(12) United States Patent Zhou et al.
(10) Patent No.: US 8,993,303 B2
(45) Date of Patent:
(54) GENETICALLY ENGINEERED CYANOBACTERIA

Inventors: Ruanbao Zhou, Brookings, SD (US); William Gibbons, Brookings, SD (US)

Assignee: South Dakota State University, Brookings, SD (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 158 days.

Appl. No.: 13/405,208
(22) Filed:

Feb. 24, 2012

Prior Publication Data
US 2012/0276637 A1
Nov. 1, 2012

Related U.S. Application Data

(60) Provisional application No. 61/446,366, filed on Feb. 24, 2011, provisional application No. 61/522,685, filed on Aug. 11, 2011.
(51) Int. Cl.

C12N 1/21
(2006.01)

C12N 15\%00
(2006.01)
(52) U.S. Cl.

USPC
435/252.3; 435/243; 435/252.1; 435/320.1
(58) Field of Classification Search None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,699,696	B2	3/2004	Woods et al.
7,531,333	B2*	5/2009	Miyake et al. 435/166
7,659,097	B2 *	2/2010	Renninger et al. 435/157
7,794,969	B1	9/2010	Reppas et al.
2009/0203070	A1*	8/2009	Devroe et al. 435/69.1
2010/0003739	Al *	1/2010	Duhring et al. 435/252.3
2011/0039323	A1*	2/2011	Singsaas et al. 435/167

FOREIGN PATENT DOCUMENTS

WO

```
2007084477 A1 7/2007
    OTHER PUBLICATIONS
```

A Tomar et al. The Effect of Acetate Pathway Mutations on the Production of Pyruvate in Escherichia coli, Applied Microbiology and Biotechnology, 2003, vol. 62, pp. 76
Mai Li et al. Effect of IpdA Gene Knockout on the Metabolism in Escherichia coli Based on Enzyme Activities, Intracellular Metabolite Concentrations and Metabolic Flux Analysis by 13C-labeling Experiments, Journal of Biotechnology, 2006, vol. 122, pp. 254.
Xiaojie Pan et al. Morphological Characteristics and Phylogenetic Relationship of Anabaena Species from Lakes Dianchi and Erhai, China, Hydrobiologia, 2008, vol. 614, pp. 353.
Ruanbao Zhou and C. Peter Wolk, A Two-component System Mediates Developmental Regulation of Biosynthesis of a Heterocyst Polysaccharide, Journal of Biological Chemistry, 2003, vol. 278 (22), pp. 19939.
Yoshiko Miyagawa et al. Overexpression of a Cyanobacterial Fruc-tose-1,6-/Sedoheptulose-1,7-Bisphosphatase in Tobacco Enhances Photosynthesis and Growth, Nature Biotechnology, 2001, vol. 19, pp. 965.
T. Iwaki et al. Expression of Foreign Type I Ribulose-1,5Bisphosphate Carboxylase/Oxygenase (EC 4.1.1.39) Stimulates Photosynthesis in Cyanobacterium Synechococcus PCC7942 Cells, Photosynthesis Research, 2006, vol. 88, pp. 287.
Masahiro Tamoi et al. Contribution of Fructose-1,6-Bisphosphate and Sedoheptulose-1,7-Bisphosphatase to the Photosynthetic Rate and Carbon Flow in the Calvin Cycle in Transgenic Plants, Plant Cell Physiology, 2006, vol. 47 (3), pp. 380.

* cited by examiner

Primary Examiner - Oluwatosin Ogunbiyi
(74) Attorney, Agent, or Firm - MDIP LLC

ABSTRACT

The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

10 Claims, 13 Drawing Sheets

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

Womescos

Tracos-

C

Trabemp

FIG. 6

FIG. 7. Mass spectra for linalool standard

FIG. 8. Mass spectra for linalool produced by engineered Anabaena (see FIG. 6B)

FIG. 9. Hydrocarbons produced by Anabaena cylindrica 29414

FIG. 10. Engineering Anabaena to synthesize urea using solar energy

FIG.11. Sucrose produced by Anabaena sp PCC7120

FIG. 12.
A limS gene is integrated to Anabena chromosome at loci A and a

Homologous yenes from fer pathwy found in five cyamohacteral stnatus：						
	Arabioosis thatiant	Amabrenssp． Prc 7120	Anodswan vamaiks ATcc 2913	ftemensyne． chacorcas ehongstwstip． 1	Symechocysts 94．PCC 830 ？	Nostov punckfome ATCC 29133
bxs		316899	A4a． 438	16962	81143	Mplas F546
	ATS 21500045	18－437	18－18	18.143	18.139	1E．185
	A14614680（085 ${ }^{\text {a }}$	1e－148	PE－14	$16-155$	16－149	$1 \mathrm{E}-144$
	A1 50.10003	4 E 10	EE－110	1E．16	1E183	1 E 10 s
Dre	915cherms	alit364	Asa＿ 1300	\＃1010	S19013	Ifpangess70
		18． 15	E． 19	1 E 14	$1 \mathrm{E}+4 \mathrm{~s}$	18.151
MET	ATSC0003	3165167	AVB－ 2 HI	W10605	shas51	Mp ${ }^{\text {an }}$ F5029
		\＄－88	空－8	86－3	G－6\％	\％－25
com	AI2， 20803	， 313236	Aub 418 ？	thes99	53 k 717	$11940 \mathrm{~m}+91$
man		1E2	EE22	8E． 22	58.20	2 ER
Wos	ar MGsemm	Ans383	A 4 a 1811	t12033	sh1542	Mpun F5896
		$2 E 38$	2E－38	25． 8.	6E－3	4E－38
Hos	ATtosmay	al25901	Ava＿0．33	t19496	\＄12186	HyPu＿F5054
		2E， 13	4 EF 73	¢6．7	1 E 72	1872
H108．		allag85	Ava． 2949	61104	51438	Ifprimerseb
		1E－148	\％－148	18.445	1E． 144	1E－142
bs	A16638＋4， 1474	None	None	Hane	none	None
		None	None	Wene	Mone	None
GPPS		Ald 1096	Avat $1+8 \%$	t111757	sh1011	Ilym ${ }^{\text {and }}$
	ABCratsprps	18.5	$48 \cdot 37$	5t80	46.6	18.28
		Eta	E． E ，	E－S	E－R	E－ 2
spps		arnex	A48 1439	W5Emen	shmers	Mpun
		SE04	2 E 08	EEf6	5804	3684
	AI \％677eefrps	4 SH	SES 5	SE．05	6 E .63	1 EM
GG6P9S		30603	AUS＿274	（1060）	stroma	Spunf 3 \％ 76
	A1 6386966 pes 7	QE 0	2 68	189	TE8	E6
	AT202009（6GPPS\％	4.56	3Ex	SE． 8	$2 \mathrm{E} \%$	280
		48	EE－19	1804	38	SEs
		\％年	E－88	189	Ex	18.8
		BES ${ }^{\text {P }}$	E6 6	\％ 8	TE7	2.66
	AI 36343	TETS	Ters	3 ESE	IE85	se
	A1303040	E．T	SE－78	46\％	486	3 3． 6
sas		3 l 3）	Ara	6166	51073	Wpun＿的等？
		S088	EQ	E46	2tos	2 Em
	81 36－umasess	45	GE45	IE13	1 E 0	1E64
1 ins	AT IGSIGTE（IPS M	Nose	Mone	Wne	Wone	40\％

FIG． 13

GENETICALLY ENGINEERED

 CYANOBACTERIA
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/446,366, filed Feb. 24, 2011, and U.S. Provisional Patent Application Ser. No. 61/522,685, filed Aug. 11, 2011, the entire contents of each of which are incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with U.S. Government Support from the following agencies: USDA (Grant \#SA1100114), NSF (Grant \#CBET1133951), and NASA (Grant \#NNX11AM03A). The U.S. Government has certain rights in this invention.

TECHNICAL FIELD

The present disclosure relates to compositions and methods for the production of carbon-based products of interest such as biofuels and high value chemicals by genetically engineered cyanobacteria hosts. The genetically engineered cyanobacteria hosts are optimized for use in production of carbon-based products of interest by strengthening endogenous metabolic pathways of cyanobacteria. In certain instances, competing metabolic pathways are down-regulated. Methods of making and using the genetically engineered cyanobacteria hosts are also described.

BACKGROUND

Many existing photoautotrophic organisms are poorly suited for industrial bioprocessing and have therefore not demonstrated commercial viability. Although aquatic photoautotrophs, such as cyanobacteria, may exhibit rapid growth rates and efficient photosynthetic pathways, giving them tremendous potential for sustainable production of carbonbased products of interest from only $\mathrm{CO}_{2}, \mathrm{~N}_{2}$, and sunlight, they have not yet been optimized for production. Such organisms typically require large amounts of water usage as well as time and energy to harvest biomass. Therefore, a need exists to modify existing photoautotroph hosts such that these drawbacks can be overcome.

SUMMARY

The present disclosure includes compositions and methods for the production of carbon based products of interest using genetically modified cyanobacteria such as Anabaena spp. In certain embodiments, the Anabaena spp. are Anabaena PCC7120, Anabaena cylindrica 29414, or Anabaena variabilis ATCC29413. In one aspect of the disclosure, the Anabaena spp. is the ethanol producing Anabaena sp. PCC7120 (pZR672) strain deposited under ATCC accession number PTA-12833 or the linalool producing Anabaena sp. PCC7120 (pZR808) strain deposited under ATCC accession number PTA-12832. Generally the Anabaena spp. is genetically engineered by expression of at least one recombinant polynucleotide expression construct comprising an enzyme capable of increasing production of a carbon based product of interest.

The carbon based product of interest may be ethanol or linolool. In many embodiments, the MEP pathway of the

Anabaena spp. is up-regulated by modifying at least one gene responsible for control of the MEP pathway in the Anabaena spp. Photosynthesis of the Anabaena spp. may also be increased through genetic modification. For example, a polynucleotide expression construct comprising a nucleotide sequence encoding RuBisCo and/or RuBisCo activase is contemplated.
In certain embodiments, the Anabaena spp. is further genetically modified to produce enzymes capable of increasing specific production of ethanol or linolool. For example, in embodiments that specifically produce ethanol, the Anabaena spp. may be genetically engineered to produce decarboxylase (PDC) or alcohol dehydrogenase (ADH). In embodiments specifically producing linolool, the Anabaena spp . may be genetically engineered to produce linalool synthase.

A disclosed method includes producing a genetically engineered Anabaena spp. capable of making a carbon based product of interest by introducing a recombinant enzyme into the Anabaena spp, wherein the recombinant enzyme can participate in the Anabaena spp's natural metabolic pathway, and modifying at least one competing metabolic pathway to increase production of the carbon based product of interest. In one disclosed aspect, the Anabaena spp. is the ethanol producing Anabaena sp. PCC7120 (pZR672) strain deposited under ATCC accession number PTA-12833 or the linalool producing Anabaena sp. PCC7120 (pZR808) strain deposited under ATCC accession number PTA-12832. The natural metabolic pathway may be the MEP pathway or the photosynthetic pathway and the carbon based product of interest may be ethanol or linalool.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 demonstrates the presumptive cyanobacterial carbon metabolic pathways for production of biofuels and high value chemicals.

FIG. 2 demonstrates the modified cyanobacterial carbon metabolic pathway for production of ethanol.

FIG. 3 is ethanol productivity in genetically engineered Anabaena as measured by HPLC.

FIG. 4 shows (A) the known MEP pathway as it exists in plants, algae and some bacterial and (B) the proposed synthetic pathway in cyanobacteria.

FIG. 5 shows metabolic pathway for photosynthetic production of sucrose.

FIG. 6 shows (B) linalool production in genetically engineered Anabaena as measured by GC/MS and (C) native production of long chain alkanes/alkenes in wild-type Anabaena sp. PCC7120.

FIG. 7 shows mass spectra for linalool $\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}\right)$ standard.
FIG. 8 shows mass spectra for linalool produced by engineered Anabaena.
FIG. 9 shows hydrocarbons produced by Anabaena cylindrica 29414.
FIG. 10 shows engineering N_{2}-fixing cyanobacteria to produce urea using solar energy.

FIG. 11 demonstrates sucrose produced by Anabaena sp. PCC7120.
FIG. 12 illustrates a LinS gene integrated to Anabaena chromosome at loci A and B .

FIG. 13 shows a table of the MEP pathway genes in cyanobacteria.

DETAILED DESCRIPTION

For describing invention herein, the exemplary embodiments in detail, it is to be understood that the embodiments
are not limited to particular compositions or methods, as the compositions and methods can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which an embodiment pertains. Many methods and compositions similar, modified, or equivalent to those described herein can be used in the practice of the current embodiments without undue experimentation.

As used in this specification and the appended claims, the singular forms "a," "an" and "the" can include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to "a cytokine" can include a combination of two or more cytokines. The term "or" is generally employed to include "and/or," unless the content clearly dictates otherwise.

