, or even cellular organelles (e.g. cell nuclei). In particular, in some embodiments, methods and systems herein described allow one to simultaneously address a distributed group of regions of interest across a tissue slide while each region can be a single nucleus, a single cell, a cluster of cells or a biological component thereof.

In some embodiments, the proposed integration of microfluidic techniques and micro-isolation of cellular material molds the microfluidic architectures in accordance with the particular structure of each specific biological component to be isolated. In particular, in some of those embodiments, the approach described herein is mainly built around the cellular material, following the tissue structure such that the devices and methods described herein are adapted to the specific geometry of particular tissues or other biological components. By contrast, in some of the traditional approaches microfluidic devices are structured taking only in accord with engineering considerations (e.g. path minimization, fluidic efficiency), while the biological components in applied devices are forced to comply with these engineering presets and are not taken into consideration.

In some embodiments, the subject matter described represents a paradigm shift in microfluidic technology because 1) microfluidic devices are directly integrated with, onto, or around tissue samples, in contrast to certain conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices, 2) architectural and operational principles of microfluidic devices are mainly subordinated to suit specific tissue structure and needs, in contrast to certain conventional method of building devices according to fluidic function alone and without regard to tissue structure, and/or 3) sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measure-.
pertaining to a biological cell. As used herein, it can refer to.

FIG. 1 illustrates exemplary hardwired masks. Cells (110) inside a tissue slice (120) on a tissue support (e.g. glass slide) (130) are exposed to ultraviolet (UV) light (140) through a photomask (150) comprising blocking regions (e.g. chrome regions) (160) patterned on a transparent blocking support (e.g. glass slide) (170). The blocking regions (160) are patterned in correspondence to cells of interest (180). The illuminating UV light (140) passes through a region of the transparent blocking support that is not blocked (175) and is prevented from exposing an area (195) protected by the blocking region (160). DNA in exposed cells is destroyed (185) but protected DNA inside the cells of interest is preserved (190).

The term “illumination” refers to the exposure of light. Light can be visible or non-visible light, and can be one or more of UV, two-photon, or multi-photon light or additional examples of light of various wavelength suitable to be used in connection with biological components which are identifiable by a skilled person upon reading of the present disclosure.

The term “hardwired” refers to devices, methods and systems herein described or portions thereof, that are tailored for a specific biological component of interest. For example, a particular device is hardwired if it is configured to be suitable for a specific component, e.g. a specific tissue to be investigated using methods and systems herein described. In some embodiments, hardwired devices, methods and systems are herein described that are tailored not only for a specific biological component of interest, but also for a specific investigative approach of interest. For example, in some embodiments, hardwired masks are described that allow UV light to be directed only to areas of biological interest so that the DNA, protein, or other biological material in those areas is damaged or even destroyed by photodamage. In some of those embodiments, damage in areas of interest not exposed to UV is minimized to various extents and in some cases even remain intact. The term “destroy” as used in the present disclosure with reference to an item indicates a damage level able to impact at least one biological activity associated with the item. The term “intact” as used in the present disclosure with reference to an item indicates a molecule that preserves all the biological activities associated with the item.

In an embodiment, cells (or another biological components or microscale component) of interest can be identified, for example, using a microscopic computerized image of the slide and appropriate custom software, which can convert the selection into a digital image. The digital mask can be fed into a direct laser writer, e.g. Heidelberg DWL 66, which transfers a digital mask onto the photosensitive material by direct writing with a resolution of 2 microns or higher (see Example 1).

The term “micro-isolation apparatus” refers to a device that aids in the micro-isolation of a microscale component (e.g. a biological component, which relates to biology, life and/or living processes, such as a cellular material).

The term “cellular material” refers to biological material pertaining to a biological cell. As used herein, it can refer to sub-components of a biological cell, a single intact biological cell, a group of biological cells, or a tissue.

In an embodiment, a particular sample is hardwired using photolithographically defined masks.

The term “blocking region” as used herein pertains to a targeted area within cellular material. Definition of a targeted area can be of any dimensions and include one or more cellular material depending on the experimental design of choice. For example, the region of interest can be an area that is sought to be preserved, or an area that is sought to be damaged or even destroyed. In a further example, the region of interest can be as small as a DNA molecule, or as large as an entire tissue sample, a group of topologically non-contiguous targeted areas in the tissue sample, which are all to be isolated and/or extracted at a same or a different time.

The term “support” as used herein refers to any type of support in which cellular material can be mounted. One type of support is a glass slide, although one skilled in the art would recognize that many materials can provide support for cellular material.

The term “photomask” as used herein refers to the blocking support comprising a blocking region and a light accessible region. The term “blocking” refers to the ability of an item to hinder the passage of light through the item. The term “light accessible” as used herein refers to the ability of an item to allow passage of light through the item. In some embodiments, the photomask can be any type of transparent support (light accessible region) having a non-transparent region (blocking region). In some embodiments, the transparent support can further be at least in part, semi-transparent, or translucent and/or include different blocking portions with different blocking and light accessible capabilities (e.g. limited to one or more selected wavelengths for one or more areas of the photomask). In some embodiments, the photomask can be a physical object (e.g. a glass slide partially covered with chrome, or a transparency partially covered with ink or other blocking material). In some embodiments, the photomask can be purely or partially digital. For example, in some embodiments, the photomask can comprise a series of instructions to a micro-mirror array, which operates so that some mirror elements are activated while others are not. In some of those embodiments, they activate mirror elements to form a photomask pattern on a sample with respect to an illumination light reflected onto the sample by the micro-mirror array. Additional embodiments are encompassed by the present disclosure wherein a photomask is dynamic photomask, as the instructions are dynamically defined in addition or in the alternative to photomask wherein physical blocking material (e.g. chrome coating) blocks light on a suitable support (e.g. glass slide).

