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Abstract

The Global Microwave Imager (GMI) instrument must spin at a constant rate of 32 rpm continuously for 
the 3-year mission life. Therefore, GMI must be very precisely balanced about the spin axis and center of 
gravity (CG) to maintain stable scan pointing and to minimize disturbances imparted to the spacecraft and 
attitude control on-orbit. The GMI instrument is part of the core Global Precipitation Measurement (GPM) 
spacecraft and is used to make calibrated radiometric measurements at multiple microwave frequencies 
and polarizations. The GPM mission is an international effort managed by the National Aeronautics and 
Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through 
more accurate and frequent precipitation measurements. Ball Aerospace and Technologies Corporation 
(BATC) was selected by NASA Goddard Space Flight Center to design, build, and test the GMI 
instrument. The GMI design has to meet a challenging set of spin balance requirements and had to be 
brought into simultaneous static and dynamic spin balance after the entire instrument was already 
assembled and before environmental tests began. The focus of this contribution is on the analytical and 
test activities undertaken to meet the challenging spin balance requirements of the GMI instrument. The
novel process of measuring the residual static and dynamic imbalances with a very high level of accuracy 
and precision is presented together with the prediction of the optimal balance masses and their locations.

Introduction

The GMI instrument is one of the payload instruments on the GPM core spacecraft and must be spun 
continuously at 32 revolutions per minute (rpm) ± 0.1% on-orbit for the 3-year operational life of the 
instrument and to provide the desired geo-location for the science data. Details pertaining to the GMI 
design and testing were presented in references [1, 2]. The GMI instrument had to be spun balanced to 
less than 0.032 kg-m (2.77 lbm-in) static imbalance and less than 0.055 kg-m2 (188 lb-in2) dynamic 
imbalance, total imbalance, for the 123-kg spinning portion of the instrument payload. The design and 
development of the spin balance method, analytical solution, test setup, design, calibration, and 
measured test results are described. The verification and validation of the GMI instrument to demonstrate 
compliance of performance through environmental testing and spin balance has been successfully
completed. At the writing of this contribution, GMI has been fully integrated onto the GPM spacecraft, and 
the GPM spacecraft has been shipped to the launch site in Tanegashima, Japan for launch in February 
2014. 

The static and dynamic balancing approach consists of spinning GMI on top of an accurately calibrated 
dynamometer, designed specifically for GMI to measure the imparted forces due to imbalance. This 
device continues a long tradition of building precision balancing machines, vibration input benches and 
force measurement instruments for space hardware at Ball Aerospace & Technologies Corporation [5,6].

The dynamometer measures all forces and moments and consists of three force transducers mounted to 
an aluminum base plate and a corresponding top plate that functions as the mounting interface for the 
GMI instrument (Figure 1). The calibration of the dynamometer showed that the total measurement error 
of this technique and dynamometer were much smaller, by an order of magnitude, than the imbalance 
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requirements. Since the balance requirements were tight and the spin balance to be measured was so 
small, the structural resonances of the GMI instrument, as well as the spin balance test fixture and 
support structure, also required detailed modeling and design to meet stiffness requirements dictated by 
the imbalance accuracies to be measured. Figure 2 shows the finite element model of the GMI 
instrument, the model of the Thermal Vacuum (TVAC) support structure with the dynamometer assembly 
used for the spin balance, and locations of balance masses available on the GMI instrument.

Figure 1. Dynamometer Assembly Setup in Calibration and GMI without RDA and 
MR Assemblies Integrated

Figure 2. (a) Structural Model of the GMI Instrument Assembly, (b) Dynamometer
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with the Spin Balance Test Fixture, and (c) Balance mass locations on GMI 
Multiple test setups, shown in part in Figures 2 and 3, were developed for balancing GMI at room 
temperature and in a vacuum chamber to eliminate error terms associated with forces imparted to the 
dynamometer due to air drag of the GMI instrument spinning in air. A MATLAB computer program was 
developed to process the resultant forces imparted on the dynamometer, together with position encoder 
data to derive the magnitude and direction of static and dynamic imbalances, and subsequently perform a 
linear optimization to predict the optimal balance mass solution. This optimal solution, which meets the 
static and dynamic imbalance requirements, consists of the values of 21 ‘balance’ masses that can be 
added and accounts for design constraints specific to each of the balance mass locations, and at the 
same time minimizing the overall total mass of balance masses to be added simultaneously. The 
optimization can account for order of preference in the choice of masses by assigning higher weights for 
particular ones to reflect certain particularities such as ease of access, volume or other situational 
constraints or preferences. Finally, it has been possible to achieve preliminary balancing of GMI before 
achieving full integration. The software is capable of balancing a partially integrated GMI while the 
instrument is being assembled (e.g., before the integration of the RDA – Reflector Deployment Assembly
and MR – Main Reflector) by assigning negative inertial properties to the missing subassemblies that
were subcontracted elsewhere and would not be integrated for the spin balance testing until late in the 
environmental test program. 