As used herein, "about," "approximately," "substantially," and "significantly" will be understood by person of ordinary skill in the art and will vary in some extent depending on the context in which they are used. If there are uses of the term which are not clear to persons of ordinary skill in the art given the context in which it is used, "about" and "approximately" will mean plus or minus $\leq 10 \%$ of particular term and "substantially" and "significantly" will mean plus or minus $>10 \%$ of the particular term.

The term "polynucleotide" refers to a polymeric form of nucleotides of at least 10 bases in length. The term includes DNA molecules (e.g., cDNA or genomic or synthetic DNA) and RNA molecules (e.g., mRNA or synthetic RNA), as well as analogs of DNA or RNA containing non-natural nucleotide analogs, non-native internucleoside bonds, or both. The nucleic acid can be in any topological conformation. For instance, the nucleic acid can be single-stranded, doublestranded, triple-stranded, quadruplexed, partially doublestranded, branched, hairpinned, circular, or in a padlocked conformation. An "isolated" polynucleotide is one which is substantially separated from other cellular components that naturally accompany the native polynucleotide in its natural host cell, e.g., ribosomes, polymerases and genomic sequences with which it is naturally associated.

Polynucleotides may include both sense and antisense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above. They may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids, etc.) Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated. In certain embodiments, the polynucleotides are modified such that they contain preferential codon sequence for the host.

The term "percent sequence identity" or "identical" in the context of polynucleotide sequences refers to the residues in the two sequences which are the same when aligned for maximum correspondence. The term"substantial homology" or "substantial similarity," when referring to a polynucleotide, indicates that, when optimally aligned with appropriate
nucleotide insertions or deletions with another polynucleotide (or its complementary strand), there is nucleotide sequence identity in at least about $76 \%, 80 \%, 85 \%$, at least about 90%, and at least about $95 \%, 96 \%, 97 \%, 98 \%$ or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity.

A heterologous sequence is a sequence that is in a different position or in a different amount than what is found in nature, whether or not the heterologous sequence is itself endogenous (originating from the same host cell or progeny thereof) or exogenous (originating from a different host cell or progeny thereof).
A recombinant molecule is a molecule, e.g., a gene or protein, that (1) has been removed from its naturally occurring environment, (2) is not associated with all or a portion of a polynucleotide in which the gene is found in nature, (3) is operably linked to a polynucleotide which it is not linked to in nature, or (4) does not occur in nature. In many embodiments, the recombinant molecule is an enzyme. The term "recombinant" can be used in reference to cloned DNA isolates, chemically synthesized polynucleotide analogs, or polynucleotide analogs that are biologically synthesized by heterologous systems, as well as proteins and/or mRNAs encoded by such nucleic acids. A coding sequence is considered "recombinant" if it contains an insertion, deletion or a point mutation introduced artificially, e.g., by human intervention.

Molecules are "operably linked" if there is a functional relationship between two parts in which the activity of one part (e.g., the ability to regulate transcription) results in an action on the other part (e.g., transcription of the sequence). Thus, a polynucleotide is "operably linked to a promoter" when there is a functional linkage between a polynucleotide expression control sequence (such as a promoter or other transcription regulation sequences) and a second polynucleotide sequence (e.g., a heterologous polynucleotide), where the expression control sequence directs transcription of the polynucleotide.

An "expression vector" or "construct" refers to a series of polynucleotide elements that are capable of transporting the polynucleotide elements into the host and permitting transcription of a gene in a host cell. Most embodiments require that the host have activity of the gene product as a consequence of being genetically engineered with an expression vector. For example, if the expression vector includes polynucleotide elements encoding a gene for an enzyme, the enzyme should have enzymatic activity after the host is genetically engineered. Typically, the expression vector includes a promoter and a heterologous polynucleotide sequence that is transeribed. Expression vectors or constructs may also include, e.g., transcription termination signals, polyadenylation signals, and enhancer elements. Constructs may also include polynucleotides that make them temperature sensitive, antibiotic resistant, or chemically inducible. Expression vectors can replicate autonomously, or they can replicate by being inserted into the genome of the host cell. In exemplary embodiment, the construct encoding the desired enzyme is present on a "plasmid," which generally refers to a circular double stranded DNA loop into which additional DNA segments may be ligated, but also includes linear double-stranded molecules such as those resulting from amplification by the polymerase chain reaction (PCR) or from treatment of a circular plasmid with a restriction enzyme.
The term "recombinant host cell" or "engineered host cell" (or simply "host cell" or "host") refers to a cell into which a recombinant polynucleotide has been introduced. Recombinant polynucleotides can be used to transform a variety of
hosts to produce a carbon-based product of interest. The host must be "competent to express," such that it provides a sufficient cellular environment for expression of endogenous and/ or exogenous polynucleotides. A recombinant host cell may be an isolated cell or cell line grown in culture or may be a cell which resides in a living tissue or organism. Photoautotrophic organism hosts include organisms such as eukaryotic plants and algae, as well as prokaryotic cyanobacteria, green-sulfur bacteria, green non-sulfur bacteria, purple sulfur bacteria, and purple non-sulfur bacteria.

In embodiments, the engineered cell of the invention is an algae and/or cyanobacterial organism selected from the group consisting of Acanthoceras, Acanthococcus, Acaryochloris, Achnanthes, Achnanthidium, Actinastrum, Actinochloris, Actinocyclus, Actinotaenium, Amphichrysis, Amphidinium, Amphikrikos, Amphipleura, Amphiprora, Amphithrix, Amphora, Anabaena, Anabaenopsis, Aneumastus, Ankistrodesmus, Ankyra, Anomoeoneis, Apatococcus, Aphanizomenon, Aphanocapsa, Aphanochaete, Aphanothece, Apiocystis, Apistonema, Arthrodesmus, Artherospira, Ascochloris, Asterionella, Asterococcus, Audouinella, Aulacoseira, Bacillaria, Balbiania, Bambusina, Bangia, Basichlamys, Batrachospermum, Binuclearia, Bitrichia, Blidingia, Botrdiopsis, Botrydium, Botryococcus, Botryosphaerella, Brachiomonas, Brachysira, Brachytrichia, Brebissonia, Bulbochaete, Bumilleria, Bumilleriopsis, Caloneis, Calothrix, Campylodiscus, Capsosiphon, Carteria, Catena, Cavinula, Centritractus, Centronella, Ceratium, Chaetoceros, Chaetochloris, Chaetomorpha, Chaetonella, Chaetonema, Chaetopeltis, Chaetophora, Chaetosphaeridium, Chamaesiphon, Chara, Characiochloris, Characiopsis, Characium, Charales, Chilomonas, Chlainomonas, Chlamydoblepharis, Chlamydocapsa, Chlamydomonas, Chlamydomonopsis, Chlamydomyxa, Chlamydonephris, Chlorangiella, Chlorangiopsis, Chlorella, Chlorobotrys, Chlorobrachis, Chlorochytrium, Chlorococcum, Chlorogloea, Chlorogloeopsis, Chlorogonium, Chlorolobion, Chloromonas, Chlorophysema, Chlorophyta, Chlorosaccus, Chlorosarcina, Choricystis, Chromophyton, Chromulina, Chroococcidiopsis, Chroococcus, Chroodactylon, Chroomonas, Chroothece, Chrysamoeba, Chrysapsis, Chrysidiastrum, Chrysocapsa, Chrysocapsella, Chrysochaete, Chrysochromulina, Chrysococcus, Chrysocrinus, Chrysolepidomonas, Chrysolykos, Chrysonebula, Chrysophyta, Chrysopyxis, Chrysosaccus, Chrysophaerella, Chrysostephanosphaera, Clodophora, Clastidium, Closteriopsis, Closterium, Coccomyxa, Cocconeis, Coelastrella, Coelastrum, Coelosphaerium, Coenochloris, Coenococcus, Coenocystis, Colacium, Coleochaete, Collodictyon, Compsogonopsis, Compsopogon, Conjugatophyta, Conochaete, Coronastrum, Cosmarium, Cosmioneis, Cosmocladium, Crateriportula, Craticula, Crinalium, Crucigenia, Crucigeniella, Cryptoaulax, Cryptomonas, Cryptophyta, Ctenophora, Cyanodictyon, Cyanonephron, Cyanophora, Cyanophyta, Cyanothece, Cyanothomonas, Cyclonexis, Cyclostephanos, Cyclotella, Cylindrocapsa, Cylindrocystis, Cylindrospermum, Cylindrotheca, Cymatopleura, Cymbella, Cymbellonitzschia, Cystodinium Dactylococcopsis, Debarya, Denticula, Dermatochrysis, Dermocarpa, Dermocarpella, Desmatractum, Desmidium, Desmococcus, Desmonema, Desmosiphon, Diacanthos, Diacronema, Diadesmis, Diatoma, Diatomella, Dicellula, Dichothrix, Dichotomococcus, Dicranochaete, Dictyochloris, Dictyococcus, Dictyosphaerium, Didymocystis, Didymogenes, Didymosphenia, Dilabifilum, Dimorphococcus, Dinobryon, Dinococcus, Diplochloris, Diploneis, Diplostauron, Distrionella, Docidium, Draparnaldia, Dunaliella, Dysmorphoc-
occus, Ecballocystis, Elakatothrix, Ellerbeckia, Encyonema, Enteromorpha, Entocladia, Entomoneis, Entophysalis, Epichrysis, Epipyxis, Epithemia, Eremosphaera, Euastropsis, Euastrum, Eucapsis, Eucocconeis, Eudorina, Euglena, Euglenophyta, Eunotia, Eustigmatophyta, Eutreptia, Fallacia, Fischerella, Fragilaria, Fragilariforma, Franceia, Frustulia, Curcilla, Geminella, Genicularia, Glaucocystis, Glaucophyta, Glenodiniopsis, Glenodinium, Gloeocapsa, Gloeochaete, Gloeochrysis, Gloeococcus, Gloeocystis, Gloeodendron, Gloeomonas, Gloeoplax, Gloeothece, Gloeotila, Gloeotrichia, Gloiodictyon, Golenkinia, Golenkiniopsis, Gomontia, Gomphocymbella, Gomphonema, Gomphosphaeria, Gonatozygon, Gongrosia, Gongrosira, Goniochloris, Gonium, Gonyostomum, Granulochloris, Granulocystopsis, Groenbladia, Gymnodinium, Gymnozyga, Gyrosigma, Haematococcus, Hafniomonas, Hallassia, Hammatoidea, Hannaea, Hantzschia, Hapalosiphon, Haplotaenium, Haptophyta, Haslea, Hemidinium, Hemitoma, Heribaudiella, Heteromastix, Heterothrix, Hibberdia, Hildenbrandia, Hillea, Holopedium, Homoeothrix, Hormanthonema, Hormotila, Hyalobrachion, Hyalocardium, Hyalodiscus, Hyalogonium, Hyalotheca, Hydrianum, Hydrococcus, Hydrocoleum, Hydrocoryne, Hydrodictyon, Hydrosera, Hydrurus, Hyella, Hymenomonas, Isthmochloron, Johannesbaptistia, Juranyiella, Karayevia, Kathablepharis, Katodinium, Kephyrion, Keratococcus, Kirchneriella, Klebsormidium, Kolbesia, Koliella, Komarekia, Korshikoviella, Kraskella, Lagerheimia, Lagynion, Lamprothamnium, Lemanea, Lepocinclis, Leptosira, Lobococcus, Lobocystis, Lobomonas, Luticola, Lyngbya, Malleochloris, Mallomonas, Mantoniella, Marssoniella, Martyana, Mastigocoleus, Gastogloia, Melosira, Merismopedia, Mesostigma, Mesotaenium, Micractinium, Micrasterias, Microchaete, Microcoleus, Micro cystis, Microglena, Micromonas, Microspora, Microthamnion, Mischococcus, Monochrysis, Monodus, Monomastix, Monoraphidium, Monostroma, Mougeotia, Mougeotiopsis, Myochloris, Myromecia, Myxosarcina, Naegeliella, Nannochloris, Nautococcus, Navicula, Neglectella, Neidium, Nephroclamys, Nephrocytium, Nephrodiella, Nephroselmis, Netrium, Nitella, Nitellopsis, Nitzschia, Nodularia, Nostoc, Ochromonas, Oedogonium, Oligochaetophora, Onychonema, Oocardium, Oocystis, Opephora, Ophiocytium, Orthoseira, Oscillatoria, Oxyneis, Pachycladella, Palmella, Palmodictyon, Pnadorina, Pannus, Paralia, Pascherina, Paulschulzia, Pediastrum, Pedinella, Pedinomonas, Pedinopera, Pelagodictyon, Penium, Peranema, Peridiniopsis, Peridinium, Peronia, Petroneis, Phacotus, Phacus, Phaeaster, Phaeodermatium, Phaeophyta, Phaeosphaera, Phaeothamnion, Phormidium, Phycopeltis, Phyllariochloris, Phyllocardium, Phyllomitas, Pinnularia, Pitophora, Placoneis, Planctonema, Planktosphaeria, Planothidium, Plectonema, Pleodorina, Pleurastrum, Pleurocapsa, Pleurocladia, Pleurodiscus, Pleurosigma, Pleurosira, Pleurotaenium, Pocillomonas, Podohedra, Polyblepharides, Polychaetophora, Polyedriella, Polyedriopsis, Polygoniochloris, Polyepidomonas, Polytaenia, Polytoma, Polytomella, Porphyridium, Posteriochromonas, Prasinochloris, Prasinocladus, Prasinophyta, Prasiola, Prochlorphyta, Prochlorothrix, Protoderma, Protosiphon, Provasoliella, Prymnesium, Psammodictyon, Psammothidium, Pseudanabaena, Pseudenoclonium, Psuedocarteria, Pseudochate, Pseudocharacium, Pseudococcomyxa, Pseudodictyosphaerium, Pseudokephyrion, Pseudoncobyrsa, Pseudoquadrigula, Pseudosphaerocystis, Pseudostaurastrum, Pseudostaurosira, Pseudotetrastrum, Pteromonas, Punctastruata, Pyramichlamys, Pyramimonas, Pyrrophyta, Quadrichloris, Quadricoccus, Quadrigula, Radiococcus, Radiofilum,

