

Ni-BaTiO₃-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

David (Donhang) Liu, Sr. Staff Engineer II 301-286-8573; donhang.liu-1@NASA.gov

Lou Fetter, Task Manager 301-286-8339; <u>lula.r.fetter@nasa.gov</u>

Bruce Meinhold, Group Lead 301-286-1494; bruce.meinhold@nasa.gov

ASRC Federal Space and Defense

Work performed for the Parts, Packaging, and Assembly Technology Branch, Code 562 NASA Goddard Space Flight Center Greenbelt, Maryland

Acronyms

AEC-Q200	Automotive Electronics Council standards for automotive
	electronic components, Section Q200: passive components
Ag	Silver
ASTM	American Society for Testing and Materials
BME	Base-Metal Electrode
CMSE	Components for Military and Space Electronics
Cu	Copper
CV	Capacitance x Voltage
DLA	Defense Logistics Agency
DLA	Defense Logistics Agency
EIA/ECA	Electronic Industries Alliance/Electronic Components Association
ESCC	European Space Component Coordination
GSFC	Goddard Space Flight Center
MLCC	Multi-Layer Ceramic Capacitor
NEPP	NASA Electrical Parts and Packaging Program
Ni	Nickel
Pd	Palladium
PDC	Product Development Certification
PME	Precious-Metal Electrode
PRVT	Processing Reliability Verification Test
QPLD	Qualified Parts List Directory
SCD	Source Control Drawing
SEM	Scanning Electron Microscopy

Presentation Outline

3

- Background of Base-Metal Electrode (BME) Technology
- Rationale for Adopting BME Technologies
- NASA GSFC S-311-P-838
 - Basis for specification
 - Product highlights
 - Product Development Inspections
 - Processing Reliability Verification Test (PRVT)
 - In-Process Inspection
 - Group A Inspection
 - Group B Inspection
- Summary

Background of BME Technology

4

- All Multi-Layer Chip Capacitors (MLCC) for high-reliability applications are fabricated using precious metal electrodes (PME), Palladium (Pd)/ Silver (Ag) with minimum dielectric thickness and maximum dielectric constant restrictions.
- High materials cost plus questionable supply assurance forced commercial industry to shift from PME to BME (Nickel (Ni), Copper (Cu)) technology.
 - Change from PMEs to BMEs was totally driven by economics.
- Current designs require higher Capacitance x Voltage (CV) value and lower rated voltage Multi-Layer Ceramic Capacitors (MLCCs).
 - PME capacitor values inadequate for many requirements
 - BME capacitors meet design requirements but violate the minimum dielectric thickness requirement
- Use of BME MLCCs for military/space applications requires new specifications.

Rationale for Adopting BME Technologies

5

- BME is not a new technology; used for >30 years
- 99% of MLCCs manufactured worldwide use BME technology
 - Lion's share of research activity and technical support is for BME
 - Wide selection of products with short lead time
 - Low cost
- Select BME capacitors are ready for space-level applications
 - Significant improvements in processing quality and control
 - BME technology widely used in harsh automotive environments and challenging medical applications
 - Several hybrid manufacturers are using BME capacitors in space-level products
- European Space Component Coordination (ESCC) BME capacitor specification for space programs to be finalized March 2015
- MIL-PRF-Thin Dielectric Specification is under development by G11/G12 and Defense Logistics Agency (DLA)


NASA GSFC S-311-P-838

- Goddard Space Flight Center (GSFC) Source Control Drawing (SCD) for BME capacitors
- Basis for SCD:
 - MIL-PRF-123 for PME capacitors
 - MIL-PRF-55681 for PME capacitors
 - GSFC EEE-INST-002 requirements for ceramic capacitors
 - Preliminary ESCC Specification to be finalized March 2015
 - GSFC S-311-P-829, SCD for PME MLCCs with smaller EIA chip sizes less than 0805 and with thinner dielectric layers (~8 μm)
 - Automotive Electronics Council standards for automotive electronic components, Section Q200: passive components (AEC-Q200) for automotive grade BME MLCCs
 - NASA NEPP-funded studies on BME MLCC reliability and failure mechanisms

S-311-P-838 Product Highlights

- Chip Size from 0603 to 1812
- Minimum dielectric layer thickness: 7.11µm (0.28 mil)
- Voltage Range from 16V to 100V
- X7R Dielectric

Product Development Certification Inspections

Four Required Inspections

- 1. Processing Reliability Verification Test (PRVT)
 - Uses construction and microstructural parameters to estimate long term reliability.
- 2. In-Process Inspection
 - Internal examination to verify lot construction
- 3. Group A Inspection
 - Screening of 100% capacitors supplied to specification
- 4. Group B Inspection with Product Development Certification (PDC) requirements
 - Is required for each capacitance/voltage/size combination to be approved per this specification.
 - Group B PDC Requirements include enhanced Life, Temperature-Humidity Bias, and Breakdown Voltage Tests.

