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Environmental Barrier Coating - CMAS Interaction 
Research Efforts 

• Advanced EBC development – composition design and developments for improved 
CMAS resistance; thermomechanical-CMAS Interactions and durability – Zhu et al 

• NASA-Air Force Venture and Viper Turbine Coating-CMAS Collaborative programs  - 
Zhu, James Smialek, Robert A. Miller, Bryan Harder 

• Formal NASA Intern Undergraduate Students – Nadia Ahlborg and Dan Miladinovich 
• Fundamental NASA in-house CMAS properties - Narottam Bansal and Valerie Weiner 
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Outline 

 
• Environmental barrier coating (EBC) development: the CMAS relevance 

 
• Some generalized CMAS related failures 

 
• CMAS degradation of environmental barrier coating (EBC) systems: rare 

earth silicates 
– Ytterbium silicate and yttrium silicate EBCs 
– Some reactions, kinetics and mechanisms 

 
• Advanced EBCs, HfO2- and Rare Earth - Silicon based 2700°F+ capable 

bond coats 
 
• Summary 
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NASA Environmental Barrier Coatings (EBCs) and Ceramic 
Matrix Composite (CMC) System Development  

− Emphasize material temperature capability, performance and long-term 
durability- Highly loaded EBC-CMCs with temperature capability of 2700°F 
(1482°C) 

• 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings 
• 2700°F (1482°C) EBC bond coat technology for supporting next generation 

– Recession: <5 mg/cm2 per 1000 h 
– Coating and component strength requirements: 15-30 ksi, or 100- 207 Mpa 
– Resistance to Calcium Magnesium Alumino-Silicate (CMAS) 

2400°F (1316°C) Gen I and Gen II  SiC/SiC 
CMCs 

3000°F+ (1650°C+) 

Gen I

Temperature 
Capability (T/EBC) surface

Gen II – Current commercial
Gen III

Gen. IV

Increase in T 
across T/EBC

Single Crystal Superalloy

Year

Ceramic Matrix Composite

Gen I

Temperature 
Capability (T/EBC) surface

Gen II – Current commercial
Gen III

Gen. IV

Increase in T 
across T/EBC

Single Crystal Superalloy

Year

Ceramic Matrix Composite

2700°F (1482 C) 

2000°F (1093°C), PtAl and NiAl bond coats 

Step increase in the material’s temperature capability 

3000°F SiC/SiC CMC airfoil 
and combustor 
technologies 

2700°F SiC/SiC thin turbine 
EBC systems for CMC 

airfoils 

2800ºF 
combustor 
TBC 

2500ºF 
Turbine TBC 2700°F (1482°C) Gen III  SiC/SiC CMCs  
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EBC-CMAS Degradation is of Concern with Increasing 
Operating Temperatures 

− Emphasize improving temperature capability, performance and long-term 
durability of ceramic turbine airfoils 

• Increased gas inlet temperatures for net generation engines lead to significant CMAS -
related coating durability issues – CMAS infiltration and reactions 

Marcus P. Borom et al, Surf. Coat. 
Technol. 86-87, 1996  

Current airfoil CMAS attack 
region - R. Darolia, International 
Materials Reviews, 2013 



National Aeronautics and Space Administration 

www.nasa.gov 7 

Calcium Magnesium Alumino-Silicate (CMAS) 
Systems Used in Laboratory Tests 

NASA modified CMAS 
ARFL PTI CMAS 02 
(higher SiO2) 

GE/Borom 

Wellman  

Kramer   

Aygun   

Smialek   

Rai   

Braue   

− Synthetic CMAS compositions, in particular, NASA modified version (NASA CMAS), and the 
Air Force Powder Technology Incorporated PTI 02 CMAS currently being used 

− Saudi Sands used for past turbine coating studies 
− CMAS SiO2 content typically ranging from 43-49 mole%; such as NASA’s CMAS (with NiO 

and FeO)
− Collaborations on-going with the Air Force; also planned DLR, ONEA etc on Volcanic Ash 