Raphidiopsis, Raphidocelis, Raphidonema, Raphidophyta, Peimeria, Rhabdoderma, Rhabdomonas, Rhizoclonium, Rhodomonas, Rhodophyta, Rhoicosphenia, Rhopalodia, Rivularia, Rosenvingiella, Rossithidium, Roya, Scenedesmus, Scherfelia, Schizochlamydella, Schizochlamys, Schizomeris, Schizothrix, Schroederia, Scolioneis, Scotiella, Scotiellopsis, Scourfieldia, Scytonema, Selenastrum, Selenochloris, Sellaphora, Semiorbis, Siderocelis, Diderocystopsis, Dimonsenia, Siphononema, Sirocladium, Sirogonium, Skeletonema, Sorastrum, Spennatozopsis, Sphaerellocystis, Sphaerellopsis, Sphaerodinium, Sphaeroplea, Sphaerozosma, Spiniferomonas, Spirogura, Spirotaenia, Spirulina, Spondylomorum, Spondylosium, Sporotetras, Spumella, Staurastrum, Stauerodesmus, Stauroneis, Staurosira, Staurosirella, Stenopterobia, Stephanocostis, Stephanodiscus, Stephanoporos, Stephanosphaera, Stichococcus, Stichogloea, Stigeoclonium, Stigonema, Stipitococcus, Stokesiella, Strombomonas, Stylochrysalis, Stylodinium, Styloyxis, Stylosphaeridium, Surirella, Sykidion, Symploca, Synechococcus, Synechocystis, Synedra, Synochromonas, Synura, Tabellaria, Tabularia, Teilingia, Temnogametum, Tetmemorus, Tetrachlorella, Tetracyclus, Tetradesmus, Tetraedriella, Tetraedron, Tetraselmis, Tetraspora, Tetrastrum, Thalassiosira, Thamniochaete, Thermosynechococcus, Thorakochloris, Thorea, Tolypella, Tolypothrix, Trachelomonas, Trachydiscus, Trebouxia, Trentepholia, Treubaria, Tribonema, Trichodesmium, Trichodiscus, Trochiscia, Tryblionella, Ulothrix, Uroglena, Uronema, Urosolenia, Urospora, Uva, Vacuolaria, Vaucheria, Volvox, Volvulina, Westella, Woloszynskia, Xanthidium, Xanthophyta, Xenococcus, Zygnema, Zygnemopsis, and Zygonium. In yet other related embodiments, the engineered cell provided by the invention is derived from a Chloroflexus, Chloronema, Oscillochloris, Heliothrix, Herpetosiphon, Roseiftexus, and Thermomicrobium cell; a green sulfur bacteria selected from: Chlorobium, Clathrochloris, and Prosthecochloris; a purple sulfur bacteria is selected from: Allochromatium, Chromatium, Halochromatium, Isochromatium, Marichromatium, Rhodovulum, Thermochromatium, Thiocapsa, Thiorhodococcus, and Thiocystis; a purple non-sulfur bacteria is selected from: Phaeospirillum, Rhodobaca, Rhodobacter, Rhodomicrobium, Rhodopila, Rhodopseudomonas, Rhodothalassium, Rhodospirillum, Rodovibrio, and Roseospira; an aerobic chemolithotrophic bacteria selected from: nitrifying bacteria. Nitrobacteraceae sp., Nitrobacter sp., Nitrospina sp., Nitrococcus sp., Nitrospira sp., Nitrosomonas sp., Nitrosococcus sp., Nitrosospira sp., Nitrosolobus sp., Nitrosovibrio sp.; colorless sulfur bacteria such as, Thiovilum sp., Thiobacillus sp., Thiomicrospira sp., Thiosphaera sp., Thermothrix sp.; obligatory chemolithotrophic hydrogen bacteria, Hydrogenobacter sp., iron and manganese-oxidizing and/or depositing bacteria, Siderococcus sp., and magnetotactic bacteria, Aquaspirillum sp; an archaeobacteria selected from: methanogenic archaeobacteria, Methanobacterium sp., Methanobrevibacter sp., Methanothermus sp., Methanococcus sp., Methanomicrobium sp., Methanospirillum sp., Methanogenium sp., Methanosarcina sp., Methanolobus sp., Methanothrix sp., Methanococcoides sp., Methanoplanus sp.; extremely thermophilic sulfur-Metabolizers such as Thermoproteus sp., Pyrodictium sp., Sulfolobus sp., Acidianus sp., Bacillus subtilis, Saccharomyces cerevisiae, Streptomyces sp., Ralstonia sp., Rhodococcus sp., Corynebacteria sp., Brevibacteria sp., Mycobacteria sp., and oleaginous yeast; and extremophile selected from Pyrolobus fumarii; Synechococcus lividis, mesophiles, psychrophiles, Psychrobacter, insects, Deinococcus radiodurans, piezophiles, barophiles, hypergravity tolerant organisms, hypogravity tolerant organ-
isms, vacuum tolerant organisms, tardigrades, insects, microbes seeds, dessicant tolerant anhydrobiotic organisms, xerophiles, Artemia salina, nematodes, microbes, fungi, lichens, salt tolerant organisms halophiles, halobacteriacea, Dunaliella salina, pH tolerant organisms, alkaliphiles, Natronobacterium, Bacillus firmus OF4, Spirulina spp., acidophiles, Cyanidium caldarium, Ferroplasma sp., anaerobes, which cannot tolerate O_{2}, Methanococcus jannaschii, microaerophils, which tolerate some O_{2}, Clostridium, aerobes, which require O_{2}, gas tolerant organisms, which tolerate pure CO_{2}, Cyanidium caldarium, metal tolerant organisms, metalotolerants, Ferroplasma acidarmanus Ralstonia sp CH34.
In certain embodiments, the host is Nostoc punctiforme ATCC29133. In many embodiments, the host is an Anabaena spp of cyanobacterium. Anabaena provides several advantages above the cyanobacteria currently being genetically modified to produce carbon based products of interest. For example, Anabaena is capable of fixing its own N_{2} for growth using heterocysts using only solar energy and water, allowing for less investment for growth. In one embodiment, the host is Anabaena PCC7120 (Anabaena 7120). In another embodiment, the host is Anabaena cylindrica 29414. In yet another embodiment, the host is Anabaena variabilis ATCC29413.
"Carbon-based products of interest" include alcohols such as ethanol, propanol, methylbutenol, linalool, geraniol, isopropanol, butanol, butanetriol, menthol, fatty alcohols, fatty acid esters, wax esters; hydrocarbons (alkanes/alkenes) such as propane, hexane, octane/octane, squalane, myrcene, decene, pinene, farnesene, limonene, diesel, Jet Propellant 8 (JP8); polymers such as terephthalate, 1,3-propanediol, 1,4butanediol, polyols, Polyhydroxyalkanoates (PHA), poly-beta-hydroxybutyrate (PHB), acrylate, adipic acid, .epsilon.caprolactone, isoprene, caprolactam, rubber; commodity chemicals such as lactate, Docosahexaenoic acid (DHA), 3-hydroxypropionate, amino acids such as lysine, serine, aspartate, and aspartic acid, sorbitol, ascorbate, ascorbic acid, isopentenol, lanosterol, omega-3 DHA, itaconate, 1,3-butadiene, ethylene, propylene, succinate, citrate, citric acid, sucrose, glutamate, malate, 3-hydroxypropionic acid (HPA), lactic acid, THF, gamma butyrolactone, pyrrolidones, hydroxybutyrate, glutamic acid, levulinic acid, acrylic acid, malonic acid; specialty chemicals including carotenoids such as lycopene, astaxanthin, β-carotene, and canthaxanthin, isoprenoids, itaconic acid; pharmaceuticals and pharmaceutical intermediates such as 7 -aminodeacetoxycephalosporanic acid ($7-\mathrm{ADCA}$)/cephalosporin, erythromycin, polyketides, statins, paclitaxel, docetaxel, terpenes, peptides, steroids, omega fatty acids and other such suitable products of interest. Such products are useful in the context of biofuels, i.e. any fuel with one or more hydrocarbons, one or more alcohols, one or more fatty esters or a mixture thereof that derives from a biological source industrial and specialty chemicals, as intermediates used to make additional products, such as nutritional supplements, neutraceuticals, polymers, paraffin replacements, personal care products and pharmaceuticals.

In various embodiments, polynucleotides encoding enzymes are introduced into the host cell such that expression of the enzyme by the host under certain conditions results in increased production of a carbon-based product of interest. In certain cases, introduction takes place through transformation of the host. "Increased production" or "up-regulation" of a carbon-based product of interest includes both augmentation of native production of the carbon-based product of interest as well as production of a carbon-based product of interest in an organism lacking native production. For example, in
some instances production will be increased from a measurable initial value whereas in other instances the initial value is zero.

A recombinant expression construct for transformation of a host cell and subsequent integration of the gene(s) of interest is prepared by first isolating the constituent polynucleotide sequences. In some embodiments, the gene(s) of interest are homologously integrated into the host cell genome. In other embodiments, the genes are non-homologously integrated into the host cell genome. Generally, constructs containing polynucleotides are introduced into the host cell using a standard protocol, such as the one set out in Golden S S et al. (1987) "Genetic engineering of the Cyanobacteria chromosome" Methods Enzymol 153: 215-231 and in S. S. Golden and L. A. Sherman, J. Bacteriol. 158:36 (1984), incorporated herein by reference. The particular procedure used to introduce the genetic material into the host cell for expression is not particularly critical. Any of the well-known procedures for introducing heterologous polynucleotide sequences into host cells can be used. In certain embodiments, only a single copy of the heterologous polynucleotide is introduced. In other embodiments, more than a single copy, such as two copies, three copies or more than three copies of the heterologous polynucleotide is introduced. As is understood by the skilled artisan, multiple copies of heterologous polynucleotides may be on a single construct or on more than one construct.

In exemplary embodiments, the disclosed polynucleotides are operably connected to a promoter in the construct. As is understood in the art, a promoter is segment of DNA which acts as a controlling element in the expression of that gene. In one embodiment, the promoter is a native Anabaena promoter. For example, the promoter may be an Anabaena Pnir promoter such as the one described in Desplancq, D2005, Combining inducible protein overexpression with NMRgrade triple isotope labeling in the cyanobacterium Anabaena sp. PCC 7120. Biotechniques. 39:405-11 (SEQ ID NO. 1) or one having sequence identity of about $76 \%, 80 \%, 85 \%$, at least about 90%, and at least about $95 \%, 96 \%, 97 \%, 98 \%$ or 99% to SEQ ID NO. 1. The promoter may also be an Anabaena psbA promoter (SEQ ID NO. 2), Prbc_{L} promoter (SEQ IDNO. 3) and/or E. coli $\mathrm{P}_{t a c}$ promoter (SEQID NO. 4) (Elhai, J. 1993. Strong and regulated promoters in the cyanobacterium Anabaena PCC 7120. FEMS Microbiol Lett. 114(2): $179-84$) or one having sequence identity of about $76 \%, 80 \%$, 85%, at least about 90%, and at least about $95 \%, 96 \%, 97 \%$, 98% or 99% to SEQ ID NO. 2, SEQ ID NO. 3 , or SEQ ID NO. 4. In some embodiments, the promoter is a combined dual promoter, i.e. a promoter containing more than one of the above.