The term “blocking region” refers to a region of a blocking support that functions to block photons (e.g. non-transparent region blocking photons by absorption). In an embodiment, a blocked region can be a region of chrome covering the blocking support. One skilled in the art would appreciate that many metals or other materials could be used, for example, to block photon exposure for example, titanium can be deposited on platinum, covered with a photosensitive material, and then similarly oxidized to produce a chemically and mechanically resistant oxide that can serve as a photon shield for agents damaging to micro-components such as cellular material, such as UV exposure. In some embodiments, a material forming a blocking region can also further be a polarizer as will be understood by a skilled person.

The term “blocking support” as used herein refers to a support that can be used to support a blocking region. For example, a blocking support can be transparent, or in general configured for allowing passage of a desired lighting in one or more areas where there is no blocking region.

Embodiments of the present disclosure can use illumination light other than UV. For example, a two-photon or other
multi-photon approach would use illumination of larger wavelengths where the resulting excitation would have an effective wavelength that is half or a smaller fraction of the illumination light. Such illumination wavelengths provide increased resolution because the light intensity is a strong function of the distance from the focal point, which allows more precise focusing of the illumination laser.

Hardwired masking can also be accomplished by other methods, for example, methods using polarizers and/or polarizer arrays. A polarizer surface can in principle be chemically or optically modified to produce contrast between treated and untreated regions to be used as a mask for the embodiments described herein. Some polarizers can function on the principle of aligned molecular structure of polymers, while others are based on metal wire arrays. In either case, disrupting the structural order in chosen regions, for example by heating or melting, would make such regions lose their polarizer property, which would produce the desired contrast between the regions of interest. Any hardwired method used produces a sample where the only remaining DNA and/or other biological material of interest provides the sample of interest. Thus, the destroyed and/or other biological material of interest does not contribute noise to the signal.

In an embodiment, cellular material can be micro-isolated by lamination of unwanted areas. In an embodiment, micro-isolation by lamination provides mutual isolation of non-contiguous regions of interest, while preventing the material from contiguous or non-contiguous unwanted regions from interfering with subsequent reactions. In some of these embodiments, unwanted regions (e.g. DNA or proteins of interest) can be destroyed in subsequent processing of the biological component of interest. In other embodiments, unwanted regions do not necessarily need to be damaged. In particular, in one embodiment DNA or other regions of interest (damaged or not) can be locked inside the laminate thus minimizing the possibility that contamination of the region of interest can occur. In an embodiment, a lamination approach further allows that each area of interest can be contacted with additional microfluidics for individual addressability and individual extraction. In an embodiment, the nature of the photomasking (hardwired or dynamic) is orthogonal to the choice of isolation method (e.g. DNA damaging or tissue lamination). In some of those embodiments, photomasking methods are compatible with both isolation methods.

In an embodiment, after identifying desired cells, a suitable lithography mask can be generated to protect the contents of desired cells. In some of those embodiments, biological material such as DNA or protein from the protected cells can be used in a number of downstream applications including, but not limited to, DNA sequencing, protein analysis, etc. The purity of such specimens will greatly enhance the value and information of downstream applications. In some of these embodiments, the lamination method does not ensure destruction of unwanted biological material, but still maximizes survival of the wanted biological material, because the latter is protected by the blocked regions of the photomask, due to the requirements of the negative photoresist (see e.g. FIG. 2).

In an embodiment, the lamination-based method of micro-isolation relies on the fact that DNA and many other biological materials in tissue slice samples are neither damaged nor removed by organic solvents (e.g. ethylene, acetone, xylene). Thus, it is possible to produce a layer of photocurable material directly onto a tissue slice containing cellular material, cure in situ by photocuring with a desirable mask pattern, and then remove the uncured sections with organic solvents without damaging the biological materials of interest. In those embodiments, photolithographic masking can thus be viewed as a way to use a photosensitive material as a microfluidic element, which can be dynamically defined by optical methods and made to match the morphology and analytical needs of the particular tissue sample.

FIG. 2 is an example of tissue isolation by lamination. (A) A tissue (280) containing a cell of interest (205) is fixed on a tissue support (220). (B) A photosensitive material (210) is then deposited onto the tissue (280). The photosensitive material can be deposited on the tissue, e.g. by simple application, by spinning the substance down on a spincoater, by kinetic mounting, or by using spacers (e.g. microspheres of fixed dimensions) and mechanical contact with a flat surface. (C) A photomask (240) comprising a blocking region (245) is then applied onto the photosensitive material (210). (D) The tissue (280) is then exposed to UV light (230) through the photomask (240) and the photosensitive material (210). (E) Exposure through the photomask (240) produces a lithographic pattern (250) inside the photosensitive material (210). (F) The photomask (240) is removed. (G) A developer is applied (not shown) to remove non-cured sections of the photosensitive material, which leaves the areas of interest (260) open to interaction with the outside world. (H) The cell of interest (205) is unprotected and subjected to removal (270) for subsequent biochemical analysis (e.g. extraction or in-situ measurements) whereas unwanted cells (215) are left inaccessible.

Those skilled in the art would see that the described process utilizes “negative” photosensitive materials (photosensitive material in which the protected areas are the areas that get removed), but the same technique can be applied with “positive” materials as well, by inversion of the mask. The term “developer” as used herein refers to a chemical that reacts with a chemical (e.g. a photosensitive material) that has been exposed to light.

The term “lamination” or “to laminate” as used herein refers to the placement or layering of a material, e.g. a photosensitive material, over a sample, including but not limited to, a tissue or cell sample, and the (thermal, photolithographic, or otherwise) thickening or hardening of the laminating material into a “lamine,” so that the biological components under the laminate are locked by it and cannot contaminate the biological components in the non-laminated areas.

The term “photosensitive material” as used herein refers to any organic soluble or water soluble material that experiences a change in solubility in a developer solution when exposed to light, such as UV light.