Spin Balance Verification 

The GMI instrument underwent an initial spin balance in the clean room in July 2011 and initial balance 
masses were added prior to GMI instrument environmental testing. Final spin balance and requirement 
verification and validation was completed in TVAC in February 2012 after the GMI instrument had 
successfully completed all environmental testing (Figure 3). The methods and steps successfully 
accomplishing this spin balance of the GMI instrument and showing the requirement was verified via test 
measurements will be discussed in this paper.

Figure 3. GMI Instrument in Spin Balance Test Facility on Dynamometer
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Evaluation of Imbalance Forces
Bringing GMI into balance started from early on in the design phase. As the design progressed, there has 
been a continuous effort to keep the rotating hardware as close as possible to static and dynamic balance
in order to minimize overall total mass of the instrument, with a plan for three separate axial and radial 
locations to place balancing masses as shown in Figure 2-c. While a minimum of two axial planes for 
balance masses are required to achieve dynamic balancing, provision to use the RDA/MR for a third 
location was necessary to maintain lower added masses, because the RDA does not have axial 
symmetry, is distant from the mounting plane, and due to other production and schedule constraints.
  
The basic idea is to determine the static and dynamic imbalances from the measurements of the moving 
imbalance forces imparted at the mounting plane while spinning GMI at some angular velocity. Load cells 
are ideal for the task as they only pick variations in load magnitudes. In the absence of other 
disturbances, such as structural resonances, air drag, etc., it can be easily shown that the loads imparted 
by a non-perfect rotating device on a mounting plane are the result of the centrifugal forces and moments
of the imperfection. Assuming an imbalance mass ��centered at a position ?'���)) in the GMI reference 
frame of Figure 4, the reactions are given by the following radial force f � and the radial moment Mr  

Figure 4. GMI and Dynamometer Coordinate systems

�� = ������ = �!"� #cos "$sin "$% = �"� #&'%, (1)

(� = �)*�)*�� = - �5��+��� + �7 #5'+&% = "� #5� '-+� &-% + �7 #5'+&% = "� �59�:+9�:� + 7"� �5��+���, (2a) 

where ! = �&� + '� is the radial distance from the spin axis��¦�_��������\`���������_�|��
 is the magnitude 
of gravitational acceleration and � is the time in seconds. Note that we replaced the products ���) and ��
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') by the cross products of inertia 9�: and 9�:, respectively in the last equality of Equation (2a) to account 
for pure dynamic imbalance situations and therefore address the general case of arbitrary combined 
static and dynamic imbalances. All forces and moments are functions of time. For example, (� should be
written as  (�($), but the time symbol is omitted for readability. From the dynamometer we can read the 
exact forces, but the moments will be different due to the height P, between the mount interface and the 
elevation of the load cells. On the dynamometer, the readings for the moments are given by:

�)�)�� = �)*�)*�� + > �5��+��� = "� �59�:+9�:� + ? 7"� + >@ �5��+��� (2b)

The resultant force in the Z direction is independent of time and therefore would not show on the 
dynamometer readings since the load cells measure only a change in force. The radial load remains 
unchanged but the lever arm of the moment is increased by the distance between the mounting surface 
and the plane of the dynamometer load cells. 