In some embodiments, the gene of interest is transiently introduced into the host cell through use of a plasmid or shuttle vector. In other embodiments, the gene of interest is permanently introduced into the chromosome of the host cell. Chromosomal integration techniques are known to the skilled artisan and have been described in Zhou and Wolk, 2002, Identification of an Akinete Marker Gene in Anabaena variabilis, J. Bacteriol., 184(9):2529-2532. Briefly, the gene of interest is fused to a promoter and then subcloned into an integration vector. This construct is introduced into the host cell for double homologous recombination at specific loci on the host cell chromosome. In many embodiments, homologous recombination takes place at two loci of the host cell chromosome. The recombinant cells can be selected by monitoring loss of a conditional lethal gene, such as sacB. Further diagnostic verification by the polymerase chain reaction can be performed. In many embodiments, the gene of interest will
be inserted into the chromosome at the site of a gene that is desired to be deleted or inactivated.

After the host is genetically modified, the host is generally incubated under conditions suitable for production of the carbon-based product of interest. Culture conditions for various hosts are well documented in the literature. Typically, when the host is Anabaena, the host cell will be grown in a photoautotrophic liquid culture in BG-11 media, with an 1 $\mathrm{L} / \mathrm{min}$ air sparge rate and a pH set point of 7.5 , controlled via sparging with CO_{2}, and the temperature maintained at $30^{\circ} \mathrm{C}$.
In many embodiments, strain engineering techniques such as directed evolution and acclimation will be used to improve the performance of various host cells. Strain engineering is known in the art (Hughes, S. R., K. M. Bischoff, W. R. Gibbons, S. S. Bang, R. Pinkelman, P. J. Slininger, N. Qureshi, S. Liu, B. C. Saha, J. S. Jackson, M. C. Cotta, J. O. Rich, and J. Javers. 2011. Random UV-C Mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to Improve Anaerobic Growth on Lignocellulosic Sugars. J. Ind. Microbiol. Biotechnol. DOI 10.1007/x 10295-011-1012-x; Bock, S. A., Fox, S. L. and Gibbons. W. R. 1997. Development of a low cost, industrially suitable medium for production of acetic acid from glucose by Clostridium thermoaceticumn. Biotechnol. Applied Bioch. 25:117-125;Gibbons, W.R., N. Pulseher, and E. Ringquist. 1992. Sodium meta bisulfite and pH tolerance of Pleurotus sajor caju under submerged cultivation. Appl. Biochem. Biotechnol. 37:177-189.

As host cells generally possess complex regulatory systems for traits such as product tolerance, productivity, and yield, directed evolution and screening is often used to create global genome-wide alterations needed to develop strains with desired industrial characteristics. Certain embodiments will use directed evolution under elevated linalool concentrations, as well as fluctuating temperature, pH , and $\mathrm{CO}_{2} / \mathrm{O}_{2}$ levels to generate stable, heritable genetic improvements in product tolerance, productivity, yield, and robustness to process conditions.
A. Ethanol

In one embodiment, the host cell is genetically engineered to increase production of ethanol through transformation with an expression vector containing polynucleotides encoding ethanol producing enzymes. As used herein, an ethanol producing enzyme is an enzyme active in the end production of ethanol from a precursor molecule in a metabolic pathway. The polynucleotide encodes pyruvate decarboxylase (SEQ ID NO. 5) and/or alcohol dehydrogenase (SEQ ID NO. 6) in exemplary embodiments. Embodiments also include enzymes having sequence identity of about $76 \%, 80 \%, 85 \%$, at least about 90%, and at least about $95 \%, 96 \%, 97 \%, 98 \%$ or 99% to SEQ ID NO. 5 and SEQ ID NO. 6. The host is genetically engineered with polynucleotides encoding one or both enzymes. In many embodiments, host cells are engineered to express both enzymes. Known sources of polynucleotides encoding pyruvate decarboxylase and alcohol dehydrogenase exist. For example, the nucleic acid encoding the enzymes may be from organisms such as Zymomonas mobilis, Zymobacter paimae, or Saccharomyces cerevisciae (Ingram L O, Conway T, Clark D P, Sewell G W, Preston J F. 1987. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol. 53(10):2420-5). Any pyruvate decarboxylase (pdc) gene capable of expression in the host may be used in with the disclosed embodiments. In some embodiments, the pdc gene is the Zymomonas mobilis pdc gene. In these embodiments, the pdc gene is often obtained from the Zymomonas mobilis plasmid pLOI295. In other embodiments, the pdc gene is from Zymobacter paimae. The NCBI accession number for the complete pdc
protein sequence from Zymobacter paimae is AF474145. Similarly, any alcohol dehydrogenase (adh) gene capable expression in the host may be used with the disclosed embodiments. In some embodiments, the adh gene is the Zymomonas mobilis adhII gene. In these embodiments, the adh gene is often obtained from the Zymomonas mobilis plasmid pLOI295.

Polynucleotides encoding genes such as omrA, 1 mrA , and lmrCD, which increase the ability of the host to handle commercially relevant amounts of ethanol, may be included on the same or a different vector as the polynucleotides encoding the pdc and adh genes. Bourdineaud J P, Nehmé B, Tesse S, Lonvaud-Funel A. 2004. A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine. Int. J. Food Microbiol. 92(1):114. For example, in some embodiments, the expression vector comprising the pdc/adh genes further comprises the omrA gene. In other embodiments, the expression vector comprising the pdc/adh genes further comprises the $1 \mathrm{mr} A$ gene. In yet other embodiments, the expression vector comprising the $\mathrm{pdc} / \mathrm{adh}$ genes further comprises the 1 mrCD gene. And in still further embodiments, the expression vector comprising the $\mathrm{pdc} /$ adh genes further comprises polynucleotides encoding the omrA, 1 mrA , and 1 mrCD genes.

In host cells producing increased ethanol, the synthesis of pyruvate is additionally up-regulated in certain embodiments. In these embodiments, phosphohoglycerate mutase, enolase, and/or pyruvate kinase, are over-expressed. A construct containing genes of one or more of the above enzymes is designed using genes from Z. mobilis and S. cerevisiae. The construct is then used to genetically engineer a host.

Ethanol producing Anabaena sp. PCC7120 (pZR672) strain was deposited at the American Type Culture Collection on Feb. 27, 2012, and given accession number PTA-12833. PTA-12833 was deposited with the American Type Culture Collection ATCC at 10801 University Blvd. Manassas Va. 20110-2209 USA. The deposit was made under the provisions of the Budapest Treaty on the International Recognition of Deposited microorganisms for the Purposes of Patent Procedure and Regulations thereunder Budapest Treaty). Maintenance of a viable culture is assured for thirty years from the date of deposit. The organism will be made available by the ATCC under the terms of the Budapest Treaty, and subject to an agreement between the Applicants and the ATCC which assures unrestricted availability of the deposited cells to the public upon the granting of patent from the instant application.

B. Sucrose

In yet another embodiment, the host cell is engineered to increase the production and excretion of sucrose through transformation with an expression vector containing polynucleotides encoding sucrose producing enzymes. As used herein, a sucrose producing enzyme is an enzyme active in the end production of sucrose from a precursor molecule in a photosynthetic pathway. In these embodiments, a polynucleotide encoding sucrose-phosphate synthase (SPS) and/or sucrose-phosphate phosphatase (SPP) is introduced into the host cell and expressed such that the host cell increases its production of sucrose. Known sources of SPS and SPP exist and any SPS or SPP gene capable of expression may be used with the disclosed embodiments. For example, polynucleotide encoding SPS and SPP may be from organisms such as sugar beet and sugar cane such as those in SEQ ID NO. 7, SEQ ID NO. 8, SEQ ID NO. 9. In other embodiments, the polynucleotides have sequence identity of about $76 \%, 80 \%$, 85%, at least about 90%, and at least about $95 \%, 96 \%, 97 \%$, 98% or 99% to SEQ ID NO. 7 , SEQ ID NO. 8, and SEQ ID

NO. 9. In an alternative embodiment, the polynucleotide encoding SPS and is from cyanobacteria such as Synchocystis, Anabaena, or the like. Polynucleotides of SPS from cyanobacteria are shown in SEQ ID NO. 10 and SEQ ID NO. 11. In certain embodiments, SPS polynucleotides have sequence identity of about $76 \%, 80 \%, 85 \%$, at least about 90%, and at least about $95 \%, 96 \%, 97 \%, 98 \%$ or 99% to SEQ ID NO. 10 and SEQ ID NO. 11.
In exemplary embodiments, the expression vector encoding SPS and/or SPP includes a promoter. For example, in some embodiments, the expression vector includes an Anabaena PpsbA promoter. In this embodiment the expression vector may be shuttle vector pRL489, such as the one described in Elhai J 1993 Strong and regulated promoters in the cyanobacterium Anabaena PCC7120. FEMS Microbiol. Lett. 114(2): 179-84.

In many embodiments where sucrose production has been increased, intracellular sucrose concentrations are reduced by over-expression of sucrose exporter genes. A sucrose exporter gene is a gene encoding a polypeptide involved in the transport of sucrose out of the cell. An example sucrose exporter gene includes the sucrose exporter gene from maize, i.e. ZmSUT1 (Slewinski et al., 2009. Sucrose transporter 1 functions in phloem loading in maize leaves. J. Exp. Bot. 60 (3):881-892). A sucrose exporter gene is demonstrated by SEQ ID NO. 12. In some embodiments, the sucrose exporter genes have sequence identity of about $76 \%, 80 \%, 85 \%$, at least about 90%, and at least about $95 \%, 96 \%, 97 \%, 98 \%$ or 99% to SEQ ID NO. 12. The host in certain embodiments is genetically engineered with a sucrose exporter gene which is on the same construct as SPS and/or SPP. In other embodiments, the sucrose exporter genes may be from sugarcane and cloned into a separate expression vector or integrated into the chromosome of the host cells. Reinders A, Sivitz A B, Hsi A, Grof C P, Perroux J M, Ward J M. 2006. Sugarcane ShSUT1: analysis of sucrose transport activity and inhibition by sucralose. Plant Cell Environ. 29(10):1871-80 demonstrates the sucrose exporter gene of SEQ ID NO. 13. In exemplary embodiments, the sucrose exporter genes have sequence identity of about $76 \%, 80 \%, 85 \%$, at least about 90%, and at least about $95 \%, 96 \%, 97 \%, 98 \%$ or 99% to SEQ ID NO. 13 C. Urea

Additionally, other urea cycle pathway intermediates are up-regulated and non-urea producing metabolic pathways are down-regulated or blocked in exemplary embodiments. For example, in one embodiment the urea cycle genes, i.e. CPS-1, OTC, ASS, and AS, are up-regulated. Polynucleotides encoding the genes are operably connected to an Anabaena PglnA promoter and the host cell is genetically engineered with the construct.

D. Long Chain Alkanes

In still another embodiment, host cells are engineered to increase production of long chain hydrocarbons such as alkanes/alkenes, i.e. C8-C18. In many embodiments with increased production of long chain hydrocarbons, secretion of the long chain hydrocarbons is also increased. Anabaena is innately capable of producing and secreting long-chain alkanes/alkenes. Long chain alkanes/alkenes can be produced in Anabaena from both the fatty acid pathway and the MEP pathway. In the fatty acid pathway, acyl-ACP reductase (AR) combined with aldehyde decarbonylase (AD) convert fatty acid to alkanes/alkenes Schirmer A, Rude M A, Li X, Popova E, del Cardayre S B. 2010. Microbial biosynthesis of alkanes. Science. 329(5991):559-62. In embodiments where host cells are engineered to increase production of long chain alkanes, the host cell is genetically engineered with a polynucleotide encoding AR and/or AD. Known sources of AR
and $A D$ exist in many cyanobacteria and any $A R$ and $A D$ gene capable of expression may be used with the disclosed embodiments. In many embodiments, the AR and/or AD genes are native Anabaena genes, i.e. native AR and/or AD are over-expressed. For example, in one embodiment the AR/AD genes will be from Anabaena cylindrica 29414 such as those demonstrated by SEQ ID NO. 14 and SEQ ID NO. 15. In other embodiments, the AR and AD genes have sequence identity of about $76 \%, 80 \%, 85 \%$, at least about 90%, and at least about $95 \%, 96 \%, 97 \%, 98 \%$ or 99% to SEQ ID NO. 14 and SEQ ID NO. 15.
E. Long-Chain Hydrocarbons from Isoprenoid Biosynthesis Pathway

In still another embodiment, the host cell is engineered to increase the production of carbon-based products of interest from the native isoprenoid biosynthesis pathway, i.e. the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. In many embodiments, excretion of the carbon-based products of interest is also increased. DMAPP and IPP, the early precursors for many carbon-based products of interest are made through MEP pathway in Anabaena. In heterotrophic organisms, DMAPP and IPP are made from precursors mainly derived from glucose through gluconeogenesis. However, as demonstrated in FIG. 4 photosynthetic organisms produce DMAPP and IPP from precursors directly synthesized from CO_{2} via the Calvin cycle and perhaps also from photorespiration. Cyanobacteria, in addition to initiating the MEP pathway via glyceraldehyde-3-phosphate (G3P) and pyruvate, can use phosphorylated sugars directly from the Calvin cycle as precursors for entering into the MEP pathway. Due to their higher photosynthetic efficiency and greater innate MEP pathway flux for making DMAPP and IPP precursors, cyanobacteria, such as Anabaena are especially suited for engineering production of excreted carbon-based products of interest. Therefore, genetically engineering photosynthetic organisms such as Anabaena to produce MEP pathway carbon-based products of interest has greater advantages than genetically engineering heterotrophic organisms.