Composition selections 
ARFL PTI 11717A 02 used at NASA for CMAS studies 

Fully reacted As received 

AFRL02 particle size 
distribution 
(34% Quartz, 30% Gypsum, 
17% Aplite, 14% Dolomite, 5% 
Salt) 
Percentile Size (μm) 
10 2.5 +/- 1.0 
50 8.5 +/- 2.0 
90 40.5 +/- 3.0 

Fully reacted 
CMAS EDS 
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CMAS Related Degradations in EBCs 
− CMAS effects 

• Significantly reduce melting points of the EBCs and bond coats 
• Cause more severe degradations with thin airfoil EBCs  
• CMAS increase EBC diffusivities and permeability, thus less protective as an environmental 

barrier 
• Reduced mechanical properties: such as strength and toughness reductions 
• Leads to grain boundary attack thus disintegrate EBCs  
• CMAS interactions with heat flux, thermal cycling, erosion and thermomechanical fatigue 

Such as yttrium silicate 

EBC and degradations 

CMAS induced melting and failure 

Coating surface 
Cross-section 

50 m 
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Phase diagrams showing yttrium di-silicate reactions 
with SiO2, NaO and Al2O3  

9 

CMAS Related Degradations in EBCs - Continued 
− CMAS effects on EBC temperature capability 

• Silicate reactions with NaO2 and Al2O3 silicate 
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CMAS Related Degradations in EBCs 
− Fatigue – environmental interaction is of great concern 

A 20 micrometer thick EBC bond 
coated Prepreg SiC/SiC CMC after 40 
hr, 20 Ksi, stress ratio R=0.05 fatigue 
testing in air 
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Environmental Barrier Coating Development Limitations and 
Requirements 

11 

─ Current EBCs limited in their temperature capability, water vapor stability and 
long-term durability, especially for advanced high pressure, high bypass turbine 
engines 

 
─ Advanced EBCs also require higher strength and toughness 

• In particular, resistance to combined high-heat-flux, engine high pressure, 
combustion environment, creep-fatigue, loading interactions 

 
─ EBCs need improved erosion, impact and calcium-magnesium-alumino-silicate 

(CMAS) resistance and interface stability 
• Critical to reduce the EBC Si/SiO2 reactivity and their concentration tolerance 
 

─ EBC-CMC systems need advanced processing for realizing complex coating 
compositions, architectures and thin turbine configurations for next generation 
high performance engines 
• Advanced high temperature processing of high stability cluster and nano-composites 
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NASA EBC Systems 
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NASA EBC Systems 
• HfO2 -RE2O3-SiO2/RE2Si2-xO7-2x environmental barrier systems 

• Controlled silica content and transition element and rare earth dopants to improve EBC 
stability and toughness 

• Develop HfO2-Si based + X (dopants) and more advanced rare earth composite 
compound composition systems for 2700°F+ long-term applications 

• Develop prime-reliant composite EBC-CMC interfaces for fully integrated EBC-bond 
coat systems 

• RE2O3-SiO2-Al2O3 Systems 
• Develop advanced NASA high toughness alternating layered systems 
• Advanced 1500°C bond coats 
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Strength Results of Selected EBC and EBC Bond Coats 
- CMAS Reaction resulted in Strength Reduction in Silicates 

Selected EBC systems 
– HfO2-RE-Si, along with co-doped rare earth silicates and rare earth alumino-

silicates , for optimized strength, stability and temperature capability 
– CMAS infiltrations can reduce the strength 
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Effect of CMAS Reaction on Toughness of HfO2-Si Bond Coat 
and Yb2Si2O7 EBC 

– HfO2-Si bond coat  and ytterbium di-silicate fracture toughness studied 
• HfO2-Si toughness >4-5  MPa m1/2 achieved at higher temperature 
• Annealing heat treatments at 1300°C improved lower temperature toughness  
• CMAS effect unclear due to the compounded effects of possible 1350°C CMAS reaction 

degradation and annealing 
– Ytterbium silicate EBC toughness may also be reduced due to CMAS reactions 

• More measurements are needed 
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HfO2-Si illustrating notch distortion due to 
CMAS exposure at 1350°C for 50 hrs 