Using the expression for the radial load from Equation (1), the magnitude of the radial load is related to 
the static imbalance ���via

�! = ��&� + '� = B��� + ��� = C�*C"�  (3)

In order to address the dynamic imbalance requirement, we use Equation (3). The dynamic imbalance is 
related to the imbalance forces and moments as following:

The requirements for static and dynamic balancing have to be compared to the values obtained from the 
product �� and A�) computed from Equations (3) and (4) respectively. In addition to the magnitudes of the 
static and dynamic imbalances, of practical interest are their corresponding directions. To find the precise 
directions, two coordinate systems can be set on the test setup. One is stationary relative to the 
dynamometer, while the second rotates with the GMI unit. These two coordinate systems share an origin 
and the z-axis and initially both x-axes and y-axes are co-linear. Since the angle at which GMI has rotated 
is known, we can subtract that from the direction of the resultant force to find the physical direction of the 
imbalance via

DE = tanF� GfHfIJ 5 DKLM (5)

DL = tanF� GMH 5 > O fIMI + > O fHJ 5 DKLM (6) 

We have just established that the static and dynamic imbalances form a pair of vectors that may be 
plotted in a three-dimensional graph to graphically pinpoint the directions of the imbalances together with 
the physical locations of the balance masses to visually help the technical team understand which 
masses will be most effective. 

Optimal Balancing Using Linear Programming 
Having determined the levels of static and dynamic imbalances, we now determine the optimal balance 
masses that would simultaneously make the radial force and moment on the dynamometer nil. In order 
for GMI to be statically balanced, its center of mass must reside on the axis of rotation. This can be done 

2 2

2 2

1  or                                         (4)

1 where  and .

yz y
rz r

xz x

y yz
rz rrz rzr r

x xz

i fgJ M
i f

f igJ M
f i

f fi i

� �

� �
� �� �

� �� � � �� � � �� �� � � �  ! " ! "� 
� �� �� � � �# $ # $
� �� � � �� � � �� �� � � �  � �! " ! "� 
 � �� � � � � �# $ # $

307



by creating equal and opposite forces to the resultant x and y forces imbalance forces, expressed through 
the following equality constraints

P �Q&Q
�

QR�
= 5 �*"� cos ST , (7) 

P �Q'Q
�

QR�
= 5 �*"� sin ST . (8)

where �Q is the 9$U balancing mass of coordinates &Q, 'Q V�W -Q, 9 = 1. . �., and ST is the angle of the 
imbalance radial force. Similarly, the moments created by the dynamic imbalance must be counteracted 
by the added balancing masses making the combined cross product of inertia nil resulting in the following 
additional two constraint equations 

P �Q&Q ?-Q + 7"�@�
QR�

= 5 )*"� sin SX (9)

P �Q'Q ?-Q + 7"�@�
QR�

= )*"� cos SX (10)

Because the locations of the balancing masses are known, we have a system of four linear equilibrium 
Equations (7-10) to 	 unknown mass values �Q , 9 = 1 … �. For the case of GMI, we have 	�= 21. There is 
no unique solution to this over-determined problem. However, an optimal unique solution may be found 
by writing a linear programming problem in which we minimize the sum of the balance masses while 
meeting the static and dynamic balance equality constraints (7-10) and introducing inequality constraints 
on the balance masses that take into account the feasibility of actual mass placement with respect to 
size/mass constraints of the balance mass for a given location and the positive nature of the balance 
masses. The objective function to be minimized is expressed as

Y(Z) = P [Q�Q
�

QR�
= \]Z (11) 

And the optimization problem is written formally as 

min^ (\]Z) such that #_!` O b = d!`eg < Z < kg l (12) 

The matrix equation _!` O b = d!` is the set of four equality constraints described above and is set up as 
shown in Equation (13).

pq
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qr

&� &�                     … &�'� '�                     … '�&� ?-� + 7"�@
'� ?-� + 7"�@
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ww
ww
wx

(13) 

The expression eg < Z < kgR represents a set of 2n inequality constraints that set the lower and upper 
bounds on the balance masses. The lower bound must be set to zero, as we are adding mass, and the 
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upper bound must be a set of mass values that can be handled given the physical reality of space 
available at each balance mass location. They could also turn off certain masses that are difficult to 
access due to some practical envelope constraints. The linear problem given by Equation (12) is solvable 
using MATLAB’s linear programming function “linprog” using the same software that collects 
dynamometer sensor data and encoder position as the test unit spins atop of the dynamometer.