In some embodiments, components of the MEP pathway are up-regulated to manipulate the DMAPP and IPP pool so as to maximize production of carbon-based products of interest. This up-regulation is achieved through transformation of the host by an expression vector with polynucleotides containing one or more of the eight genes of the MEP pathway. FIG. 4 and FIG. 13 show the individual components of the MEP pathway. The genes responsible for the MEP pathway include dxs, dxr, mct, cmk, mds, hds, hdr, and idi. In many cases, the MEP pathway polynucleotide expression may be constructed as a synthetic operon. This operon is fused to an Anabaena psbA promoter in pZR807 (a pNIR derivative shuttle vector) in many embodiments. In certain embodiments, the dxr, hds, and hdr are from Synechocysitis sp. PCC6803. In Synechocysitis, the corresponding genes are sll0019, slr2136, and slr0348 respectively. In another embodiment, DXS will be overexpreesed. Kuzuyama T, Takagi M, Takahashi S, Seto H.2000. Cloning and characterization of 1-deoxy-D-xylulose 5 -phosphate synthase from Streptomyces sp strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J. Bacteriol. 182(4):891-7, Cordoba E, Salmi M, Leon P. 2009. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot. 60(10):2933-43, Alper H, Fischer C, Nevoigt E, Stephanopoulos G. 2005. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA. 102:12678-83, Alper H, Stephanopoulos G. 2008. Uncovering the gene knockout landscape for improved lycopene production in E.
coli. Appl. Microbiol. Biotechnol. 78:801-10. In this embodiment, to overexpress DXS, the DXS gene (alr0599) from Anabaena will be PCR amplified with primers containing restriction sites and a ribosome binding site. The resulting PCR product will be fused to a nitrate-inducible promoter Pnir and cloned into pZR807, a shuttle plasmid that can replicate both in E. coli and Anabaena. This construction will be introduced into Anabaena for overexpression of DXS.

The genes of the MEP pathway are generally placed into the operon in the pathway order, although this is not required. The genes may be flanked with restriction nuclease sites non-native to the applicable genes to make insertion and deletion of specific genes more convenient. When the restriction sites are intended to allow removal of a portion of the operon and replacement with another sequence, different restriction enzyme sites are used on each side of the portion of the operon. When the restriction sites are intended to allow removal of a portion of the operon and not be replaced, the same restriction nuclease site exists on both sides. In most embodiments, restriction nuclease sites are engineered to produce sticky-ends. Polynucleotide sequences for individual genes have engineered ribosome binding sites in many embodiments. In some instances, the genes additionally include spacer sequences for enhancing translation of target genes.
a. Linalool $\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}\right)$

Linalool $\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}\right)$ is a carbon-based product of interest produced from the MEP pathway where the universal isoprenoid intermediate geranyl disphosphate (GPP) is converted to linalool by linalool synthase (LinS) (see FIG. 4). In these embodiments, host is genetically engineered with a polynucleotide encoding LinS such that the host cell has up-regulated production of linalool. Known sources of LinS genes exist and any LinS gene capable of being expressed may be used with the disclosed embodiments. For example, polynucleotide encoding LinS may be from a Norway Spruce. In many embodiments, the polynucleotide encoding LinS is not native to Anabaena. LinS genes such as CbLinS, McLinS, and LaLinS are well studied and contemplated for use in the disclosed embodiments.

TABLE 1

	Gene name	Accession No.	$\begin{gathered} \mathrm{Km} \\ (\mu \mathrm{M}) \end{gathered}$	Organism	References
linalool synthase	LaLINS	DQ263741	47.4	Lavandula angustifolia	Landmann et al., 2007
	Mc Lis	AY083653	25	Mentha citrata	$\begin{aligned} & \text { Crowell et al., } \\ & 2002 \end{aligned}$
	CbLis	U58314	0.9	Clarkia breweri	Pichersky et al., 1995 Dudareva et al., 1996

In exemplary embodiments, the expression vector encoding LinS includes a promoter. For example, in some embodiments, the expression vector includes an Anabaena Pnir promoter. In this embodiment the expression vector may be a shuttle vector p ZR807.
In many embodiments, a host cell is genetically engineered with both polynucleotide encoding genes of the MEP pathway as well as LinS. This transformation may include a single expression vector or multiple expression vectors. In other embodiments, a LinS gene is fused to a promoter and then subcloned into an integration vector and this resulting construction pLinS is then introduced into the host cell for double
homologous recombination. The double recombinants are then selected by loss of a conditional lethal gene such as sacB.

Linalool producing Anabaena sp. PCC7120 (pZR808) strain was deposited at the American Type Culture Collection on Feb. 27, 2012, and given accession number PTA-12832. PTA-12832 was deposited with the American Type Culture Collection (ATCC) at 10801 University Blvd., Manassas, Va 20110-2209 (USA). The deposit was made under the provisions of the Budapest Treaty on the International Recognition of Deposited microorganisms for the Purposes of Patent Procedure and Regulations thereunder (Budapest Treaty). Maintenance of a viable culture is assured for thirty years from the date of deposit. The organism will be made available by the ATCC under the terms of the Budapest Treaty, and subject to an agreement between the Applicants and the ATCC which assures unrestricted availability of the deposited cells to the public upon the granting of patent from the instant application.

b. Methylbutenol $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}\right)$

Another carbon-based product of interest produced by an intermediate product from the MEP pathway, i.e. DMAPP, is methylbutenol (MBO). Methylbutenol is produced in the MEP pathway when DMAPP is converted to methylbutenol by methylbutenol synthase (MboS). In these embodiments, host cell is genetically engineered with a polynucleotide encoding MboS such that the host cell has up-regulated production of methylbutenol. Known sources of MboS exist and any MboS gene capable of being expressed may be used with the disclosed embodiments. In certain embodiments, the polynucleotide encoding MboS is from Pinus sabiniana and listed as below. Gray D W, Breneman S R, Topper L A, Sharkey T D. 2011, Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants. J Biol. Chem. 286(23):20582-90. SEQ ID NO. 16. In other embodiments, MboS have sequence identity of about 76%, $80 \%, 85 \%$, at least about 90%, and at least about $95 \%, 96 \%$, $97 \%, 98 \%$ or 99% to SEQ ID NO. 16.

In many embodiments, a host cell is genetically engineered with both polynucleotide encoding genes of the MEP pathway as well as MboS. This transformation may include a single expression vector or multiple expression vectors.

c. Myrcene $\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)$

Yet another carbon-based product of interest produced from an intermediate of the MEP pathway is myrcene. Myrcene is produced in the MEP pathway where the universal isoprenoid intermediate geranyl disphosphate (GPP) is converted to myrcene by myrcene synthase (MyrS) Dudareva N, Martin D, Kish C M, Kolosova N, Gorenstein N, Fäldt J, Miller B, Bohlmann J. 2003. (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell. 15(5):1227-41. Martin D M, Fäldt J, Bohlmann J. 2004. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol. 135(4):1908-27. Lijima Y, Davidovich-Rikanati R, Fridman E, Gang D R, Bar E, Lewinsohn E, Pichersky E. 2004. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol. 136(3):3724-36. No MyrS gene is founded in cyanobacterial genomes. In these embodiments, host is genetically engineered with a polynucleotide encoding MyrS such that the host cell has increased production of myrcene. Known sources of MyrS exist and any MyrS gene capable of being expressed may be used with the disclosed embodiments. In
many embodiments, the polynucleotides encoding MyrS may be chosen from the organisms listed in the following table:

TABLE 2

Myrcene synthase gene required for engineering cyanobacteria to produce myrcence			
	Gene	Accession	
	Name	No.	Organism
Myrcene synthase Ag.2. U87908 Abies grandis (MyrS) Amale20 AA041726 Antirrhinum majus PaTPs-Myr AY473626 Norway Spruce Ocimum basilicum MyS AAV63791 Smapdragon			

In many embodiments, a host cell is genetically engineered with both polynucleotide encoding genes of the MEP pathway as well as MyrS. This transformation may include a single expression vector or multiple expression vectors.
d. Farnesene $\left(\mathrm{C}_{15} \mathrm{H}_{24}\right)$

And still another carbon based product of interest produced by MEP pathway is farnesene. Farnesene is produced in the MEP pathway by conversion of geranyl-diphosphate (GPP) to farnesyl-diphosphate (FPP) by FPP synthase (FPPS). Subsequently, FPP is converted to farnesene by farnesene synthase (FarS) Maruyama T, Ito M, Honda G. 2001. Molecular cloning, functional expression and characterization of (E)beta farnesene synthase from Citrus junos. Biol. Pharm. Bull. 24:1171-5 and Picaud S, Brodelius M, Brodelius P E. 2005. Expression, purification and characterization of recombinant (E)-beta-farnesene synthase from Artemisia annua. Phytochemistry. 66(9):961-7. In Anabaena, only a putative FPPS gene exists and no FarS gene is found. In these embodiments, host cell is genetically engineered with a polynucleotide encoding FPPS and FarS such that the host cell has increased production of farnesene. Known sources of FPPS and Fars exist and any FPPS or FarS gene capable of being expressed may be used with the disclosed embodiments. In many embodiments, the polynucleotides encoding FPPS and FarS are chosen from the organisms listed in the following table:

TABLE 3

Genes required for engineering cyanobacteria to produce farnesene			
	Gene	Accession	
	Name	No.	Organisn
Farnesyl diphosphate synthase (FPPS)	FDSI	AY308477	Artemisis tridentate
	TbFPPS	AY158342	Trypanosoma brucei
	FPS2	NP_974565	Arabidopsis thaliana
	ispA	NP-414955	E. coli K-12
	pFPS2	U20771	Lupinus albus
Farnesene synthase	AFS1	AY182241	Malus domestica
(FarS)			
	CJFS	AF374462	Citrus junos
	CmTpsDul	EU158099	Cucumis melo L.
	FS	AY835398	Artemisis annua
	PmeTPS4	AY906867	Pseudotsuga
			menziesii

In certain embodiments, the FPPS and FarS will be from the same organism. In other embodiments, the constructs will include FPPS and FarS from different organisms. In many embodiments, a host cell is genetically engineered with both polynucleotide encoding genes of the MEP pathway as well as FPPS and FarS. This transformation may include a single expression vector or multiple expression vectors.

In most embodiments, production of carbon-based products of interest is further optimized. For example, photosynthesis is optimized and/or competing metabolic pathways are blocked or inactivated. Photosynthetic rates can be increased by the over-expression of RuBisCo and RuBisCo activase. Hudson G S, Evans J R, von Caemmerer S, Arvidsson Y B, Andrews T J. 1992. Reduction of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Content by Antisense RNA Reduces Photosynthesis in Transgenic Tobacco Plants. Plant Physiol. 98, 294-302 and Peterhansel C, Niessen M, Kebeish R M. 2008. Metabolic engineering towards the enhancement of photosynthesis. Photochem. Photobiol. 84:1317-23. In embodiments where host cells producing the carbon-based products of interest using CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ as the starting material, the hosts are often additionally genetically engineered with polynucleotides encoding RuBisCo and RuBisCo activase.

When carbon-based products of interest are produced from the MEP pathway, glycogen synthesis, which competes with the MEP metabolic pathway in the host is down-regulated or blocked in many embodiments. Glycogen synthesis is downregulated or blocked by the down-regulation or block of ADPglucose pyrophosphorylase (ADP-GPPase) activity. Pyruvate dehydrogenase (PDH) is additionally or alternatively blocked in these embodiments. GPP flux may be optimized by downregulating farnesyl-disphosphate synthase (FPPS). Additionally, in certain embodiments genes for the tolerance of a host cell to economically relevant concentrations of the carbon based product of interest are included. In embodiments where competing carbon pathways are blocked or partially inactivated, this may be done using any method known in the art. For example, enzymes in competing pathways can be knocked out or have their activity blocked or reduced. In certain embodiments, unmarked gene deletion created by double-crossover to delete target genes is used to delete Anabaena genes.

EXAMPLES

The invention may be further clarified by reference to the following Examples, which serve to exemplify some of the embodiments and not to limit the invention in any way. The experiments were performed using the methodology described below.