In an embodiment, one type of photosensitive material that can be used is photoresist. One skilled in the art would recognize that many different types of photoresist materials can be used such as negative (SU8) and positive (SPR and AZ) photoresists and additional photoresist identifiable by a skilled person. One skilled in the art would further understand that other photosensitive materials, or other photocurable polymers, can be used with the embodiments described herein. Any photo-curable material, which can include, but is not limited to, many types of polymer, elastomer, or epoxy, can be used as a negative photosensitive material. Any substance that becomes soluble after UV exposure can act as a positive photosensitive material, for example, urethane or Polymethylmethacrylate (PMMA) and additional materials identifiable by a skilled person.

The use of a negative photosensitive material is shown in FIG. 2. The “dark” areas of the mask are designed or programmed to allow access to the protected areas once the
A photolithographically masked tissue containing cellular material can be integrated with a microfluidic chip (e.g. consisting of a series of chambers matching the mask) which can be fabricated in situ or separately. The chip can be used to individually analyze regions of interest that provide access to that particular region of interest.

In an embodiment, the tissue lamination approach is coupled with microfluidic devices placed on top of the photosensitive material in order to individually analyze regions of interest.

A photolithographically masked tissue containing cellular material can be integrated with a microfluidic chip (e.g. consisting of a series of chambers matching the mask) which can be fabricated in situ or separately. The chip can be used to extract the subsamples of the selected area. The chip can also be used to supply reagents for in-situ analysis (e.g. immunoassay, PCR, RT-PCR), which allows unequaled flexibility and parallelism in the microfluidic dynamic selection of tissue areas of interest for each individual slide.

As shown in FIG. 4, access wells (410) defined in a photosensitive material (440) over cells of interest (430) placed on a tissue support (450) can be accessed microfluidically by producing and aligning a chambered microfluidic device (e.g. a microfluidic chip) (420) comprising channels (470) having an input (480) and an output (490).

As described herein, the term "microfluidic chip" or "chip" as used herein refers to at least one substrate having microfluidic structures contained therein or thereon. For example in an embodiment, the chips can be one-layer, e.g. made of silicone, where horizontal channels are confined in a single 2-D plane, with vertical channels only for input/output operations. The chips can also be multi-layer devices [ref. 2], where each layer of the material contains its own network of channels. Such networks can be connected with vertical connecting channels called "vias" [ref. 3]. The chip can contain valves, or a plurality of valves, or an array of valves or an array of arrays. One skilled in the art would appreciate that any chip that can be integrated with microfluidic wells defined in photosensitive material to allow for highly specific extraction of desired cells can be used.

The term "channel" or "channels" or "chamber" or "chambers" as used herein refers to a pathway formed in or through a medium that allows for the movement of fluids, such as liquids and gases. The term "input" or "inputs" as herein is intended to refer to areas of the microfluidic device where materials (e.g. proteolysis agents, gases, other liquids) can be introduced through the chambers to the regions of interest. The inputs further allow introduction of materials to multiple areas of interest through channels connected to the chambers.

In various embodiments, a chip herein described can provide a multitude of analytical functions. The term "analyze" and "analytical" refer to activities related to process of the microscale component at issue for the purpose of detecting information related to the component. For example, in embodiments where the microscale component is formed by biological material, analytical functions comprise activities directed to process the biological material to identify information concerning and/or originating from the material which are identifiable by a skilled person. For example, in an embodiment, the integrated chip can uptake micro-isolated cells, lyse such cells, capture DNA, RNA, and/or other biological materials by specific or general hybridization assays to magnetic nanoparticles, which can then be extracted from the chip for traditional PCR analysis off-chip. In an embodiment, the chip can also uptake the micro-isolated cells, lyse such cells, and perform PCR on-chip. In some of those embodiments, on-chip PCR allows subsequent detection of specific genes or proteins or mutations by specific hybridization arrays. In an embodiment, the chip can also uptake a biological components such as micro-isolated cells, lyse such cells, and then perform immunohistoassays on intracellular proteins, e.g. for proteomics-level expression analysis. In an embodiment, the chip can also be used to extract the cell regions micro-isolated by the lamination techniques described herein, separate the clusters into single cells, then feed each cell into a single-cell analysis device, e.g. for DNA sequencing, mutation detection, or gene expression analysis. Such devices as the enumerated examples can be used in fundamental research, and can also be adapted as biomedical diagnostic tools, e.g. in oncology and pathology. Additional variations of these devices, wherein same or further functionalities are added or combined are encompassed by the present disclosure as would be understood by a skilled person.
The term “output” or “outputs” as defined herein is intended to refer to areas where the cellular material from the regions of interest can be extracted for further analysis. Input/output operations can be conducted by microfluidics, thus preventing contamination, waiting for diffusion, and excessive dilution of the sample. Also, the chip itself can have analytical function, e.g. microfluidic immunoassays or microfluidic PCR and RT-PCR.

In some embodiments, the described integration of tissue lamination micro-isolation with microfluidic devices allows the leveraging of the advantages of microfluidic handling (e.g. micro scale, fast diffusion, parallelism, integrated mechanical and/or chemical functionalities) with the advantages of the described micro-isolation technique (e.g. high specificity, parallelism, low cost, flexibility, and/or dynamic masking). In some of those embodiments, this architecture provides a flexible sampling interface between the unique patterns of the particular sample morphology and the hardwired architectures of conventional microfluidic devices. FIG. 5A shows a top view demonstrating a hardwired multi-chambered approach wherein regions of interest (from FIG. 3) are connected via channels. A laminated tissue sample (550) is integrated with a chambered microfluidic device (as shown in FIG. 4), whose channels (510) connect to chambers (as described in FIG. 4) over the laminated tissue’s cellular areas of interest (540). An input (520) allows introduction of components necessary to collect extracts into a single output (530). FIG. 5A shows a single input and output, although multiple inputs and outputs are possible. In this particular approach, the entire chip is customized to the extraction needs of the particular sample, although as described herein, multiple approaches are possible.