Calibration of the Dynamometer Setup

The calibration entails three parts. In the first part, the dynamometer is shown to have the necessary 
sensitivity to accurately make the necessary measurements needed to process the imbalance data. The 
noise floor of the dynamometer is identified and compared to the requirements on forces and moments 
that are derived to meet GMI’s static and dynamic balancing requirements. 

In the second part of the calibration, the forces measured by the dynamometer are checked using two 
separate data acquisition systems and two loading methods. This was performed to isolate and quantify 
the sources and magnitudes of systematic and random measurement errors. Finally, the third part in the 
calibration program evaluates data collected from auxiliary risk mitigation tests which used the GMI SMA
(Spin Mechanism Assembly) and simulated payloads with off-axis known masses precisely located on a 
rotating disk (see Figure 4). These mitigation tests were planned to assess the performance of the tools 
to be used in the actual balancing of GMI. Three test cases were performed. The first one has a moderate 
imbalance, while the second test case is intended to achieve extreme static and dynamic imbalances. 
Finally, the third test case is intended to produce a balanced state from which we demonstrate the 
capability of the system to meet the required level of balance measurements for GMI. 

Specified and Derived Requirements
The two GMI balancing requirements are expressed in terms of the product �� §��
����kg-m (2.77 lb-in) 
for static imbalance and A�)�Q�0.055 kg-m2�(187 lb-in2) for dynamic imbalance. We derive two equivalent 
requirements that provide the equivalent limits on the static and dynamic imparted forces and moments 
that GMI needs to meet in order for the balancing effort to be successful. These requirements are shown 
to be for the radial ������§��
�¨ lb (0.36 N) and the radial �������§ 10 in-lb (1.1 N-m). In addition, a 
requirement on the noise floor is set so that accurate and reliable measurements of the balanced state 
are performed. The noise floor of the dynamometer is checked against 1/10th of the requirement levels, 
padded by a 50% uncertainty levied to account for unknown error contributions to the measurements. The 
��_���������_����`���������§��
��	����(0.018 N) for reliable measurements to occur.
     
Using the expression for the radial load from Equation (1) and using an angular frequency of 0.533 Hz (32 
rpm), the magnitude of the radial load is related to the imbalance ���via�

2 2
2    0.032 (2  0.533) 0.36  (0.08 lb)r

r

f
me f me N� �

�
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Furthermore, de-rating this level by 50% to account for unknowns in the setup, we need to bring the radial 
load to less than 0.04 lb (0.18 N) if we want to show that GMI is statically balanced. Thus, we need to 
have a noise floor level less than 0.004 lb (0.018 N). In order to address the dynamic balance 
requirement, we use Equation (3). We have the magnitude of the radial moment given by:
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Again, de-rating this level by 50% to account for unknowns in the setup, we need to bring the radial 
moment to less than 0.6 N-m (5 in-lb) if we want to show that GMI is statically balanced. Thus, we need to 
have a noise level less than 1/10th of 0.056 N-m (0.496 in-lb). Considering the forces in the sensors from 
which we compute the moments and the geometry shown in Figure 5, the noise floor needs to be less 
than 0.5 in-lb (0.06 N-m) /(26.035/2.54) or 0.05 lb (0.22 N). Accounting for three sensors, we have to 
have a noise floor better than 0.016 lb (0.071 N). In summary, the requirement imposed on the noise floor 
of the radial force is 0.004 lb (0.018 N) and the one imposed on the moments is 0.5 in-lb (0.06 N-m) (that
is 0.016 lb (0.071 N) in force sensors). The smaller value of the two is 0.004 lb (0.018 N) and is kept for 
comparison with the performance of the dynamometer.

Figure 5. Noise floor showing measurements filtered using low bandpass of 10 Hz

To measure the noise floor, the dynamometer was placed on four blocks at the four corners of the lower 
plate. This configuration was chosen instead of the fully clamped one to simulate the actual balancing 
configuration in which the dynamometer’s own mode is in the vicinity of 30 Hz versus the 120 Hz+ in the 
fully clamped configuration. Three measurements were taken. In the first measurement, the data from the 
load cells is channeled only to an independent secondary data acquisition system (VXI system). In the 
second test, the data from the load cells is channeled to the BDMS data acquisition (processor to be used 
for balancing) and simultaneously to the VXI through a set of “T” connections. The third test has both data 
acquisition systems in place except that the data acquisition card of the BDMS was turned off. A digital 
filter of 10 Hz was applied to the data sets. An example of dynamometer noise floor measurement for the 
Y-axis is shown in Figure 5. The maximum noise of 0.00175 lb (0.00778 N) is measured and is found to 
be less than the 0.004 lb (0.018 N) needed to carry out accurate measurements to meet GMI spin 
balance requirements.

