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Four model intercomparisons were run and evaluated using the TWP-ICE field campaign,
each involving different types of atmospheric model. Here we highlight what can be
learnt from having single-column model (SCM), cloud-resolving model (CRM), global
atmosphere model (GAM) and limited-area model (LAM) intercomparisons all based
around the same field campaign. We also make recommendations for anyone planning
further large multi-model intercomparisons to ensure they are of maximum value to the
model development community. CRMs tended to match observations better than other
model types, although there were exceptions such as outgoing long-wave radiation. All
SCMs grew large temperature and moisture biases and performed worse than other model
types for many diagnostics. The GAMs produced a delayed and significantly reduced peak
in domain-average rain rate when compared to the observations. While it was shown that
this was in part due to the analysis used to drive these models, the LAMs were also driven by
this analysis and did not have the problem to the same extent. Based on differences between
the models with parametrized convection (SCMs and GAMs) and those without (CRMs and
LAMs), we speculate that that having explicit convection helps to constrain liquid water
whereas the ice contents are controlled more by the representation of the microphysics.
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1. Introduction

Weather and climate prediction relies on numerical models
designed to represent our best understanding of the relevant
components of the Earth system. One critical component of both
weather and climate prediction systems is the representation of
the atmospheric processes, both dynamical and physical. Global
atmospheric models (GAMs) represent the whole globe and
generally use coarse grid lengths which rely on the representation
(or parametrization) of many physical processes whose scales
are sub-grid, with convection and clouds being a key example.
Regional or limited-area models (LAMs) are a key tool for weather
prediction, and are increasingly used in climate research and
prediction to dynamically downscale global climate predictions
to add better understanding of the regional impacts of climate
change (e.g. Kendon et al., 2010). LAMs are an attractive tool
because they cover smaller regions and are thus able to use

smaller grid lengths for the same computational costs, and this
allows a more explicit representation of the local orography as
well as convective processes and the associated cloud.

The continuous development and improvement of atmos-
pheric models is of critical importance to the weather and climate
community (Randall et al., 2003). Two further modelling sys-
tems which are valuable tools supporting the development of
LAMs and GAMs are cloud-resolving models (CRMs) and single-
column model (SCM) versions of the GAMs (Randall et al., 1996).
CRMs are very similar to LAMs in that they also represent a lim-
ited area and utilise shorter grid lengths to explicitly resolve key
processes. They differ in that they have generally been developed
to understand the physical processes of the atmosphere rather
than as a prediction system. They are also often run at much higher
resolution than LAMs and include more complex and computa-
tionally expensive representations of the physical processes such
as microphysics. In this article, as is quite often the case, the CRMs
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also differ from the LAMs in the way they are forced. The LAMs
include the real land surface boundaries and use open boundary
conditions provided by analysis of global forecasts. In contrast,
the CRMs use a uniform ocean surface, employ cyclic boundary
conditions and are driven by a uniform forcing consistent with
the SCMs. SCMs, while they have their limitations, allow us to
isolate the behaviour of GAM parametrizations from dynamical
feedbacks and also prove a computationally efficient method for
quickly evaluating parametrization changes (e.g. Randall et al.,
2003). In this work, they also use a uniform ocean and are
essentially driven in the same way as the CRMs.

A framework to test all the models types discussed above
and confront these with observations is the intercomparison. An
intercomparison is where various models of the same type are run
for the same case and their results compared. The benefits of this
collaborative activity to model developers go beyond the ability to
compare their model with many other models and identify their
key deficiencies (as discussed in Petch et al., 2006) because they
also bring the community together to jointly discuss and tackle key
challenges in model development. The GEWEX (Global Energy
and Water Exchanges) project Global Atmospheric System Studies
(GASS) acknowledge the importance of these activities and thus
focus much of their work on coordinating these activities. This
article describes the lessons we can learn from bringing together
the results of four model intercomparisons involving GAMs,
LAMs, CRMs and SCMs.