In an embodiment, the lamination is customized to the particular sample, but the rest of the microfluidic device can be standardized and thus used universally with any and all tissue samples. As used herein, a universal microfluidic device is a device that can be standardized and used with multiple tissue samples that have been selectively or non-selectively isolated. For example FIG. 5B shows a top view demonstrating a standardized multi-chambered approach. In this approach, a laminated tissue (550) is integrated with a chambered microfluidic device (as shown in FIG. 4), whose standardized matrix of channels (560) connect to chambers (as described in FIG. 4) over the laminated tissue’s cellular areas of interest (540). An input (520) allows introduction of components necessary to collect extracts into a single output (530). FIG. 5B shows a single input and output, although multiple inputs and outputs are possible. Those skilled in the art would appreciated that a standardized multi-chambered chip can be configured in one of many possible ways in order to allow microfluidic channels to cover a tissue surface adequately in order to extract desired cells from randomly distributed locations. For example, the grid can be rectangular as shown in FIG. 5B, or a binary tree of parallel channels. In addition, a universal extractor device can be combined with a sample-specific micro-isolation technique. In embodiments, wherein the spacing in a grid or mesh of channels is not bigger than the expected size of wanted clusters, a fluidic connection between one or more wanted cluster with at least one of the extraction channels can be performed. Thus in some of those embodiments a universal extractor device can be combined with a sample-specific micro-isolation technique (e.g. the described lamination method). In some embodiments, in particular the described combination can have the benefits of both techniques in the same system—low cost and universal applicability offered by the standardized chip with the high specificity and sample-specific customization of the micro-isolation technique.

In an embodiment, a tissue is completely encapsulated inside a microfluidic device, to allow for full surface access. Tissue encapsulation captures a tissue of interest between two separate microfluidic devices, which allow simultaneous access to two surfaces. If the slice is sufficiently thin, fluidic communication is ensured through the slice. Such communication allows more efficient and reliable extraction of desired samples, as a resuspension liquid can be used to push desired material out of the tissue matrix. This approach allows extraction of desired material by microfluidic/hydraulic means without the need for more aggressive chemical treatments.

FIG. 6 illustrates an embodiment where complete encapsulation is shown. A tissue slice (630) covered in a photosensitive material both above (620) and below (625) the tissue slice and defined by access wells both above (660) and below (665) the tissue slice that can be integrated with microfluidic devices (e.g. microfluidic chips) positioned above (610) and below (615) the cells of interest and having chambers from both above (670) and below (680) the tissue slice. This architecture allows a more efficient input (640) and output (650), while an area of contact (690) can be doubled for better access to the cells of interest (695).

In an embodiment, tissue encapsulation allows the use of 3D polymerization for in-situ chip construction around the 3D tissue sample. This can be done, e.g. by using direct laser writing and 3D rasturing to build the desired architectures such that the monomer material for the chip can be spread thick over the tissue sample. The laser can then polymerize the chip material in the desired shape over the tissue sample. The tissue is completely submerged in a monomer, while a 3D chip is built around it, thus allowing microfluidic access to the sample from all directions. In some embodiments, performed according to this approach, the photocurable polymer of the chip material itself can be used as a photosensitive material, wherein a tissue slice can be placed inside the polymer prior to 3-D photopatterning (e.g. before a 3-D photopatterning commences).

In an embodiment, multiple areas of interest are addressed with individual channels without masking. Individually and collectively controlled arrays of microvalves, which allow the same architecture to address a customizable subset of chambers of access loci within the matrix, can provide the ability to match particular regions of interest on the particular tissue sample. A chip with a dense pore matrix allows the differential opening of particular pores for a short time such that only material confluent with the pore would flow from the sample into the chip for analysis without masking.

Maskless microfluidic encapsulation is shown in FIG. 7. A tissue slice (710) is encapsulated in a dense pore matrix microfluidic device both above (745) and below (750) the tissue. Individually addressable valves that are closed are shown marked with an “X” (770) as opposed to valves that are open (760) to allow flow through the open channel (755). The open valve (760) forces a pressure drop that ensures input flow (720) and forces material from a cell (740) through a pore (730) into an output channel (780) and through an output (790) for analysis.

An embodiment provides tissue micro-isolation by microfluidic matrices for parallel analysis of subsamples with preserved morphological context. According to an embodiment, microfluidic matrices with highly parallel single-cell analysis is based on the combination of a nanofabricated microfluidic matrix and a tissue
This allows a matrix of millions of microfluidic wells to be filled with biochemical reagents and contacted to a tissue section deposited on a support. For example, each well can contain Proteinase K and sequencing reagents. The Proteinase K digests the tissue and releases the contents of each cell into its adjoining well, where they mix with the PCR reagents by diffusion. The entire system is contacted to a thermally controlled aluminum plate, to perform standard or isothermal PCR. Mutant genes can be amplified by appropriate selection of primers and reported by fluorescent probes. Signal detection is done by scanning the entire slide on a fluorescence scanner or by fluorescence microscopy performed one sector at a time followed by digital assembly. The result is a highly parallelized single-cell (genetic) analysis of the entire tissue.

An exemplary matrix of microfluidic wells according to an embodiment herein described is illustrated in FIG. 8, which shows a top view of access wells (810) inside a matrix (820) (built in e.g. glass silicon, or silicon-on-insulator). Access wells (810) can be defined, for example, by spreading a photoreactive material on a substrate, exposing the photoreactive material to UV light through a photomask, developing the photoreactive material, and etching the exposed areas. Following removal of the photoreactive material, the result is defined access wells in the substrate with the same geometry as the photomask. The term “dense-pore matrix” as used herein refers to a matrix having dense pores.