Harmonic stinger test
This test is intended to calibrate the measurements performed by the dynamometer as a system. The 
dynamometer is excited at a frequency of 10 Hz using an MTB 50-lb (220-N) stinger. A calibrated load 
cell is placed at the interface between the stinger and the dynamometer to measure the input force. The 
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latter was also measured using the dynamometer as the sum of the contributions of all load cells. The 
load is applied along the Y direction of the dynamometer. The input loads matched the output load. The 
Spectral Dynamics Data Acquisition System of BATC’s Vibration Lab was also used to further check the 
response and the results. They were found to be identical to the reference load. 

Frequency response function (FRF) tests
The FRF shows that the data is unaffected by the fundamental modes of the dynamometer either in a 
clamped or a simply supported configuration. The difference in loads is negligible in the vicinity of 0.5 Hz.
While the results of the excitation illustrated in Figures 6 and 7 are for the Y-axis, similar results are 
recovered for the X-axis. The FRF was also measured prior to balancing GMI either in the clean room or 
in the vacuum chamber BRUTUS where additional modes are present due to the mounting equipment. 
The mount and fixture hosting GMI during spin balance testing in the BRUTUS vacuum chamber is 
analyzed using the finite element method incorporating a GMI model to ensure that we have no
interference from the added structural resonance modes. The mounting beams in BRUTUS (Figure 2b)
were stiff enough and produce no modes that interfere with measurements.  

Speaker tests
The goal of the dynamic calibration using a speaker load input is to verify that we are reading the correct 
dynamic loads while balancing the GMI instrument, no matter where these loads are applied over the 
dynamometer. The calibration consists in applying known forces using a speaker precisely oriented and
located at different elevations over the dynamometer and measure the reaction forces and moments 
imparted on the surface of the dynamometer. The speaker is attached to a fixture through an 
encapsulated load cell to ensure a precise knowledge of the magnitude and location of the excitation. The 
speaker is actuated using a form generator to deliver an accurate input frequency. The test shows the 
input load from the speaker force transducer and the measurement from the dynamometer are the same 
in different orientations. In particular, this test is required to verify the correctness of the measured 
moments which are crucial for dynamic imbalance predictions.

Risk Mitigation Balance Tests
In order for the GMI balancing task to run smoothly, a risk reduction set of tests were carried using the 
SMA drive and a flywheel on which known masses are placed in well-known locations on the flywheel as 
shown in Figure 8. The first test consists of the placement of an imbalance mass of about 1.1-lb (4.9-N) at 
the edge of the flywheel. The second test is an extreme case created by a 16-lb (71-N) imbalance, also 
placed at the edge of the flywheel. Finally, the last case is of a situation in which an attempt was made to 
balance the flywheel and the SMA to the best available capabilities. The results of this test points to how 
a balanced situation results in very small shear and moment loads exported to the mount of the SMA. The 
data from the dynamometer is compared to the mass tally data. It is found that accurate estimates of the 
imbalance can be made using the dynamometer. In addition, a balanced state can be easily identified 
once the shear force and moment become small.
In the first test case, a set of known imbalance masses were placed on the bare flywheel. Knowing the 
location of the masses, a static imbalance of 13.491 in-lb (1.5243 N-m) and a dynamic imbalance of 
139.077 lb-in2 (0.040699 kg-m2) are computed. The total mass of the added hardware consisting of studs, 
washers and spacers weighs 1.1075 lb (4.9264 N) and its center of mass is located at a radius of 12.18 in
(30.93 cm). The radial force and radial moment maintain a nearly constant value as the SMA and its 
payload rotate. The mean static and dynamic imbalances given by Equations (4) and (5) are computed 
over a period of 70 seconds at a rate of 1 KHz. These values are within 1% of the expected values as 
shown in Table 1. The second test is an extreme case in which 18.20 lb (80.95 N) is placed at the edge of 
the flywheel to produce an imbalance which is about 100 times the imbalance requirement. The static and 
dynamic imbalances are about 270 lb-in (30.5 N-m) and 2900 lb-in2 (0.8487 kg-m2) respectively. The total 
mass of the added hardware consisted of two dumbbells, studs, washers and spacers is 18.2025 lb
(80.9688 N). Again, the radial force and radial moment maintained constant values as the SMA and its 
flywheel payload with imbalance mass rotate and the system recovered the static and dynamic
imbalances with errors of 0.41% and 1.8% respectively. In the third test case, the measured mean
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resultant radial load of 0.015 lb (0.067 N) is below the requirement of 0.08 lb (0.36 N), and the measured 
mean resultant moment of 0.51 in-lb (0.06 N-m) is below the 10 in-lb (1.1 N-m) equivalent requirement. 
This last test provided the necessary argument that the system is capable of predicting a balanced state.