The intercomparisons were all based around the Tropical
Warm Pool–International Cloud Experiment (TWP-ICE) which
took place in and around Darwin, Australia, from 20 January
to 13 February 2006. Its focus was to describe the evolution of
tropical convection, including the large-scale heat, moisture, and
momentum budgets at 3 h time resolution, while at the same
time obtaining detailed observations of cloud properties and the
impact of the clouds on their environment (May et al., 2008). A
field campaign of this kind provides an ideal test-bed for driving
and evaluating a range of atmospheric models used in weather
and climate research and prediction.

Under the umbrella of GASS and with the support of
the US Department of Energy (DOE) Atmospheric System
Research (ASR) program, observations made during the TWP-
ICE campaign have been used to drive and evaluate multiple
models of four different types. The resulting collaboration and
articles describing model intercomparisons provide an important
reference for various institutions to carry out further experiments
which support their model development processes. The articles
describing their comparisons using the TWP-ICE data are:

• CRMs: Cloud-resolving models (Fridlind et al., 2012)
• LAMs: Limited-area models used in regional weather and

climate prediction (Zhu et al., 2012)
• GAMs: Global atmospheric models for predicting on

weather or climate time-scales (Lin et al., 2012)
• SCMs: Single-column models (Davies et al., 2013).

In Fridlind et al. (2012), observations made during TWP-
ICE were used to perform the most comprehensive evaluation
of a cloud-resolving model intercomparison that has ever been
carried out. The ability to challenge the models with such a range
of observations, particularly those which describe the variability
within the CRM domains, highlighted many challenges for both
CRM development and for designing the frameworks in which
the CRMs are run. Specific conclusions from the article noted
that there was a wide spread in the prediction of cloud stratiform
fraction and that all models systematically overestimated the areas
with strong convective mean precipitation. While precipitation
was constrained by the forcing, it was clear that the CRMs differed
significantly in their prediction of the precipitation distribution.
It was noted there was a large spread in predicted ice water path
and, compared to observational estimates, it was overestimated
in all models apart from those which were run in two dimensions.
However, the existing estimates of uncertainty in ice water path

retrievals also require further evaluation, as discussed by Fridlind
et al. (2012).

Zhu et al. (2012) presented the first comparison of convective-
scale LAMs carried out within GASS. The models produced
realistic large-scale thermodynamic fields when compared to
observations, although the locations of precipitation within the
domains varied. As with the CRMs, ice water paths differed
by large amounts between models. Stratiform cloud fractions
showed large spread, especially high ice anvils, which can have
large impacts on the radiative properties of the cloud systems.
Both the water contents and the ice cloud fractions were seen to
vary significantly between models.

In Lin et al. (2012), GAMs were compared over the TWP-
ICE region and, while the models all captured the large-scale
precipitation event seen in the observations, it was delayed by
over a day. As with the CRMs, ice water contents had a very
large spread (more than an order of magnitude) but it was also
clear that in GAMs there was a large spread in liquid water paths.
There were enough models involved in the comparison to identify
that the models whose convection schemes were more responsive
to mid-level moisture performed better during the less active
periods.

Davies et al. (2013) described the first SCM intercomparison
to use ensemble forcing which represented the observational
uncertainty and provided a sensitivity study for the SCMs
involved. It also included a single 2D and 3D CRM as a reference
for the SCMs using the ensemble forcing. It was shown that, while
the ensemble mean generally behaved like a single realisation
using the mean forcing, this was not the case for all diagnostics
or all models. The ensemble forcing was also shown to be of
particular value for investigating how different models respond
to changes in the forcing.