FIG. 9 shows an exemplary illustration of how a matrix of microfluidic wells can provide access to individual cell nuclei for independent reactions. Microfluidic access wells (910) are defined in a substrate (920) (e.g. glass or silicon). Next, the access wells (910) are filled with a fluid mixture (930) containing digestion and reaction agents (e.g. Polymerase Chain Reaction (PCR) reagents, and fluorescent probes). Next, evaporation is performed to uniformly decrease the fluid mixture level (940), leaving space at the top (945) of the microfluidic access wells. Next, a tissue support (950) is aligned on top with a tissue slice (960) facing downward. Next, an assembled construct (955) is clamped together and vertically turned over, allowing the fluid mixture to flow by gravity and cover (975) the tissue. Next, the digestion agents contained in the fluid mixture break down the tissue (965), releasing the cellular contents into the microfluidic access wells (910). The reaction reagents within the fluid mixture complete the reactions and fluorescent probes (980) reveal results.

In an embodiment, releasing the cellular content of the tissue can be performed by digestion of the tissue performed using Proteinase K, or other techniques of chemical digestion such as the ones described in [ref. 4, 5] which allow multiple analysis of different molecules in the cellular component. For example, in an embodiment techniques can be used that allow immunoassay analysis of the extracts as well as DNA and protein analysis at various scales as it will be understandable by a skilled person.

In several embodiments, the nanomatrix technique herein described can be modified in view of the specific reagents, biological component, desired result and experimental design as will be understood by a skilled person. For example, in an embodiment, a matrix of microfluidic wells can provide access to individual cell nuclei where a two-step process allows separate biochemical reactions to occur. By way of example, FIG. 10 shows a process in which cells can be digested with Proteinase K prior to a PCR reaction. In the illustration of FIG. 10 tissue (1030) is placed atop of a support (1010) and a photosensitive material (e.g. negative photoresist) (1020) covers the tissue (Panel A). Next, a photomask (1050) having—blocking regions (1055) is placed over the photosensitive material and exposed to UV light (1040) (Panel B). Next, the photomask is removed and an organic solvent developer removes the photosensitive material from the unprotected areas, leaving defined access wells (1060) (Panel C). The defined access wells are filled with solution containing Proteinase K (1065) (Panel D), which digests exposed tissue (1070) and releases the DNA into the solution in each well (Panel E). Heating dehydrates the Proteinase K and lyophilizes DNA in place in each respective well (1075) (Panel F). Next, a corresponding matrix of wells is etched in a well support (e.g. silicon, glass, or silicon-on-insulator) (1080), which is filled a solution containing PCR reagents (1085) (Panel G). The assembly is then mechanically secured together (e.g. clamped) providing water-tightness between compartments, and then turned over, allowing the PCR solution to resuspend the lyophilate within each well (1090) (Panel H). PCR can proceed simultaneously yet separately, in which fluorescent probes (1095) reveal results of the reaction (see starbursts Panel I). Data acquisition can be performed e.g. on a fluorescence scanner or by an optical fluorescence microscope, where the wells are optically accessed by the side of the glass slide in panel I.

In the embodiment exemplified in FIG. 10, when the surface density and size of the wells are correctly chosen, most wells will adjoin one and only one cell. In some embodiments, wherein the biological component is formed by cells, an expected optimal well size is about the same as the size of a mammalian cell (~20 µm). However, in those embodiments, one skilled in the art would recognize that the size and spacing of the wells can be optimized to ensure that the overwhelming majority of wells contain just one cell. This would maximize purity of the sample in each well, and thus maximize specificity and reduce noise in an analytical determination.

In an embodiment, a maskless microisolation apparatus methods and systems are described that are configured according to the microscale component of interest and experimental design and do not require (although they could include) photomasks and/or photosensitive material. For example, in some of those embodiments, a maskless microisolation apparatus can have randomly placed access wells that are configured relative to the biological material of interest and the experimental design. In particular, in embodiments where the biological material is comprises cells and the experimental design is directed to isolate and/or analyze individual cells, a dense porous “honeycomb” arrangement of predetermined access wells can be used in a device, methods or systems herein described such that the pre-existing access wells can be placed accordingly over cellular regions according to the specific analysis of choice (e.g. to perform protein and/or DNA analysis of regions of interest selected).

In some embodiments, the configuration of a matrix of access wells herein described is not limited to desirable areas alone. In some of those embodiments, some or all wells can be analyzed simultaneously but separately, so that no predetermined regions are necessary. Accordingly, in an embodiment, of devices methods and systems herein described a photomask can be designed to single out only the areas of interest and/or to include a repeating regular or irregular geometric pattern of choice (e.g. circles, squares, or hexagons in rectangular, checkered, or honeycomb formation) of appropriately chosen size and spacing, e.g. to contain only one microscale component or portion thereof (e.g. one cell per well).

In several embodiments, wells of a masked or maskless matrix of access can include one or more reaction mixtures. A reaction mixture can be any mixture containing components necessary for a biochemical reaction to occur.
tures can include, but are not limited to, components necessary for PCR, real-time PCR, RT-PCR, flow cytometry, fluorescent labeling, FRET, DNA sequencing, protein-protein interaction assays, immunosassays, protein-nucleic acid assays, and any other biological reaction known in the art.

A matrix of microfluidic wells allows incomparable parallelism in extracting the sequencing information from a tissue sample. It enables large-scale mapping of two-dimensional spatial distribution of mutations across a tumor section. If such maps are made of consecutive sections of the same tumor, a three-dimensional distribution of mutations within a tumor can be digitally assembled. Furthermore, such 3D maps can be generated for analogous tumors in multiple test animals at different temporal points of tumor evolution. Thus, the temporal evolution of a 3D distribution of mutations can be assembled.

In many embodiments, the optimal well size is the same size as a mammalian cell (approximately 20 μm), although one skilled in the art will recognize that different well sizes can be used for different applications.