Yb2Si2O7 notch after CMAS exposure at 1350°C 
for 50 hrs 
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EBC CMAS Surface Reactions 

– Ytterbium- and yttrium-disilicate silicates reactions and dissolutions in CAMS 
 

15 

Ytterbium silicate surface CMAS melts: 50 hr 
1300°C 

Ytterbium silicate surface CMAS melts: 5 hr 
1500°C 

Yttrium silicate surface CMAS melts: 50 
hr 1300°C 

Yttrium silicate surface CMAS melts: 5 hr 
1500°C 
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EBC Reacted Apatite Phases under Long-Term Testing at 
1500°C – Ytterbium silicate EBC 

– Non stoichiometric characteristics of the CMAS – rare earth silicate reacted 
apatite phases

– Difference in partitioning of ytterbium vs. yttrium in apatite 
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Composition in apatite (100 hr): 
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EBC Reacted Apatite Phases under Long-Term Testing at 
1500°C: Yttrium Silicate EBC 

– Non stoichiometric characteristics of the CMAS – rare earth silicate reacted 
apatite phases

– Difference in partition of ytterbium vs. yttrium 
• Average AEO/RE2O3 ratio ~ 0.68 for ytterbium silicate – CMAS system 
• Average AEO/RE2O3 ratio ~ 0.22 for yttrium silicate – CMAS system 
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Composition in apatite (100 hr): 
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Stoichiometry of the Reacted Apatite Phases under Long-
Term Testing at 1500°C 

– Non stoichiometric characteristics of the CMAS – rare earth silicate reacted 
apatite phases – up to 200 hr testing

– Difference in partitioning of ytterbium vs. yttrium in apatite 
• Average AEO/RE2O3 ratio ~ 0.68 for ytterbium silicate – CMAS system 
• Average AEO/RE2O3 ratio ~ 0.22 for yttrium silicate – CMAS system 
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AEO–RE2O3–SiO2 phase diagram 

Ahlborg and Zhu, Surface & Coatings 
Technology 237 (2013) 79–87. 

Ytterbium 
system 

Yttrium 
system 

From Zhu Irsee Presentation Pages 18-19: “NASA’s Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic 
Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance”, June 2014 
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Effect of CMAS Reactions on Grain Boundary Phases 

– CMAS and grain boundary phase has higher Al2O3 
content (17-22 mole%)

• Eutectic region with high Al2O3 content ~1200°C melting point 
• Loss of SiO2 due to volatility 
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200 hr, 1500°C 

NASA 
modified 
CMAS 

Grain 
boundary final 
phase – low 
SiO2 and high 
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Rare Earth Apatite Grain Growth 

– Grain growth of apatite phase at 1500°C at various times 
 

 50 hr 150 hr 200 hr 

50 hr 200 hr 150 hr 

Ytterbium silicate system 

Yttrium silicate system 
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HfO2-Rare Earth Silicate Composite EBC Systems - Continued  
– Silica loss observed in the concentrated CMAS reacted regions 

21 

Rare earth silicate - 
apatite phase rich 
phase region 

HfO2 rich phase 
region 

CMAS concentrated 
region, SiO2 content 
20-30 mol% (SiO2 
loss in the steam 
water vapor tests) 

Coating surface 

Cross-section 
(surface 
region) 

Coating surface 
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Oxidation kinetics vs Si content 
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– Thermogravimetric analysis (TGA) in dry O2 at 1500°C, tested up to 500 hr 
– “Protective” scale of rare earth di-silicate formed in oxidizing environments 
– Furnace cyclic test life also evaluated at 1500°C 

 

SiC 

RESi(O) 

RE2Si2O7-x 

40 m 

High Stability Rare Earth Silicon Bond Coat with High Melting Point 
Coating Compositions: Designed with Improved Temperature capability 

and CMAS Resistance 
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High Stability Rare Earth Silicon Bond Coat with High Melting Point 
Coating Compositions: Designed with Improved Temperature capability 

and CMAS Resistance - Continued 
– Thermogravimetric analysis (TGA) in dry O2 at 1500°C, tested up to 500 hr 
– “Protective” scale of rare earth di-silicate formed in oxidizing environments 
– Furnace cyclic or high heat flux test life evaluated at 1500°C up to 1000 hours with or without 

