

VIIP: Central Nervous System (CNS) Modeling

Jerry Vera¹, Lealem Mulugeta³, Emily Nelson¹, Julia Raykin², Andrew Feola², Rudy Gleason², Brian Samuels⁴, C. Ross Ethier² and Jerry Myers¹

NASA Human Research Program Investigators Workshop Galveston, TX January 15, 2015

¹NASA Glenn Research Center, Cleveland, OH ²Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA ³Universities Space Research Association, Houston, TX ⁴Department of Ophthalmology, U. Alabama at Birmingham, Birmingham, AL

Multiscale model for VIIP research

- CNS model includes intra/extracranial cerebrospinal fluid (CSF) and cranial blood compartments
- For details on other modules, see companion works for IWS2015 by Ethier et al., Feola et al., Nelson et al., and Price et al.

CNS Blood flow and pressure model

- Several lumped CNS models exist. Our starting point was a model that had been applied to microgravity (µg) (Stevens et al., 2005; Lakin et al, 2007):
- Time-dependent model composed of 6 fluid compartments (nodes)
 - 3 vascular:
 - Intracranial Arteries (1)
 - Capillaries (2)
 - Venous Sinous (3)
 - 2 cerebrospinal fluid
 - Ventricular CSF (4)
 - Extraventricular CSF (6)
 - 1 Brain node (5)
- Boundary conditions at cranium and wholebody interaction provided by extracranial nodes
 - Central Arteries [A]
 - Central Veins [V]
 - Thoracic Space [Y]

Q = Flowrates between compartments (ml/min) C = Compartment compliance

- Stevens et al. (2005)

Governing Equations

Defining the pressures in the 6 compartments \bullet as dependent variables, the system is modeled in matrix form as a system of ordinary differential equations:

C ₁₅				-C ₁₅		dP1/dt		Z _{A1}						P1		-Z _{A1} (P _A - G _{AI} sinθ) - Q ₁₂
	C ₂₅			-C ₂₅		dP₂/dt			Z ₂₃ + K ₂₅	-Z ₂₃		-K ₂₅		P ₂		Q ₁₂ - Q ₂₄ - K ₂₅ σ ₂₅ (π ₂ - π ₅)
		C ₅₃ + C ₃₆		-C ₅₃	-C ₃₆	dP₃/dt	+		-Z ₂₃	Z ₂₃ + Z ₆₃ + Z _{3V}			-Z ₆₃	P ₃	=	Z _{3V} (P _v - G _{3v} sinθ)
			C ₄₅	-C ₄₅		dP₄/dt					Z ₄₅ + Z ₄₆	-Z ₄₅	-Z ₄₆	P ₄		Q ₂₄
-C ₁₅	-C ₂₅	-C ₅₃	-C ₄₅	$C_{25} + C_{45}$ + C_{53} + $C_{56} + C_{15}$	-C ₅₆	dP₅/dt			-K ₂₅		-Z ₄₅	K ₂₅ + Z ₄₅ + Z ₅₆	-Z ₅₆	P ₅		-Κ ₂₅ σ ₂₅ (π ₂ - π ₅)
		-C ₃₆		-C ₅₆	$C_{56} + C_{36}$ + $C_{6V} + C_{6Y}$ + C_{A6}	dP ₆ /dt				-Z ₆₃	-Z ₄₆	-Z ₅₆	Z ₅₆ + Z ₆₃ + Z _{6V} + Z ₄₆	P ₆		$\begin{array}{l} -C_{A6}(d_{PA}/dt)+C_{6Y}(d_{PY}/dt)+\\ C_{6V}(d_{PV}/dt)+Z_{6V}(P_{V}) \end{array}$

C compliance

Z fluidity ~ 1/resistance tilt angle

osmotic pressure

 σ reflection coefficient

θ

π

G gravity

- K filtration coefficient
- pressure

Q flow rate

S source/forcing terms

Note that G is explicitly included in the forcing terms in S

National Aeronautics and Space Administration

MATLAB Implementation

Verification Tests

- 20 independent verification tests that included variation in hydrostatic pressure
- 3 independent users of the code