In an embodiment, an active array of masking material replaces a physical mask with micro-mirror arrays. As illustrated in FIG. 11, which is a dynamic process allows the targeted positioning of tissue selection. First, cells and/or tissue (1160) are shown to an operator and a camera (1110) takes an image of cells and/or tissue through an adjustable mirror (1120), a Digital Light Processing (DLP) mirror (1130) and a photosensitive material (1140). The image shows the cells and/or tissue (1160) placed on a tissue support (1150). Upon observation of the image, an area of interest is selected by programmable patterning the DLP mirror (1130). Second, the adjustable mirror (1120) is adapted to be positioned accordingly so that UV light from a lamp (1170) can be directed through a long-pass filter (1180) and through the programmed DLP mirror (1130) onto the photosensitive material (1140) and directed to destroy the DNA of the cells in the region of interest (1160).

A long-pass filter indicates a device that operates to allow all light coming from the UV light having a wavelength above a certain value, e.g., about 350 nm. Long-pass filters are standard optical elements known to people skilled in the art. The particular long-pass filter suitable for the embodiment exemplified in FIG. 11 is configured to ensure that virtually all light coming from the illumination source has a wavelength above the cut-off value of about 350 nm. The usual structure of long pass filters is a Bragg stack of layers of dielectric materials with carefully controlled thicknesses. The thickness and refractive index of each layer sets up destructive interference for a narrow band of wavelengths that are meant to be stopped. Making a stack of such layers ensures that a wider cumulative range of wavelengths is stopped by the filter. In this particular case, the cut-off value is 350 nm, because wavelengths above it are too long to damage DNA when DNA is chosen as microscale component of interest, but short enough to expose the photoresist correctly. In the exemplary system of FIG. 11 the long pass filter is for the tissue lamination method, which necessitates the exposure of the photoresist which becomes the laminate. People skilled in the art (e.g., optics and engineering) understand all the possible variations of long-pass filters in devices, methods and filters herein described.

The term “digital image” refers to an image generated by a computer or other suitable electronic device. In an embodiment, a digital image can be provided, for example, by a set of instructions in software on a computer controlling the optical hardware. In an embodiment, the image can be a 2-D image.

In an embodiment, the digital image can also be 3-D, e.g. in embodiments, when a device is provided for tissue encapsulation by 3-D rastering of the photocuring illumination, as described herein. A “digital mask” refers to the masking of a region of interest of cellular material based on a digital image as opposed to a physical mask, e.g. a chrome mask.

In an embodiment, tissues can be micro-isolated without the need for a physical mask for UV shielding. Instead, a UV laser, e.g. Heidelberg DWL66®, can be focused directly onto the necessary spots in the photoresist on top of the tissue for lamination or in the tissue itself for destruction of biological material in the tissue such as DNA. The resolution can be 2 microns or better, and the desired cells can be skipped in the rastering process. Different laser heads can be used for the different regions of the slide. For example, appropriate software can guide the laser with a 2-micron head around the immediate vicinity of the cells of interest, while the rest of the slide area is exposed by broader strokes, e.g. with a 50-micron head.

In an embodiment, active masking arrays utilize LCDs (liquid crystal displays). An illumination light would be polarized along one axis, while the LCD elements would be polarized along one axis to disallow another axis to allow the passage of the UV light. The cells of interest are protected by having the corresponding elements in the array be perpendicularly aligned, while the unwanted cells would have their elements aligned in parallel with incident UV illumination.

In an embodiment, dynamic masking using fiber optics can be produced by arrays of LEDs (light emitting diodes). This approach allows the utilization of increasing smaller wavelengths as current technology builds LEDs at smaller wavelengths. Individually addressable elements can be built at the microscale, producing macro-sized arrays of thousands or millions of individually addressable LED elements. Such individually addressable LED elements allow respective areas on the photosensitive material to be individually photopolymerized to provide the tissue lamination methods described herein.

In an embodiment, fiber optics is used in a way similar to intensified CCD cameras. Bundles of fiber optic cables are arranged to produce an active array of illuminators. This bundle can be coupled to an LCD array at the input of illumination light, while the output is coupled to the tissue slide. Then the output size of each fiber can be made smaller than the input size, producing both light transduction and size reduction.

In an embodiment, active masking array uses photonic circuitry to define dynamic optical arrays. A photonic circuit can in principle be built to generate an array of individually addressable optical outputs. When positioned over a tissue slide, the individual addressability of optical outputs provides the capability for individual UV exposure of tissue areas that are chosen to be discarded.

In an embodiment, active masking array uses photonic circuitry to define dynamic optical arrays. A photonic circuit can in principle be built to generate an array of individually addressable optical outputs. When positioned over a tissue slide, the individual addressability of optical outputs provides the capability for individual UV exposure of tissue areas that are chosen to be discarded.

In an embodiment, active masking array uses micro- and nano-lasers for dynamic arrays. These lasers can be fabricated in arrays, where each laser is still individually addressable. Software and electrical outputs control which laser is active, e.g. by electrical pumping or electrical control of polarization shielding against pumping illumination. Microfluidic devices can further follow a combination of morpho-
logical and functional customization. For example, in the particular technique of multi-layer elastomer microfluidics, the elastomeric layer that contacts the sample can have a photolithographically defined morphology that matches the regions of interest in the tissue sample, while other layers can follow a matrix or array structure built for functional programmability. As an example, see FIG. 5A, where a uniform matrix of channels overlays the walls of the regions of interest, ensuring extraction. Thus the extraction matrix can be standardized and thus produced inexpensively, while the laminating layer is kept specific to the particular tissue sample. One skilled in the art would appreciate that such a combination is clearly not limited to extraction alone, because a device of any processing or analytical function can be integrated with a sample-specific micro-isolation stage. In some embodiments, the specific functionality or purpose of the device can be combined with the high specificity and sample-specific customization offered by the described micro-isolation techniques. In some of those embodiments, this approach provides a low cost of standardization with a high specificity of sample-specific extraction.

In some embodiments, the methods and devices described herein overcome various problems e.g. by providing a general microfluidic bottoms-up sample-specific customization method. Such a method naturally leads to rapid, parallelized, and highly specific micro-isolation of the desired cell subpopulation (e.g. cancer cells from a tumor) directly from tissue samples. In particular, in some embodiments, devices, methods and systems herein described preserve the structural integrity of most of the tissue, thus preserving its inherent morphological information. In some embodiments, a PCR nanomatrix technique is described that allows parallelized large-scale high-throughput genomic mappings across the tissue sample.