Example 1

Conjugation

Briefly, host cells are harvested by centrifugation and resuspended in medium at a concentration of about $2-5 \times 10^{8}$ cells per ml . To one ml of this cell solution is added the appropriate construct to a final concentration of $2 \mu \mathrm{~g} / \mathrm{ml}$. Host cells are incubated in the dark for 8 hours followed by a 16 h light incubation prior to plating on media plates containing antibiotic. Plates are incubated under standard growth conditions ($30^{\circ} \mathrm{C}$. light intensity of $100 \mu \mathrm{~mol}$ photons $\mathrm{m}-2 \mathrm{~S}-1$). Antibiotic resistant colonies are chosen and the genetically modified host cells are grown, bubbling with air at $30^{\circ} \mathrm{C}$. and a light intensity of $100 \mu \mathrm{~mol}$ photons $\mathrm{m}-2 \mathrm{~S}-1$ in liquid medium containing an appropriate antibiotic

Example 2

Culture Growth

Transgenic cyanobacter cultures will be grown in liquid BG-11 medium in a lighted shaker (Innova 44R, New Brun-
swick Scientific) at $30^{\circ} \mathrm{C}$. and $150 \mu \mathrm{~mol}$ photons m-2 s-1. One week-old cultures will be used to re-inoculate 500 ml Erlenmeyer flasks containing 100 ml liquid BG11, which will then be incubated at $30^{\circ} \mathrm{C}$. and $150 \mu \mathrm{~mol}$ photons $\mathrm{m}-2 \mathrm{~s}-1$ with a 24 h lighting set. Heterotrophic cultures will be supplemented with 100 g L-1 glucose. Samples will be collected at regular intervals and analyzed for product production, as well as chlorophyll content. Chlorophyll will be measured with a spectrophotometer.

Example 3

Ethanol Production

Both pdc ${ }_{z m}$ and $\mathrm{adhB}_{z m}$ coding regions, with an engineered optimized SD sequence (ribosome binding site) immediately upstream of their initiation codons were PCR amplified from pLOI295, which contains both pdc ${ }_{z m}$ and $\mathrm{adhB}_{z m}$ in an artificial operon. See Ingram L O et al. 1987 Genetic Engineering of Ethanol Production in Escherichia coli. Appl. Environ. Microbiol. 53(10):2420-5. The DNA fragment was fused to Anabaena nitrate inducible promoter (nir) in shuttle vector. See Desplancq, D. et al. 2005 Combining inducible protein overexpression with NMR-grade triple isotope labeling in the cyanobacterium Anabaena sp. PCC 7120. Biotechniques. 39:405-11 and Frias et al. 2000. Activation of the Anabaena nir operon promoter requires both NtcA (CAP family) and NtcB (LysR family) transcription factors. Mol. Microbiol. 38:613-25. This construct, named pZR672, was introduced into Anabaena by conjugation. See Zhou, R. and Wolk, C. P. 2002. Identification of an akinete marker gene in Anabaena variabilis. J Bacteriol. 184:2529-32; Wolk, C. P. et al. 1984 Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria, Proc Natl Acad Sci USA. 81:1561-5; and Zhou, R. and Wolk, C. P. 2003. A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. JBiol. Chem. 278:19939-46. Genetically engineered hosts were selected in a nitrate-minus (AA/8 medium) Kan plate. Tests of ethanol production were done using well established protocols. Current ethanol productivity, as shown in FIG. $\mathbf{3}$ is about $13.8 \mathrm{mg} /$ liter $/ \mathrm{h} / 1.0 \mathrm{~A}_{700}$.

Example 4

Sucrose Production

Both sps and spp coding regions, with an engineered optimized SD sequence (ribosome binding site) immediately upstream of their initiation codons will be PCR amplified from sugarcane/sugar beet cDNA. The DNA fragment will be fused to Anabaena nitrate inducible promoter (nir) in shuttle vector pNIR . This construct will be introduced into Anabaena by conjugation. See Wolk, C. P. et al. 1984 Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria, Proc Natl Acad Sci USA. 81:1561-5. Genetically transformed Anabaena will be selected in a nitrate-containing (AA/8 N medium) Km plate. Antibiotic resistant colonies will be chosen and the genetically modified host cells will be grown, bubbling with air at $30^{\circ} \mathrm{C}$. and a light intensity of $100 \mu \mathrm{~mol}$ photons $\mathrm{m}-2 \mathrm{~s}-1$ in liquid medium containing appropriate antibiotic. HPLC tests of sucrose production by Anabaena sp. PCC7120 are demonstrated in FIG. 11.

Sucrose degradation will be reduced by blocking invertases and sucrose synthases (SuS) (see FIG. 5). Two genes, alr0819 and alr 1521, coding for Anabaena invertases and two
genes, all4985 and all1059, coding for sucrose synthases will be inactivated in a double crossover approach, such as the one demonstrated in Zhou, R., Wolk, C. P. 2003. A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J. Biol. Chem. 278:1993946. Phosphofructokinase (PFK) will also be down-regulated in certain embodiments. The genes coding for Anabaena PFK, all7335 and alr1919, will be down-regulated or knocked out using a double crossover approach or through expression of the antisense gene. In one embodiment, one PFK gene will be knocked out, while the other will be down-regulated. In another embodiment, both PFK genes will be down-regulated.

Example 5

Urea Production

a. Create a novel strain with more closely spaced heterocysts. It is known that overexpression of patA gene in Anabaena or inactivation of patN gene in Nostoc punctiforme led to more closely spaced single heterocysts, with an average vegetative cell interval of 3.2 cells (Meeks, J. C., E. L. Campbell, M. L. Summers, and F. C. Wong. 2002. Cellular Differentiation in the cyanobacterium Nostoc punctiforme. Arch. Microbiol. 178: 395-403; Liang J, Scappino L, Haselkorn R. 1992. The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120. Proc. Natl. Acad. Sci. USA. 89(12):5655-9)). A novel Anabaena will be created by combining over-expression of patA and inactivation of patN in Anabaena. This patA+patN- strain will serve as a model strain for further genetic modification to produce urea
b. Manipulate nitrogen flux in patA+patN- strain. Anabaena will be engineered to convert surplus ammonia to urea. All 5 human homologous genes required for urea cycle are found in the Anabaena genome, as well as genes coding for urea transporters. The urea cycle's final reaction is arginasecatalyzed hydrolysis of arginine to yield urea and regenerate ornithine (FIG. 10). Initially an authentic arginase LeARG1 from tomato will be overexpressed in patA ${ }^{+}$patN ${ }^{-}$strain and inactivate its urease Alr3666. Chen H, McCaig B C, Melotto M, He S Y, Howe G A. 2004, Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. J. Biol. Chem. 279(44):45998-6007. To overexpress these genes in Anabaena, the Anabaena PglnA, a constitutively strong promoter that functions in both vegetative cells and heterocysts, will be fused to urea cycle genes and followed by overexpression of them in the patA ${ }^{+}$patN ${ }^{-}$urease ${ }^{-} \mathrm{LeARG}^{+}$strain.
c. Shut down the cyanophycin synthesis in patA ${ }^{+}$patN ${ }^{-}$ urease ${ }^{-} \mathrm{LeARG}^{+}$strain. Cyanophycin synthesis will be blocked and fixed nitrogen will be redirected to excreted urea. A single gene, all3879, encoding cyanophycin synthetase will be knocked out by a double crossover approach (Zhou R, Wolk C P. 2003. A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J. Biol. Chem. 278:19939-46).

The disclosed genetically engineered urea-producing Anabaena strains will be grown in a liquid N_{2}-medium $\left(\mathrm{Bg} 11_{0}\right.$ medium which contains no combined nitrogen) in a lighted shaker (Innova 44R, New Brunswick Scientific) at $30^{\circ} \mathrm{C}$. and $150 \mu \mathrm{~mol}$ photons $\mathrm{m}-2 \mathrm{~s}-1$. One week-old cultures will be used to re-inoculate 4-liter Erlenmeyer flasks containing 1000 ml liquid $\mathrm{BG} 11_{0}$, which will then be incubated at $30^{\circ} \mathrm{C}$. and $150 \mu \mathrm{~mol}$ photons $\mathrm{m}-2 \mathrm{~s}-1$ with a 24 h lighting set. Samples will be collected at regular intervals (24 h) and
analyzed for urea production. Urea excreted in the culture fluid will be measured by HPLC. Results will be used to guide further genetic manipulations.

Example 6

Long Chain Hydrocarbon Production and Isoprenoid Biosynthetic Pathway Product Production

a. Linalool Production

To engineer Anabaena to produce linalool, CbLinS, McLinS, and LaLinS (see Table 1) will be transferred into Anabaena. The coding region of the three genes, with N-terminal plastid targeted sequence deletion, was cloned immediately downstream of the engineered translation initiation sequence (Shine-Dalargno sequence) under a dual promoter (Pnir/PsbA) in shuttle vector p ZR807, a pNIR derived plasmid that replicates in Anabaena. Each construct will be introduced into Anabaena by conjugation.

Transgenic Anabaena cultures will be grown in liquid BG-11 medium in a lighted shaker (Innova 44R, New Brunswick Scientific) at $30^{\circ} \mathrm{C}$. and $150 \mu \mathrm{~mol}$ photons $\mathrm{m}-2 \mathrm{~s}-1$. One week-old cultures will be used to re-inoculate 500 ml Erlenmeyer flasks containing 100 ml liquid BG11, which will then be incubated at $30^{\circ} \mathrm{C}$. and $150 \mu \mathrm{~mol}$ photons $\mathrm{m}-2 \mathrm{~s}-1$ with a 24 h lighting set. Heterotrophic cultures will be supplemented with 100 g L-1 glucose. Samples will be collected at regular intervals and analyzed for linalool production, as well as chlorophyll content.

Chlorophyll will be measured with a spectrophotometer. To measure volatile linalool, 2 ml culture samples will be placed a sealed 20 ml headspace tubes, and incubated at 30° C. for 2 hour. Volatiles will be sampled with a headspace sampler and measured by GC-MS. Linalool will be identified by comparison with genuine standard from GC-Standard grade liquid linalool. Linalool emission rates will be calculated in nmol $\mathrm{g}-1$ chlorophyll $\mathrm{h}-1$ over 2 hour incubation by headspace analysis. Linalool in the culture fluid will be measured by HPLC. Results will be used to guide further genetic manipulations. FIG. 6. demonstrates the production of linalool in transgenic Anabaena.
b. Methylbutenol Production

To engineer Anabaena to produce methylbutenol (MBO), methylbutenol synthase (MboS) will be transferred into Anabaena. The coding region of the MboS, with N-terminal plastid targeted sequence deletion, was cloned immediately downstream of the engineered translation initiation sequence (Shine-Dalargno sequence) under a dual promoter (Pnir/ PsbA) in shuttle vector pZR807, a pNIR derived plasmid that replicates in Anabaena. Each construct was introduced into Anabaena by conjugation. Genetically engineered MBOproducing Anabaena strains (see above) will be grown in a liquid $\operatorname{Bg} 11$ medium which contains combined nitrogen in a lighted shaker (Innova 44R, New Brunswick Scientific) at 30° C. and $150 \mu \mathrm{~mol}$ photons $\mathrm{m}-2 \mathrm{~s}-1$. One week-old cultures will be used to re-inoculate 4 -liter Erlenmeyer flasks containing 1000 ml liquid BG 11 , which will then be incubated at $30^{\circ} \mathrm{C}$. and $150 \mu \mathrm{~mol}$ photons $\mathrm{m}-2 \mathrm{~s}-1$ with a 24 h lighting set. Samples will be collected at regular intervals (24 h) and analyzed for MBO production. MBO excreted in the culture fluid will be measured by HPLC or GC/MS. Results will be used to guide further genetic manipulations.

c. Myrcene Production

To engineer Anabaena to produce myrcene, three MyrS genes in Table 2, i.e. ag2, ama0c15, and AtTPS 10 will be transferred into the host. The coding region of the three genes, with N -terminal plastid targeted sequence deletion will be
cloned immediately downstream of the engineered translation initiation sequence (Shine-Dalgarno sequence) under Anabaena psbA promoter (PpsbA) in shuttle vector pZR807, a plasmid that replicates in Anabaena and bears kanamycin resistance gene Kan^{R}. The constructs will be individually introduced into the host by conjugation. Genetically engineered Anabaena will be selected in a nitrate-containing AA / N medium agar plate supplemented with kanamycin sulfate. In certain experiments, a nitrate-inducible promoter will be used to replace the PpsbA promoter. In some experiments, an epitope tagged MyrS will be designed. The construct allows the 3^{\prime} of MyrS gene in frame to link to $\mathrm{FLAG}_{2}-\mathrm{His}_{6}$ epitope tag engineered into the $\mathrm{pZR807}$ vector once the MyrS gene stop codon is removed. Genetically engineered myrcene-producing Anabaena strains will be grown as described for linalool-producing strain. The myrcene production will measured by GC/MS as described for linalool measurement.

d. Farnesene Production

FPPS and FarS genes from Artmisia will be constructed as an operon under the control of the psbA promoter in shuttle vector pZR807. The construct will be individually introduced into Anabaena by conjugation. Genetically engineered Anabaena will be selected in a nitrate-containing AA/N medium agar plate supplemented with kanamycin sulfate. In certain embodiments, a nitrate-inducible promoter will be used to replace the PpsbA promoter. In some embodiments, an epitope tagged FarS will be designed. The construct allows the 3 ' of FarS gene in frame to link to $\mathrm{FLAG}_{2}-\mathrm{His}_{6}$ epitope tag engineered into the pZR807 vector once the FarS gene stop codon is removed. Farnesene produced by engineered Anabaena will be measured as described for linalool measurement.