CMAS 
 

FCT life of RE-Si coatings  An Yb-Gd2700°F EBC bond coat showed 500hr cyclic durability 
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High Stability and CMAS Resistance Observed from the Rare 
Earth Silicon High Melting Point Coating Compositions 

– Demonstrated CMAS resistance 
of NASA RE-Si System at 
1500°C, 100 hr 

– Silica-rich phase precipitation 
– Rare earth element leaching into 

the melts (low concentration ~9 
mol%) 
 
 Area A 

Area B 

Surface side of the 
CMAS melts 
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CMAS Reaction Kinetics in Bond Coats  

25 

CMAS Partitioning on RE-Si 
bond coat, 1500°C, 100hr 

RE incorporations 

– SiO2 rich phase partitioning in the CMAS melts 
– Rare earth content leaching low even at 1500°C 
– More advanced compositions are being implemented for improved thermomechanical – 

CMAS resistance 
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Advanced EBC Compositions Improve the Resistance to 
CMAS 

 
– Controlling CMAS wetting, viscosity, stability and melting points 
– Providing better EBC protections for CMCs in CMAS environments 
– EBC durability being validated under CMAS-mechanical loading 

26 

400 hr, 69 Mpa creep rupture at EBC surface temperature 
1400°C 

202 hr, 69 MPa creep rupture at EBC surface 
temperature 1540°C; CMC failure 
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Advanced EBC Compositions Improve the Resistance to 
CMAS - Continued 

 
– Controlling CMAS wetting, viscosity, stability and melting points 
– Providing better EBC protections for CMCs in CMAS environments 
– EBC durability initially validated under long-term CMAS-mechanical loading

27 

400 hr, 69 Mpa creep rupture at EBC surface temperature 
1400°C 

202 hr, 69 MPa creep rupture at EBC surface 
temperature 1540°C; CMC failure 
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Creep-Fatigue of EBCs-CMCs in Complex Heat Flux and 
Simulated Engine Environments 
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• Long-term creep and fatigue used to validate EBCs at various loading levels 
• Demonstrated 2700°F EBC and bond coat capability in complex environments 

 

SiO2 

Advanced Bond Coat 
on CMC – intact after 
fatigue test with 15 
ksi load and 2600-
2700°F surface 
temperature for 460 
hot hours 

Advanced Bond Coat on CMC – intact after fatigue test with 15 
ksi load and 2600-2700°F surface temp for 460 hot hours 

SiO2 

Fracture surface; 200+ hr at 
2700°F+ creep rupture testing with 
CMAS; Advanced EBC protected 
CMCs  

Stress-oxidation and stress-CMAS 
environmental testing 
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Summary 
• CMAS degradation remains a challenge for emerging turbine engine 

environmental barrier coating – SiC/SiC CMC component systems 
• CMAS leads to lower melting point of EBC and EBC bond coat 

systems, and accelerated degradations 
• NASA advanced EBC compositions showed promise for CMAS 

resistance at temperatures up to 1500°C+, and in combined with 
mechanical loading 

• We have better understanding of CMAS interaction with rare earth 
silicates, and in controlling the compositions for CMAS resistance while 
maintaining high toughness 

• We are developing better standardized CMAS testing, and working on 
CMAS induced life reductions, helping validate life modeling  
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EBC-CMAS Degradation under Thermal Gradients 
− Effect of CMAS concentration on EBC-CMC system cyclic durability 

• CMAS reacts with high SiO2 activity layer and reducing melting point 
• Low tough reaction layers such as apatite phases 
• Interactions with heat flux, thermal cycling, erosion and thermomechanical fatigue 

EB-PVD ZrO2 

HfO2-Yb2O3-
Aluminosilicate  
Yb2Si2O7 
Si 

More severe 
degradation and 
delamination: 
Tsurface 
1500°C 
Tinterface 
1316°C 