Table 1. Comparison of measured imbalance to correction magnitudes
Dynamometer MATLAB Percent Error 

Static 
(lb-in) 

Dynamic 
(lb-in2) 

Static 
(lb-in) 

Dynamic 
(lb-in2) Static Dynamic 

13.491 139.077 13.371 138.868 0.89% 0.15% 

 (N-m)  (kg-m2)  (N-m)  (kg-m2)   

1.5243 0.040699 1.5107 0.040638   

Figure 6. Frequency Response Function of clamped dynamometer (without GMI)
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Figure 7. Frequency Response Function in configuration with GMI installed 

Figure 8.  Spin Balance Risk Mitigation Test Setup

Spin Balancing Verification of GMI  

It is shown that GMI was adequately balanced to meet both static and dynamic balancing requirements.
The measured imbalances in BRUTUS vacuum testing where found to be 0.017 kg-m (1.47 lbm-in) and
0.022 kg-m2 (75.1 lb-in2) meeting the requirements of 0.032 kg-m (2.78 lbm-in) static and 0.055 kg-m2

(187 lb-in2) dynamic imbalances, respectively. The results of Table 2 show the average of three
separate measurements of forces, moments and computation of static and dynamic imbalances. Three 
tests are averaged to give imbalances in vacuum and three other tests carried in open air are averaged to 
determine final balancing values. All tests are run at 32 rpm and results show all tests met the 
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requirements. Other test runs, performed to acquire spin balance data at 28 rpm and 33 rpm, were also 
successful in showing that GMI successfully meets the balancing requirement.

The balancing of GMI takes place in two steps. In the first step, GMI is brought to a pseudo-balanced 
state, prior to assembling the RDA, MR, and final MLI layers in air in a cleanroom environment. In this 
configuration, analytical estimates of the RDA, MR, and MLI inertial properties are adopted while 
computing the balance masses, thus accounting for the future installation of these components. In the 
second step, the final balancing task is carried out while the fully assembled GMI in its final configuration 
in a vacuum chamber. 

The MATLAB script reads the raw data file and pulls out the relevant ranges for the forces and resolver 
data. The resolver reading is first converted from the voltage pulse ‘zero-crossing’ point that, signals a full 
rotation, into useable angle data with respect to time. A correction value of 94.35 degrees (sensor 
location) is then added to the angular position to synchronize the zero position on the x–axis of the GICS 
coordinate system with the SMA resolver readings. This makes it possible to pinpoint the direction of the 
imbalance, as well as, to properly place balance masses in locations given in a single reference 
coordinate system. A total of nine forces are read as a function of time once every millisecond, one in 
each coordinate axis from each one of the three force transducers of the dynamometer. The data 
collected prior to the first resolver zero-crossing and after the last resolver zero-crossing time is 
disregarded. The force and moment resultants are then computed, and subjected to a low-pass 
Butterworth filter at 3 Hz. For each time station, the magnitude of the radial force and radial moment due 
to imbalance are computed, and plotted together with the static and dynamic imbalance magnitudes and 
directions as shown in Figure 9. 