TEST

- Short-term head down tilt (HDT)
- ✓ Long-term HDT
- Microgravity
- ✓ Blood-brain barrier influence

Verification tests also had a validation component

- Used Lakin and Stevens equation structure and parameters, but
- Developed independent implementation, arterial pressure that drives unsteady response and solution methodology

Short-term head down tilt

• Tests called for monitoring of changes in pressure differences pre- to post-tilt:

Tilt	Δ (Ρ ,	_s -P _v) (mml	Hg)	∆ ICP (mmHg)				
angle (°)	Expt [1]	Model [2]	Our Model	Expt [3]	Model [2]	Our Model		
-6				3.3	2.10 to 3.70	2.20		
-10	3.1	3.86	3.66					
-15				6.1	5.18 to 7.78	5.46		

Conclusion: The current model agrees with prior experimental and numerical work.

[1] Katkov and Chestukhin(1980)[2] Stevens et al. (2005)[3] Murthy et al. (1992)

National Aeronautics and Space Administration

Glenn Research Center

Long-term HDT and Microgravity

	∆ ICP (mmHg)						
Condition	Model [1]	Our Model					
Long-term HDT	4.9	4.9					
μg	<0	-3.1					

Conclusion: <u>Using their parameters</u>, our predicted \triangle ICP is consistent with the prior model in μ g and long-duration HDT, **but** are their parameters correct?

[1] Stevens et al. (2005)

Blood-brain barrier influence

- Later work by the Stevens/Lakin team hypothesized that the blood/brain barrier might weaken in μg
- In Lakin et al. (2007), they performed a sensitivity study for a hypothetical change in the reflection and filtration coefficients
- This changed their findings on ICP in μg

	sigma	К	Simulated	Target ICP (mmHg)	Frror (%)
Test0	1.000	0.066	13.78		
Test1	0.583	0.052	15.15	15	1
Test2	0.665	0.105	17.18	17	1.06
Test3	1.081	0.064	13.23	13	1.77
Test4	0.438	0.113	19.14	19	0.74

Conclusion: Our model agrees with literature results to within 2% or better.

Revising prior findings, authors concluded that ICP could increase in μ g. But how do we assess the credibility of this claim?

Preparing for μg simulations

- Before weighing in on the potential change in ICP in μ g, we need to:
 - Re-assess parameters used by Lakin/Stevens based on the most current VIIP research
 - Quantify uncertainty in model parameters
 - Define a physiological envelope for parameters that will be relevant for the astronaut corps on orbit
 - Perform sensitivity studies over a much larger parameter space
 - Examine model predictions against independent studies in HDT, μ g, and postural change, particularly for chronic conditions. We need our model to do a good job in predicting:
 - Volumes of intra/extracranial CSF compartments
 - Volumes of intracranial blood compartments
- Only after these steps are taken can we make intelligent predictions about μg response

Sensitivity analysis

- We are analyzing this system by testing model sensitivity
 - Parameters include: compliances, resistances and filtration coefficients
 - Each described by statistical parameters
 - Mean and range of variation (variance)
 - Distribution of variation (density function)
- Methodology
 - Partial Rank Correlation Coefficient (PRCC) Analysis
 - Provides the linear relationships between two variables
 - one input parameter and one output parameter
 - All linear effects of other variables are removed after rank transformation
 - Rank Transformation: transforms nonlinear monotonic relations to linear
- Latin Hypercube sampling
 - Efficient method to randomly characterize the sets of combined parameters
 - Many independent runs with randomly chosen parameter sets provide statistics on the system response

Conclusions

- A CNS lumped parameter model has been produced based on the model developed by Lakin and Stevens
 - Our solution methodology and computational platform is unique
- Our model has been tested and verified
 - ICP predictions agree with Lakin/Stevens in 20 cases of acute and chronic μg and HDT
- CNS model infrastructure is complete, but additional work is needed
 - Re-assess parameters used by Lakin/Stevens
 - Define flight and flight analog derived parameter ranges
 - Perform parameter sensitivity studies
 - Validate against the latest VIIP research
- In the future this model will be
 - integrated with lumped CVS and eye models
 - Used to establish spaceflight responses with fidelity sufficient to supply boundary conditions for more complex VIIP eye simulations.