In several embodiments, methods herein described allow convenient application in a number of methods to separate normal from cancer cells (See Ref. 1). Methods herein described are not necessarily dependent on use of fresh tissues, and are applicable to most human cancer specimens, which are usually fixed in formalin and paraffin-embedded. In some embodiments, devices methods and systems herein described allow to process wanted cells (e.g. cancer cells) minimizing the background noise of unwanted cells (e.g. non-cancerous cells). In some of those embodiments, devices, methods and systems herein described allow to process unwanted areas susceptible to chemical etching. The etching removes the unprotected chrome, and the rest of the photosensitive material is removed, e.g. by overdevelopment or exposure to a strongly alkaline solution. The remaining chrome pattern is quickly oxidized by atmospheric exposure, typically within 30 sec, which produces a chrome mask specific to the particular tissue sample. An exemplary hardwired masking using photolithographically definedchrome masks is illustrated in FIG. 1.

Examples

Example 1

Hardwired Masking Using Photolithographically Defined Chrome Masks

Cells of interest are identified using a microscopic computerized image of the tissue slide and appropriate custom software, which converts the selection into a digital image. The digital mask is fed into a direct laser writer, the Heidelberg DWL 668, which transfers a digital mask onto the “positive” photosensitive material deposited on top of a chrome-covered plate, by direct writing with a resolution of 2 microns. The plate is then developed to remove the exposed photosresist, which leaves the exposed areas susceptible to chemical etching. The etching removes the unprotected chrome, and the rest of the photosensitive mask is removed, e.g. by overdevelopment or exposure to a strongly alkaline solution. The remaining chrome pattern is quickly oxidized by atmospheric exposure, typically within 30 sec, which produces a chrome mask specific to the particular tissue sample. An exemplary hardwired masking using photolithographically defined chrome masks is illustrated in FIG. 1.

Example 2

Application of Tissue Lamination Approach to Adrenal Gland Tissue Slides

The tissue lamination technique was applied to adrenal gland tissue slides prepared by routine clinical methods. Photosensitive SU8-2005 was deposited onto a tissue by spinning the slide on a WS-4003-6NNP/LITE spincoater. The slide was pre-baked at 65°C. Next, the slide was exposed to UV filtered with a 368-nm high-pass filter at an MA-6 mask aligner, through a chrome-on-glass mask bearing the pattern of a USAF 1951 resolution chart. The chart was chosen as a mask to provide an easily identifiable reference in terms of size of the defined features in photosresist on top of the tissue.

The devices, methods and systems herein described are further illustrated in the following examples, which are provided by way of illustration and are not intended to be limiting.

In particular, the following examples illustrate exemplary hardwired and laminated devices and related methods and systems. A person skilled in the art will appreciate the applicability and the necessary modifications to adapt the features described in detail in the present section, to additional solutions, devices, arrangements, methods and systems according to embodiments of the present disclosure.

Example 1

Hardwired Masking Using Photolithographically Defined Chrome Masks

Cells of interest are identified using a microscopic computerized image of the tissue slide and appropriate custom software, which converts the selection into a digital image. The digital mask is fed into a direct laser writer, the Heidelberg DWL 668, which transfers a digital mask onto the "positive" photosensitive material deposited on top of a chrome-covered plate, by direct writing with a resolution of 2 microns. The plate is then developed to remove the exposed photosresist, which leaves the exposed areas susceptible to chemical etching. The etching removes the unprotected chrome, and the rest of the photosensitive material is removed, e.g. by overdevelopment or exposure to a strongly alkaline solution. The remaining chrome pattern is quickly oxidized by atmospheric exposure, typically within 30 sec, which produces a chrome mask specific to the particular tissue sample. An exemplary hardwired masking using photolithographically defined chrome masks is illustrated in FIG. 1.

Example 2

Application of Tissue Lamination Approach to Adrenal Gland Tissue Slides

The tissue lamination technique was applied to adrenal gland tissue slides prepared by routine clinical methods. Photosensitive SU8-2005 was deposited onto a tissue by spinning the slide on a WS-4003-6NNP/LITE spincoater. The slide was pre-baked at 65°C. Next, the slide was exposed to UV filtered with a 368-nm high-pass filter at an MA-6 mask aligner, through a chrome-on-glass mask bearing the pattern of a USAF 1951 resolution chart. The chart was chosen as a mask to provide an easily identifiable reference in terms of size of the defined features in photosresist on top of the tissue.
The slide was then post-exposure baked at 95°C. and developed in SUV8 developer, which contains organic solvents. Finally, each slide was characterized on a profilometer (Alpha-Step 500) to measure the height of the fabricated features. Tissue slice thickness was measured up to 5 µm, while the photoresist layer was ~7 µm high. FIG. 12 shows the "windows" defined in the photoresist. The dimension defined on the tissue was ~12 µm width, which is smaller than a typical mammalian cell (20 µm).

The tissue section is essentially unchanged after photolithography (see FIG. 12A), except for the discoloration of unmasked areas due to the leeching of the hematoxylin and eosin staining by the organic solvent of the photoresist developer. Some of this discoloration extends under the mask (see FIG. 12A, 12D), likely because the organic solvent is a very small molecule that can penetrate through the tissue to reach the masked areas. An alternative explanation is that the dye can diffuse out into the wells during the digestion and extraction process, leaving the areas of immediate proximity to the wells. It is noted however that the nuclei remain in the unwanted areas but are extracted from the wanted areas; therefore, the unwanted DNA cannot diffuse out the way the dye can.