Processing Reliability Verification Test

9

- Pre-screening lot acceptance test
 - Cross-section samples from side of capacitor body to reveal end margins
 - Use Scanning Electron Microscopy (SEM) to make at least three measurements of the parameters in the following table.

Parameter	Measurement	Requirement
Dielectric Thickness	Sample Average	>50Vdc: 7.11µm (0.28 mils) min.
Side Margin	Sample Average	<25V: 15µm (0.6 mils) min. ≥25V: Per EIA/ECA-469, Table 6
End Margin	Sample Average	<25V: 25µm (1 mil) min. ≥25V: Per EIA/ECA-469, Table 7
Cover Plate Thickness	Sample Average	<25V: 25µm (1 mil) min. ≥25V: Per EIA/ECA-469, Table 8
Dielectric Layers	Measurement	≤ 300 layers

 Uses wet or dry chemical etch to reveal dielectric structure and measure average grain size using Linear Intercept Method per American Society for Testing and Materials (ASTM) E112-10 section 13.

Processing Reliability Verification Test

10

To meet the PVRT requirement and qualify the lot, the capacitor samples shall meet the following equation for *initial reliability* \overline{R}_i

$$\overline{R}_i = \left[1 - \left(\frac{\overline{r}}{d}\right)^{\alpha}\right]^N > 0.99999$$

where

 \bar{r} = measured average grain size

- d = average dielectric thickness
- N = total number of dielectric layers
- α = 5 for capacitors rated > 100V

 α = 6 for capacitors rated \leq 100V

- D. Liu, "How to Characterize the Reliability of Ceramic Capacitors with Base-Metal Electrodes." Components for Military and Space Electronics (CMSE) 2015 Presentation 6-1
- D. Liu, "A General Reliability Model for Ni-BaTiO₃-Based Multilayer Ceramic Capacitors." CARTS Proceedings, p. 31-44, (2014)
- D. Liu and M. Sampson, "Some Aspects of the Failure Mechanisms in BaTiO₃-Based Multilayer Ceramic Capacitors." CARTS Proceedings, p. 59-71, (2012)

In-Process and Group A Inspections

11

In-Process Inspection

Required for each capacitor lot supplied to this specification.

- Nondestructive internal examination per MIL-PRF-123 para.
 4.6.1 (ultrasonic)
- Destructive Physical Analysis (pre-termination) per MIL-PRF-123 para. 3.6.

Group A Inspection

Required on 100% of capacitors supplied to this specification.

Group A Inspection Tests

Thermal Shock (Conditions: -55°C to +125°C, 20 cycles 20) Voltage Conditioning (Conditions: 2x rated voltage, 168 hrs. min., +125°C) Insulation Resistance at +125°C Dielectric Withstanding Voltage Insulation Resistance at +25°C Capacitance Dissipation Factor Percent Defective Allowable (PDA) (Requirement 5% max.) Visual Inspection

Group B Inspection

12

Group B Inspection with PDC requirements

Required for each lot of capacitor supplied to this specification.

Group B Inspection Tests	Quantity	Group B Inspection Tests (cont.)	Quantity
eresh - meheren rene	(Accept Number) 🔤		(Accept Number)
Subgroup 1	45 or 125 (0) 🦷	Subgroup 4	6(0)
Thermal Shock	Note: If dielectric thickness is ≥ 20.3 μ m (0.8 mils), quantity is 45. If dielectric thickness is < 20.3 μ m (0.8 mils), quantity is 125	Insulation Resistance (at +25°C)	
Life Test		Capacitance	
Insulation Resistance (at 125°C)		Dissipation Factor	
Dielectric Withstanding Voltage		Resistance to Soldering Heat	
5 5		Insulation Resistance (at +25°C)	
Insulation Resistance (at +25°C)		Capacitance	
Capacitance		Dissipation Factor	
Dissipation Factor	8	Subgroup 5	6(0)
Subgroup 2	12(0)	Shear Stress	
Temperature Humidity Bias		Subgroup 6	12(0)
Subgroup 3	6(0)	Breakdown Voltage Test	
Solderability	8	Subgroup 7	6(0)
		Board Flex Test	

Conditions/Requirements

Thermal Shock:
Life Test:
Temperature Humidity Bias:
Breakdown Voltage PDC:

-55°C to 125°C, 100 cycles 2x rated voltage, +125°C, 1000 hrs. (PDC 4000 hrs.) 96 hrs min. (PDC 1000 hrs. min.) Sample size of 30 pieces.

Summary

- Select BME capacitors are ready for military and space applications.
- NASA GSFC S-311-P-838 specification provides framework for BME capacitor approval for space.
 - Pre-screening lot tests (PVRT testing) in S-311-P-838 ensures reliable part construction, improving chance of successful completion of screening and lot acceptance.
- ESCC specification for BME capacitors to be finalized in March 2015.
 - The NASA and ESCC specifications have comparable requirements