The mean radial force and mean radial moment are then computed and a linear programming solver is 
used to find the minimum set of masses that would simultaneously bring the static and dynamic 
imbalances back to a balanced state. The script has a set of 21 hard-coded mass locations with lower 
and upper bounds. The optimization is carried to satisfy the four constraint equations with an objective 
function equal to the sum of all masses as explained in the analytical section. As a default, each mass is 
equally favored. The user may elect to eliminate contributions from individual masses by bounding their 
individual lower and upper bounds to zero. Furthermore, the relevance of some weights can be affected 
through modifying their weights in the objective function. Once the optimization is carried successfully, the 
command window displays the statement “Optimization terminated.” The solution is captured and 
displayed in three tables. The first table documents the magnitudes of the 21 masses, their locations and 
their first and second cross moment magnitudes. The resultant forces and moments due to the balancing 
masses are displayed in the second table. And finally the resultant static and dynamic inertial 
contributions from the balancing masses are shown in the third table. The initial properties of the 
imbalance are shown and compared to the solution. The magnitudes of the 21 balancing masses are also 
displayed in a bar graph for quick visualization. The balancing masses are displayed in their 3D locations 
as weighted, colored spheres together with the resultant mass. Also displayed are the resultant 
centrifugal force and moment produced by the balancing masses along with the imbalance radial force 
and moment. This gives a visual representation that a solution is found in which the balancing radial force 
and radial moment are equal in magnitude and directly opposite to the force and moment generated by 
the imbalances (see Figure 9).

The effect of the missing RDA/MR hardware on the static imbalance is based solely on its total mass and 
CG location. Because of this, it can be treated simply as the 22nd balancing mass during the initial 
optimization process. This 22nd presumed unknown mass will have the coordinates of the net CG of the 
missing RDA/MR assembly and its upper and lower mass bounds are set to the known total mass and
inertial properties of the RDA/MR, so that when a solution is found, the 22nd mass will be constrained to 
be equal to its known value.  
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Figure 9.  Plot of Balancing masses, imbalance and balance force and bar graph

Post Vibration Spin Balance Verification (without RDA/MR)
Following the completion of GMI vibration tests, the instrument was spun again on October 5, 2011 to 
compare with the pre-vibe imbalance measurements carried on August 2, 2011. The test is intended to 
check for possible shift of cabling and other flexible components. The difference between the two tests 
amounts to 0.26% in the radial force and 0.48% in the radial moment. It has to be noted that in addition to 
several changes to the stationary GMI hardware which theoretically would not affect the measurements 
(as long as we do not excite their modes), there have been slight changes in the configuration of rotating 
GMI that included the replacement of two 36 GHz flex wave guides, 0.0410 lb (0.183 N) each, with two 
rigid wave guides, 0.0168 lb (0.0747 N) each, and the re-machining of mounting shims. The wave guides 
along with the 36-GHz filter were re-staked, and one balance mass was removed, adjusted to account for 
the change, and then reinstalled in the same spot and re-staked. The overall delta is Wt = -0.051 lb
(0.227 N). The new radial load is analytically evaluated and compared well with the measured value,
placing all shifts at 0.106%, that is a delta of 0.005 lb (0.022 N), significantly less than the derived 
requirement of 0.08 lb (0.36 N) (or just 6.7% of the requirement). Therefore, it is safe to state that 
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In-Vacuum Final GMI Balancing
Several tests were carried out in vacuum and in air on the dynamometer to show that the requirements 
were met. It is worth noting that an RDA/MR deployment GSE off-loader structure needed to be removed 
from Brutus to perform clean test measurements. Table 2 shows the average of three separate 
measurements of forces, moments and computation of static and dynamic imbalances first in vacuum and 
then the averages of three other 32-rpm tests also run in the Brutus but in open air rather than in vacuum.
Table 3 shows the computed and actual masses that brought GMI to meet requirements. 
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Table 2. Average of imbalance measurements (three in vacuum and three in air)
units  (lb,in) Fx (lb) Fy (lb) Fr (lb) Mx (lb·in) My (lb·in) Mr (lb·in) me (lbm.in) Jrz (lbm.in2)

Vacuum 0.0021 0.0402 0.0436 -0.069 2.805 2.8 1.5 73.5
Air -0.0098 0.037 0.0398 -0.86 1.104 1.5 1.4 63.9