Example 7

Optimization of Production of Carbon Based Products of Interest

a. $\mathrm{RuBisCo} / \mathrm{RuBisCo}$ Activase

The native RuBisCo genes rbcL/S (slr009/slr0012) and the putative RuBisCo activase (slr0011) gene will be over-expressed in hosts producing the carbon based product of interest. These three genes will be PCR amplified and fused to a strong Anabaena promoter PpsbA and subcloned into a shuttle vector for conjugation.

FBP/SBPase will be over-expressed to boost RUBP levels. Hosts producing carbon based products of interest will be genetically engineered with FBP/SBPase from Synechococcus PCC794. See Miyagawa Y, Tamoi M, Shigeoka S. 2001. Overexpression of a cyanobacterial fructose-1,6-/sedoheptu-lose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat. Biotechnol. 19(10):965-9 and Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka 5.2006. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol. 47(3): 380-90

b. ADP-GPPase

ADP-GPPase will be inactivated or deleted in certain genetically engineered Anabaena. ADP-GPPase may be inactivated using a double crossover knockout approach. This approach is well documented in Zhou R and Wolk C P. 2002 Identification of an akinete marker gene in Anabaena variabilis. J. Bacteriol. 184:2529-32 and Zhou R and Wolk C P 2003 A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J.

Biol. Chem. 278:19939-46. In Anabaena, the ADP-GPPase gene is all4645. As shown in FIG. 12, for example, LinS gene fused to Anabaena promoter is subcloned to an integration vector (fragment A and B are from Anabaena chromosome) and this resulting construction pLinS is then introduced to Anabaena for double homologous recombination at loci A and B of Anabaena chromosome. The double recombinants will be selected on the sucrose/Km plate by losing the conditional lethal gene sacB in the vector portion (Cai Y P, Wolk C P. 1990. Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J. Bacteriol. June; 172(6):31383145). The completely segregated double recombinants will be further verified by diagnostic PCR. Thus, the LinS/Km cassette from integration plasmid pLinS has replaced the gene all4645 (pink C in FIG. 12) in the double recombinants. In this example, gene all4645 has been deleted from Anabaena chromosome.

c. PDH

Anabaena PDH will be inactivated in some experiments. The internal fragment of alr4745, one of the three genes encoding Anabaena PDH multienzyme complex, will be amplified from Anabaena 7120 genomic DNA and cloned into pRL278, a plasmid designed for conjugative transfer into cyanobacteria. The alr 4745 will be knocked out according to the method disclosed in Zhou R and Wolk C P 2003 A twocomponent system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J. Biol. Chem. 278:19939-46.

d. GGPPS/SQS

If a decrease in the FPP flux to terpeniods is desired, geranylgeranyl diphosphate synthase (GGPPS) and/or squalene synthase (SQS) expression will be down-regulated. SQS and or GGPS antisense sequences will be used to downregulate GGPPS and/or SQS. The construct may additionally include an inducible promoter. The inducible promoter will be inducible by nitrate in many experiments. The gppS antisense sequence will be cloned downstream of a nitrate-inducible promoter and conjugatively transferred into hosts genetically engineered to produce target products. Down-regulating GPPS will be achieved by inducing antisense RNA expression with the addition of nitrate to the growth medium when cell density reaches the maximum.
e. FPPS

GPP flux will be optimized by down-regulating farnesyldisphosphate synthase (FPPS). FPPS will be over-expressed in the antisense direction under an inducible promoter. The fppS antisense sequence will be cloned downstream of a nitrate-inducible promoter and conjugatively transferred into hosts genetically engineered to produce linalool or myrcene. Down-regulating FPPS is achieved by inducing antisense RNA expression with the addition of nitrate to the growth medium when cell density reaches the maximum.
f. Pyruvate Synthesis

Pyruvate synthesis will be increased by over-expressing phosphoglycerate mutase, enolase, and pyruvate kinase (See FIG. 2). Three robust genes from Z. mobilis and from S. cerevisiae will be constructed as an artificial operon and fused to a PsbA1 promoter and then cloned into an integrative vector to insert the enzyme genes within the coding region of alr4745 (encoding PDH-E3). This allows for increased synthesis of pyruvate while concurrently inactivating PDH.

GP3 flux may be altered by over-expressing certain ratelimiting enzymes. The DXS gene (alr0599) from Anabaena and the Arabidopsis IDI gene (AT5G16440) will be PCR amplified with primers containing restriction sites and a ribo-
some binding site. The resulting PCR product will be fused to a nitrate-inducible promoter Pnir and cloned into pZR807.

All of the references cited herein are incorporated by reference in their entireties.

From the above discussion, one skilled in the art can ascertain the essential characteristics of the invention, and without departing from the spirit and scope thereof, can make various
changes and modifications of the embodiments to adapt to various uses and conditions. Thus, various modifications of the embodiments, in addition to those shown and described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 16
<21O> SEQ ID NO 1
<211> LENGTH: 590
<212> TYPE: DNA
<213> ORGANISM: Anabaena sp.
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Anabaena Pnir promoter sequence
<400> SEQUENCE: 1
```

gatctagcta ctcattagtt aagtgtaatg cagaaaacgc atattctcta ttaaacttac 60
gcattaatac gagaattty tagctactta tactattta cetgagatcc cgacataacc 120
ttagaagtat cgaaatcgtt acataaacat tcacacaaac cacttgacaa atttagccaa 180
tgtaaagac tacagtttct ccccggttta gttctagagt taccttcagt gaaacatcgg 240
cggcgtgtca gtcattgaag tagcataaat caattcaaaa taccctgcgg gaaggetgeg 300
ccaacaaat taaatattg gtttttcact attagagcat cgattcatta atcaaaaacc 360
ttacceccca gcccecttcc ettgtaggga agtgggagce aaactcccct ctcegcgtcg 420
gagcgaaaag tctgagcgga ggtttcctcc gaacagaact tttaaagaga gaggggttgg 480
gggagaggtt ctttcaagat tactaaattg ctatcactag acctcgtaga actagcaaag 540
actacgggtg gattgatctt gagcaaaaa actttatgag aacgaattcg 590

```
<210> SEQ ID NO 2
<211> LENGTH: 161
<212> TYPE: DNA
<213> ORGANISM: Anabaena sp.
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Anabaena psbA1 promoter sequence
<400> SEQUENCE: 2
```

ggattcccaa agataggggg aataattaac attagaatt attaattcat gggtttttag $\quad 60$
tctagtaaat ttgegtgaat tcatgtaaat tttatgagac aggcgcaagt ctaaaaaag 120
cgtctgaatt aatctgcaca aatccaaagc aatcataaaa a 161

$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 402
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Anabaena sp.
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: Anabaena PrbcL promoter sequence
$<400>$ SEQUENCE: 3
gttaacaaaa cgtttaaaac tttatgtaat aacaaattta aatatgtaag ttaagaactt
tcaaagaata acttatgcca tttcttgata tattgtgaga caagttacaa attacgtggt
gtgcaatttt ttcatcttgc gctgattact ctactaaata tccgtcaagt aaattggctc
ttagctcgtc tcctgtcaat aaaggaggtc ggcaagagtg cagaagcggg aatgtgtgaa

accgcgaagg tcgtgaaggg ataaaagcaa tttagtgggt gagaagaaca gataaaaaag	360
aattttttaa ctatggcaag aggaaaaagt aaaagcgtta ac	402
$<210>$ SEQ ID NO 4	
<211> LENGTH: 244	
<212> TYPE: DNA	
<213> ORGANISM: E. coli	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
$<223>$ OTHER INFORMATION: E. coli tac promoter sequence	
<400> SEQUENCE: 4	
cgactgcacg gtgaccaatg cttctggcgt caggcagcca tcggaagctg tggtatggct	60
gtgcaggtcg taaatcactg cataattcgt gtcgctcaag gcgcactccc gttctggata	120
atgttttty cgcegacatc ataacggttc tggcaaatat tctgaaatga gctgttgaca	180
attaatcatc ggctcgtata atgtgtggaa ttgtgagcgg ataacaattt cacacaggaa	240
acag	244

$<210>$ SEQ ID NO 5
$<211>$ LENGTH: 568
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Zymomonas mobilis subsp. mobilis CP4
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: Pyruvate Decarboxylase
$<400>$ SEQUENCE: 5

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 383
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Zymomonas mobilis CP4
$<220>$ FEATURE:
$<221>$ NAME/KEY: misC_feature
$<223>$ OTHER INFORMATION: Alcohol Dehydrogenase II
$<400>$ SEQUENCE: 6