The laminated areas of the tissue appear far brighter than the exposed tissue (see FIG. 12A) because the refractive index of the photoresist matches the refractive index of the tissue better than air, while the photoresist also mechanically smoothens the surface roughness of the tissue. Thus surface light scattering and refractive divergence are significantly reduced, and the intensity of the detected light is increased over the laminated areas, in comparison to non-laminated tissue.

To extract the exposed tissue, a drop of extraction solution (10 mM Tris-HCl, 2 mM EDTA, pH 8.0, with 10 mg/ml Proteinase K) is placed on top of the masked slide and incubated at 56°C in a humidity chamber. The Proteinase K digests the tissue, releasing the DNA into solution, which is then suitable for amplification by PCR. The slide after digestion (FIGS. 12B, 12C, 12D) shows the removal, with sharp boundaries defined by the mask, because Proteinase K is a large protein and thus unable to diffuse through the tissue. As seen in FIG. 12B, the digestion is less efficient with smaller features, because the photoresist is hydrophobic and so surface tension works as counter pressure against the entry of the extraction solution into the smaller holes.

The embodiments and examples set forth above are provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use the embodiments of the devices, systems and methods of the disclosure, and are not intended to limit the scope of what the inventors regard as their disclosure. The examples set forth above are provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use the embodiments of the arrangement, devices, compositions, systems and methods of the disclosure, and are not intended to limit the scope of what the inventors regard as their disclosure. All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the disclosure pertains.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background, Summary, Detailed Description, and Examples is hereby incorporated herein by reference. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually. However, if any inconsistency arises between a cited reference and the present disclosure, the present disclosure takes precedence.

The terms and expressions which have been employed herein are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the disclosure claimed. Thus, it should be understood that although the disclosure has been specifically disclosed by preferred embodiments, exemplary embodiments and optional features, modification and variation of the concepts herein disclosed can be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this disclosure as defined by the appended claims.

It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. The term “plurality” includes two or more referents unless the context clearly dictates otherwise. Unless otherwise defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure pertains.

When a Markush group or other grouping is used herein, all individual members of the group and all combinations and possible subcombinations of the group are intended to be individually included in the disclosure. Every combination of components or materials described or exemplified herein can be used to practice the disclosure, unless otherwise stated. One of ordinary skill in the art will appreciate that methods, device elements, and materials other than those specified can be employed in the practice of the disclosure without resort to undue experimentation. All art-known functional equivalents of any such methods, device elements, and materials are intended to be included in this disclosure. Whenever a range is given in the specification, for example, a temperature range, a frequency range, a time range, or a composition range, all intermediate ranges and all subranges, as well as, all individual values included in the ranges given are intended to be included in the disclosure. Any one or more individual members of a range or group disclosed herein can be excluded from a claim of this disclosure.

The disclosure illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. A number of embodiments of the disclosure have been described. The specific embodiments provided herein are examples of useful embodiments of the disclosure and it will be apparent to one skilled in the art that the disclosure can be carried out using a large number of variations of the devices, device components, methods steps set forth in the present description. As will be obvious to one of skill in the art, methods and devices useful for the present methods can include a large number of optional composition and processing elements and steps.

In particular, it will be understood that various modifications may be made without departing from the spirit and scope of the present disclosure. Accordingly, other embodiments are within the scope of the following claims.

REFERENCES

What is claimed is:

1. A method to analyze a biological sample, the method comprising

 positioning cellular material on top of a first support,
 applying a microisolation apparatus comprising a plurality of first access wells on top of the cellular material, said cellular material defining bottoms for the first access wells;
 filling the plurality of first access wells of the microisolation apparatus on top of the cellular material with a mixture comprising digestion agents and components necessary for a desired reaction;
 allowing the digestion agents to digest the cellular material thereby releasing cellular contents into the mixture in each well of the plurality of first access wells;
 inactivating the digestion agents;
 fixing the cellular contents in their respective wells;
 filling a plurality of second closed bottom access wells of a second support corresponding to the plurality of first access wells with an analytical reaction mixture;
 evaporating a fraction of the mixture to uniformly decrease the reaction mixture level across the plurality of second closed bottom access wells leaving a space at the top of the plurality of second closed bottom access wells;
 aligning the first support on top of the second support such that the plurality of first access wells face the plurality of second closed bottom access wells;
 securing the first and second support to form a secured support; and
 inverting the secured support to allow the analytical reaction mixture to flow from the second closed bottom access wells into the first access wells and via gravity contact the cellular contents in order to perform a reaction simultaneously but separately in each well of the secured support.

2. The method of claim 1, wherein the analytical reaction comprises one or more reagents for PCR, real-time PCR, RT-PCR, flow cytometry, fluorescent labeling, FRET, DNA sequencing, protein-protein interaction assays, immunoassays, protein-nucleic acid assays.

3. The method of claim 1, wherein signal detection is accomplished by scanning a completed reaction using a fluorescence scanner and/or a fluorescence microscope.

4. The method of claim 1, wherein the filling the plurality of second closed bottom access wells of the second support corresponding to the plurality of first access wells with the analytical reaction mixture occurs after the digestion agents have digested the cellular material.

5. The method of claim 1, wherein the filling the plurality of second closed bottom access wells of the second support corresponding to the plurality of first access wells with the analytical reaction mixture occurs before filling the plurality of first access wells with the mixture comprising digestion agents.

6. The method of claim 5, wherein the analytical reaction mixture is dried.

7. The method of claim 6, wherein the dried analytical reaction mixture is resuspended by the reaction mixture comprising digestion agents.

8. The method of claim 1, wherein the reaction and the digestion of cellular materials occur simultaneously but separately.

9. The method of claim 1, wherein applying a microisolation apparatus comprises:

 depositing a negative photosensitive material on the cellular material;
 applying a photomask comprising a blocking region onto the negative photosensitive material;
 exposing the negative photosensitive material to photons in order to generate a lithographic pattern on the negative photosensitive material;
 removing the photomask; and
 applying a developer to the negative photosensitive material in order to define the plurality of first access wells.

* * * * *