Requirement   0.08   10 2.77 187

units  (Kg,m) Fx (N) Fy (N) Fr (N) Mx (N.m) My (N.m) Mr (N.m) me (Kg.m) Jrz (Kg.m2)
Vacuum 0.0092 0.1794 0.1946 -0.008 0.318 0.318 0.017 0.022

Air -0.0438 0.1651 0.1775 -0.097 0.125 0.167 0.016 0.019
Requirement 0.36 1.13 0.032 0.055

  

Figure 10. GMI Integrated on the GPM Spacecraft at NASA
Goddard Space Flight Center
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Table 3. Added masses used to balance GMI

Conclusion

The Global Microwave Imager instrument (GMI) was successfully spin-balanced using a dynamometer as 
a mounting fixture. GMI was balanced to less than 0.017 kg-m (1.47 lbm-in) static imbalance and 
0.022 kg-m2 (75.2 lb-in2) dynamic imbalances, meeting the requirements of 0.032 kg-m (2.77 lbm-in) and 
0.055 kg-m2 (188 lb-in2) respectively, total for the 123-kg (271-lb) spinning portion of the instrument 
payload. 

The successful final precision spin balancing of the GMI instrument in vacuum demonstrated the 
capability of this method to accurately measure the static and dynamic imbalances, and to precisely 
compute the optimal set of minimal balance masses, accounting for various. The ability to precisely 
measure the imbalances before and after environmental testing also enabled us to very accurately predict 
the magnitude of the change in the GMI instrument imbalance on orbit, following launch. 

The forces measured by the dynamometer checked well against two other independent measurement 
systems. In addition, the dynamometer is shown to be capable of reproducing the applied loads and 
moments with adequate accuracy. The natural structural frequencies of the dynamometer were mapped 
and their effect on the measurements was identified for the frequency spectrum of interest. 

Prior to balancing GMI, both moderate and extreme imbalance risk mitigation tests are shown to be 
accurately measured using the dynamometer and the necessary balancing forces are accurately 
computed. The fully balanced state was also recovered from the time traces of the resultant radial loads 
and radial moments.

Since the successful completion of the final spin balance activity, the GMI instrument was delivered to 
Goddard Space Flight Center in March 2012, and was successfully integrated onto the GPM spacecraft
later in June 2012, see Figure 10. The GPM spacecraft just recently completed spacecraft level Thermal 
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Vacuum (TVAC) testing in January 2013, vibration testing in July 2013, post-environmental testing in 
September 2013, and is scheduled to be launched in February 2014 from Tanegashima, Japan on a 
JAXA MHI-H11A rocket.

A special thanks to Sergey Krimchansky**; GMI instrument COTAR at GSFC for his input over-seeing the 
technical work on GMI and for his support in writing these GMI-related technical papers.

References

1. Newell, D., Rait, G., Ta, T., Berdanier, B., Draper, D., Kubitschek, M., Krimchansky, S. “GPM 
Microwave Imager Design, Predicted Performance and Status”, Proceedings of the 2010 IEEE 
International Geoscience and Remote Sensing Symposium (IGARSS) Publication Date: July 25, 2010. 

2. Woolaway, S. Kubitschek, M., Berdanier, B., Newell, D., Dayton, C. and Pellicciotti, J. “GMI Spin 
Mechanism Assembly Design, Development, and Test Results”, ��������	
�� �
� � ������������������
�����	��������������, Langley Research Center, May 2012. 

3. Koss, S., Woolaway, S. “Lessons Learned From the WindSat BAPTA Design and On-Orbit Anomalies”,
Proceedings of 38th NASA Aerospace Mechanisms Symposium, Langley Research Center, May 2006.

4. Pierre, W. “GMI Spin Mechanism Structural Analysis”, BATC Internal SER Report No. 2307821B, Ball 
Aerospace and Technologies Corp., Nov. 2008.

5. Richard P. Wolley, Dynamic Balancing Without Spinning: A New Method for Unwieldy Satellites, SAWE 
paper No. 1670, Category 6.0, 44th Conference of the Society of Allied Weight Engineers, 1985.  

6. Ayari, L. “Hybrid Testing & Simulation - The Next Step in Verification of Mechanical Requirements in 
the Aerospace Industry,” Hybrid Simulation Theory, Implementation and Applications, Victor Saouma, 
Mettupalayam Sivaselva Editors, 2008.

318