```
<210> SEQ ID NO 7
<211> LENGTH: 1045
<212> TYPE: PRT
<213> ORGANISM: Beta vulgaris subsp. vulgaris
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Sugar beet sucrose-phosphate synthase (SPS)
```


$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 1060
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Saccharum hybrid cultivar ROC22
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: Sugarcane sucrose phosphate synthase (SPS)
$<400>$ SEQUENCE: 8

			980			985			990			
Asp	Tyr	Glu G 995	Gly Leu Leu	Gly	Gly 1000	Val	His	Lys	$\begin{aligned} & \text { Thr } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ile } \\ & 1005 \end{aligned}$	Ile	Leu Lys
Gly	Ser 1010	Phe A	Asn Thr Ala	Pro 1015	Asn	Gln	n Val	His	Ala 1020		Arg	Ser
Tyr	$\begin{aligned} & \text { Ser } \\ & 1025 \end{aligned}$	Leu	Gln Asp Val	$\begin{aligned} & \text { Val } \\ & 1030 \end{aligned}$	$0^{\text {Ser }}$	Phe	e Glu	Lys	$\begin{aligned} & \text { Gln } \\ & 1035 \end{aligned}$	Gly	Ile	Ser
Ser	$\begin{aligned} & \text { Ile } \\ & 1040 \end{aligned}$	Glu	Gly Tyr Gly	$\begin{aligned} & \text { Pro } \\ & 1045 \end{aligned}$	$5^{\text {Asp }}$	Asn	Leu	LYs	$\begin{aligned} & \text { Ser } \\ & 1050 \end{aligned}$	Ala	Leu	Arg
Gln	Phe 1055	Gly	Ile Leu Lys	Asp 1060								

$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 420
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Saccharum officinarum
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: Sugarcane sucrose phosphate phosphatase (SPP)
$<400>$ SEQUENCE: 9

$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 720
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Synechocystis sp.
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: Synechocystis sucrose phosphate synthase (SPS)
$<400>$ SEQUENCE: 10

$<210>$	SEQ ID NO 11
$<211>$	LENGTH: 244
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Synechocystis sp.
$<220>$	FEATURE:
$<221>$	NAME/KEY: misc_feature
$<223>$	OTHER INFORMATION: Synechocystis sucrose-phosphate phosphatase
	(SPP)
$<400>$	SEQUENCE: 11

$<211>$ LENGTH: 521
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Zea mays
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: ZmSUT1
$<400>$ SEQUENCE: 12

$<210>$ SEQ ID NO 13
$<211>$ LENGTH: 517
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Saccharum hybrid cultivar Q 117
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: Sucrose transporter
$<400>$ SEQUENCE: 13

Lys	$\begin{aligned} & \operatorname{Trp} \\ & 210 \end{aligned}$	Phe	Pro	Phe	Leu	$\begin{aligned} & \text { Lys } \\ & 215 \end{aligned}$	Thr	A_{sn}	Ala	Cys	$\begin{aligned} & \text { Cys } \\ & 220 \end{aligned}$	Glu	Ala	Cys	Ala
$\begin{aligned} & \text { Asn } \\ & 225 \end{aligned}$	Leu	Lys	Gly	Ala	$\begin{aligned} & \text { Phe } \\ & 230 \end{aligned}$	Leu	Val	Ala	Val	$\begin{aligned} & \text { Val } \\ & 235 \end{aligned}$		Leu	Val	Ile	$\begin{aligned} & \text { Cys } \\ & 240 \end{aligned}$
Leu	Ala	Val	Thr	$\begin{aligned} & \text { Leu } \\ & 245 \end{aligned}$	Ile	Phe	Ala	Lys	$\begin{aligned} & \text { Glu } \\ & 250 \end{aligned}$	Val	Pro	Tyr	Arg	$\begin{aligned} & \text { Gly } \\ & 255 \end{aligned}$	Asn
Glu	Asn	Leu	$\begin{aligned} & \text { Pro } \\ & 260 \end{aligned}$	Thr	Lys	la	sn	$\begin{aligned} & \text { Gly } \\ & 265 \end{aligned}$	Glu	Val	Glu	Ala	$\begin{aligned} & \text { Glu } \\ & 270 \end{aligned}$	Pro	Thr
Gly	Pro	$\begin{aligned} & \text { Leu } \\ & 275 \end{aligned}$	Ala	Val	Leu	Lys	$\begin{aligned} & \text { Gly } \\ & 280 \end{aligned}$	Phe	Lys	Asn	Leu	$\begin{aligned} & \text { Pro } \\ & 285 \end{aligned}$	Pro	Gly	Met
Pro	$\begin{aligned} & \text { Ser } \\ & 290 \end{aligned}$	Val	Leu	Leu	Val	$\begin{aligned} & \text { Thr } \\ & 295 \end{aligned}$	Gly	Leu	Thr	Trp	$\begin{aligned} & \text { Leu } \\ & 300 \end{aligned}$	Ser	Trp	Phe	Pro
$\begin{aligned} & \text { Phe } \\ & 305 \end{aligned}$	Ile	Leu	Tyr	Asp	$\begin{aligned} & \text { Thr } \\ & 310 \end{aligned}$	Asp	Trp	Met	Gly	$\begin{aligned} & \text { Arg } \\ & 315 \end{aligned}$	Glu	Ile	Tyr	His	$\begin{aligned} & \text { Gly } \\ & 320 \end{aligned}$
Asp	Pro	Lys	Gly	$\begin{aligned} & \text { Ser } \\ & 325 \end{aligned}$	Asn	Ala	Gln	Ile	$\begin{aligned} & \text { Ser } \\ & 330 \end{aligned}$	Ala	Phe	Asn	Glu	$\begin{aligned} & \text { Gly } \\ & 335 \end{aligned}$	Val
Arg	Val	Gly	$\begin{aligned} & \text { Ala } \\ & 340 \end{aligned}$	Phe	Gly	eu	eu	$\begin{aligned} & \text { Leu } \\ & 345 \end{aligned}$	Asn	Ser	Ile	Ile	$\begin{aligned} & \text { Leu } \\ & 350 \end{aligned}$	Gly	Phe
Ser	Ser	$\begin{aligned} & \text { Phe } \\ & 355 \end{aligned}$	Leu	Ile	Glu	Pro	$\begin{aligned} & \text { Met } \\ & 360 \end{aligned}$	Cys	Arg	Lys	Leu	$\begin{aligned} & \text { Gly } \\ & 365 \end{aligned}$	Pro	Arg	Val
Val	$\begin{aligned} & \operatorname{Trp} \\ & 370 \end{aligned}$	Val	Thr	Ser	Asn	Phe 375	Met	Val	Cys	Val	$\begin{aligned} & \text { Ala } \\ & 380 \end{aligned}$	Met	Ala	Ala	Thr
$\begin{aligned} & \text { Ala } \\ & 385 \end{aligned}$	Leu	$1 e$	Ser	Tyr	$\begin{aligned} & \operatorname{Trp} \\ & 390 \end{aligned}$	Ser	u	Lys	Asp	$\begin{aligned} & \text { Tyr } \\ & 395 \end{aligned}$	His	Gly	Tyr	Val	$\begin{aligned} & \text { Gln } \\ & 400 \end{aligned}$
Asp	Ala	Ile	Thr	$\begin{gathered} \text { Ala } \\ 405 \end{gathered}$	Ser	Thr	Asn	Ile	$\begin{aligned} & \text { Lys } \\ & 410 \end{aligned}$	Ala	Val	Cys	Leu	$\begin{aligned} & \text { Val } \\ & 415 \end{aligned}$	Leu
Phe	Ala	Phe	Leu 420	Gly	al	Pro	eu	$\begin{aligned} & \text { Ala } \\ & 425 \end{aligned}$	Ile	Leu	Tyr	Ser	$\begin{aligned} & \text { Val } \\ & 430 \end{aligned}$	Pro	Phe
A.la	Val	$\begin{aligned} & \text { Thr } \\ & 435 \end{aligned}$	Ala	Gln	Leu	Ala	$\begin{aligned} & \text { Ala } \\ & 440 \end{aligned}$	Thr	Lys	Gly	Gly	$\begin{aligned} & \mathrm{Gly} \\ & 445 \end{aligned}$	Gln	Gly	Leu
Cys	$\begin{aligned} & \text { Thr } \\ & 450 \end{aligned}$	Gly	Val	Leu	Asn	Ile 455	Ser	Ile	al	Ile	$\begin{aligned} & \text { Pro } \\ & 460 \end{aligned}$	Gln	Val		Ile
$\begin{aligned} & \text { Ala } \\ & 465 \end{aligned}$	Leu	Gly	Ala	Gly	$\begin{aligned} & \text { Pro } \\ & 470 \end{aligned}$	Trp	Asp	Ala	Leu	Phe 475	Gly	Lys	Gly	Asn	$\begin{aligned} & \text { Ile } \\ & 480 \end{aligned}$
Pro	Ala	Phe	Gly	$\begin{aligned} & \mathrm{Val} \\ & 485 \end{aligned}$	Ala	Ser	Gly	Phe	$\begin{aligned} & \text { Ala } \\ & 490 \end{aligned}$	Leu	Ile	Gly	Gly	Val 495	Val
Gly	Val	Phe	$\begin{aligned} & \text { Leu } \\ & 500 \end{aligned}$	Leu	Pro	Lys	Ile	$\begin{aligned} & \text { Ser } \\ & 505 \end{aligned}$	Lys	Arg	Gln	Phe	Arg 510	Ala	Val
Ser	Ala	$\begin{aligned} & \text { Gly } \\ & 515 \end{aligned}$	Gly	His											

$<210>$	SEQ ID NO 14
$<211>$	LENGTH: 699
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Anabaena cylindrica
$<220>$	FEATURE:
$<221>$	NAME/KEY: misc_feature
$<223>$	OTHER INFORMATION: Anabaena cylindrica acyl-ACP reducatase (AR)
	coding sequence
$<400>$	SEQUENCE: 14

atgcagcagc ttgttgagca aattgaaaaa attgatttcc aaagtgaaga atacaaagac 60
gcatatagcc gtattaatgc aattgtgatt gaaggggaac aagaagccca tgataattac 120

atgaagtttg caaagagtt tttctcagga ctgcacaaaa attttcaaac tgcggccgca	300
gaaggtaaag ttgttacttg cttgctgatt caagctttaa ttatcgaatg ttttgcgatc	360
gcagcataca acatctacat tccgtcgct gatgatttcg cccgcaaaat tacagaaggt	420
gtggtcaaag aagaatacag tcatctcaat tttggcgaag tttggcttca agaaaacttt	480
gcagaatcca aagctgaatt agaaacagct aaccgccaaa atcttcccct agtctggaag	540
atgctcaacc aagtagcaga tgatgcccac gtcttggcaa tggaaaaaga agccttagta	600
gaagatttca tgattcaata cggtgaggca ctaagtaata ttggcttcac aactcgtgat	660

$<210>$	SEQ ID NO 15
$<211>$	LENGTH: 1020
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Anabaena cylindrica
$<220>$ FEATURE:	
$<221>$ NAME/KEY: misc_feature	
$<223>$	OTHER INFORMATION: Anabaena cylindrica aldehyde decarbonylase (AD)
	coding sequence
$<400>$	SEQUENCE: 15

$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 1844
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Pinus sabiniana
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: MboS
$<400>$ SEQUENCE : 16
atggctctgc tctctgtcgc accgctggct cccagatggt gcgtgcacaa atcgttggtc $\quad 60$
-continued

tgggacgata	atttcataca	gtcectctca	cgcettatg	gggcaatttc	gtaccatgaa	240
agtgctcaga	aacttattgg	agaagtaaaa	gagatgatca	attcaatctc	cttaaagat	300
ggagaattaa	tcaccocctc	caatgatctc	ttatgcggc	tctctatagt	gatagcatt	360
gaacgtttgg	gaatcgatag	gcatttcaaa	agtgaaataa	aatcagctct	ggattatgtt	420
tacagttatt	ggaacgaaaa	aggcattggg	tggggaagag	atagtgttgt	tgcegatctc	480
aactcaactg	cottggggct	tcgaactcta	gactacacg	gatacccggt	gcttcagat	540
gtgttacaac	acttcaaaga	caaaaaggg	agtttgcat	gttcggccat	tcaaacagag	600
ggagagataa	gaagtgttct	aacttattt	gggcttccc	aaattgcctt	tccgggagag	660
aaagttatgg	aagaggcaga	agtcttctct	caatatatt	taaaagaagc	atactaaag	720
cttccggtct	gcggtctttc	cgagagata	cgtacgttc	tggaatatgg	ttggcatata	780
aatttgccaa	gattggaagc	aaggaactac	tcgacgtat	ttggagagga	cccatttat	840
ttgacgecaa	atatgaagac	caaaaactt	tagaacttg	caaagttgga	ttcaatatg	900
tttcactctt	tacaacagca	gagctaaag	ttctctcca	gatggtggaa	agattcgggt	960
ttctctcaaa	tgaccttccc	tcggcatcgt	acgtggaat	attacacttt	ggcatcttgc	1020
attgatagtg	aacctcaaca	ttcttcgttc	gacttggat	ttgccaaaat	tttcatctt	1080
gccacggttc	ttgacgatat	tacgacacc	ttggcacga	tggatgagct	agaactcttc	1140
acggcggcag	ttaagaggtg	gcatcegtet	cgacggagt	ggcttccaga	atatatgaaa	1200
ggagtatata	tggtgcttta	cgaaaccgtt	acgaaatgg	caggagaagc	agaaaagtct	1260
caaggcegag	acacgetcaa	tatggcega	atgctttgg	aggettatat	tgatgcttct	1320
atggaagaag	cgaagtggat	tttcagtggt	ttttgccaa	catttgagga	gtacctggat	1380
aacgggaaag	ttagtttcgg	ttatggcatt	gcacattgc	aacccattct	gacgttgggc	1440
attcectttc	ctcatcacat	ctacaagaa	tagactttc	cttccagget	caatgatgtg	1500
gcatcttcca	ttctccgact	aaaggcgac	ttcacactt	ccaggetga	gaggagcogt	1560
ggagaaaaat	cttcgtgtat	tcatgttat	tggaagaga	tccogagtc	acagaggaa	1620
gatgcaatca	atcatatcaa	tccatggtc	gacaaattac	tcaaggaact	aattgggag	1680
tatctgagac	ctgatagcaa	gttccaatc	acttccaaga	acatgcatt	tgacattctg	1740
agagctttct	accatctcta	aataccga	gatggettca	gcgttgcgaa	ctatgaaata	1800
aagaatttgg	tcatgacaac	cgtcattgag	cctgtgcett	tata		1844

What is claimed is:

1. A composition comprising an Anabaena spp. genetically engineered with at least one recombinant polynucleotide expression construct, wherein the at least one recombinant polynucleotide expression construct comprises a nucleotide sequence encoding at least one enzyme, wherein the at least one enzyme increases production of a carbon based product of interest by the genetically engineered Anabaena spp. following expression of the polynucleotide expression construct, wherein said Anabaena spp. is ethanol producing Anabaena sp. PCC7120 (pZR672) strain deposited under ATCC accession number PTA-12833 or is linalool producing Anabaena sp. PCC7120 (pZR808) strain deposited under ATCC accession number PTA-12832.
2. The composition of claim 1 wherein the Anabaena spp. 6 is Anabaena PCC7120 (pZR672) strain deposited under ATCC accession number PTA-12833.
3. The composition of claim 1, wherein the Anabaena spp. is linalool producing Anabaena sp. PCC7120 (pZR808) strain deposited under ATCC accession number PTA-12832.
4. The composition of claim 1 wherein the Anabaena spp. has an up-regulated 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway.
5. The composition of claim 4 wherein the up-regulated MEP pathway is up-regulated by expressing at least one gene responsible for control of the MEP pathway in the Anabaena spp.
6. The composition of claim 1 wherein the at least one recombinant polynucleotide expression construct further comprises a nucleotide sequence encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo).
7. The composition of claim 6 wherein the at least one recombinant polynucleotide expression construct comprising a nucleotide sequence encoding RuBisCo , further comprises a nucleotide sequence encoding RuBisCo activase.
8. The composition of claim 1 wherein the carbon based product of interest is ethanol.
9. The composition of claim 1 wherein the Anabaena spp. is combined with a photoautotrophic liquid media, and optionally, wherein said media contains no combined nitro- 5 gen.
10. The composition of claim 1 wherein the carbon based product of interest is linalool $\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}\right)$.