While the four articles described above each make conclusions
relevant to evaluation and improvement of the individual model
classes they address, the archive of all the modelling results
and observations is also a key output of this project. Individual
modelling centres can begin to make use of this for their model
development work. The availability of different model types for
this case makes this an even more valuable resource. For example,
the ability of a weather or climate modelling centre to carry out
sensitivity studies using both their SCM and GCM and place this
into context by comparing against other models driven in the same
way is very valuable. Petch et al. (2007) described a comparison
using a single GCM, SCM and CRM driven and evaluated
using observations made during the Tropical Ocean–Global
Atmosphere Coupled Ocean–Atmosphere Response Experiment
(TOGA-COARE) as a preparation for an intercomparison
involving these model types. However, this work lacked the
unique opportunity of having a completed intercomparison to
allow us to study the spread and variation of the models. In this
‘multi-model type intercomparison’, we bring together the key
findings of each of the separate modelling studies and diagnose
some cross-model differences to learn more about both the
models themselves and the experimental framework used.

This article analyses the results of all models used in the
TWP-ICE intercomparison to identify what can be learnt
from a multi-model type intercomparison. It also identifies
and documents the key lessons learnt during this project
which should help the planning of any similar work in the
future. Section 2 describes the experimental frameworks and
models used in these studies and how they differed for the
different model types. Section 3 analyses the results of all model
types and in section 4 we summarise our findings and make
recommendations which should improve any further similar
multi-model intercomparisons.

2. Experimental framework

The analysis of all the modelling carried out in this cross-
comparison was based around the TWP-ICE field campaign.
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Table 1. A summary of the models used in the four separate intercomparison articles.

Model type LES/CRM LAM Global SCM
Reference Fridlind et al. (2012) Zhu et al. (2012) Lin et al. (2012) Davies et al. (2013)

Number of models 10 6 9 9
Horizontal domain size 200–300 km2 400–500 km2 Global One column
Analysis area Domain Average of grid Average of grid One grid box

boxes overlapping boxes overlapping
with the TWP-ICE with the TWP-ICE
variational analysis domain variational analysis domain

Horizontal grid length (km) 0.9–3 1–3 20–250 25–200
Vertical grid length (km)
around 500 mb

0.18–0.6 0.3–0.5 0.3–1.0 0.3–1.0

Forecast lead time analysed Free running for whole
period

12–36 h 24–48 h Free running for whole
period

Forcing Variational analysis Nested in global ECMWF
models driven by EC analysis analysis variational analysis

Deep convection Explicit Explicit Parametrized Parametrized
Shallow convection Explicit Mix of BL, shallow schemes

numerical/explicit
Parametrized Parametrized

Cloud fraction scheme All or nothing Some all or nothing, some
parametrized

Parametrized Parametrized

The periods simulated were designed to be a balance between
covering a broad range of conditions at the site and the
increasing computational costs of longer runs. As described
in May et al. (2008), the Darwin region was influenced by a
typical monsoonal circulation during TWP-ICE. It experienced
three distinct regimes: active monsoon during 20 to 25 January,
suppressed monsoon during 26 January to 3 February, and
a monsoon break period during 3 to 13 February 2006.
The active monsoon period was characterized by westerly
monsoon flow, intensive mesoscale convective systems of mostly
oceanic origin, and heavy surface precipitation. During the
suppressed monsoon period, clouds were primarily associated
with relatively shallow convection accompanied by much
lower surface precipitation than in the preceding monsoon
period. The break monsoon period was featured by intense
afternoon thunderstorms with several squall lines crossing
Darwin in the evening and early morning. Due to the high
computational cost, the CRM study focused only on the active
and suppressed periods and the LAMs were run only for the
period 1200 UTC on 22 to 0000 UTC on 26 January. In contrast,
both the SCMs and GAMs were run for the entire TWP-ICE
period from 0000 UTC on 20 January to 0000 UTC on 13
February.

2.1. The models used

A brief overview of the basic properties of all the models used and
the runs carried out in the four intercomparisons are summarised
in Table 1. As with any intercomparison project, there is a need
to be pragmatic when specifying the design of the experiments.
A balance is needed between constraining the components of the
experiment such that the comparison is as clean as possible and
the time it takes for the participants to adhere to any requirements.
This is reflected in the ranges seen in properties such as the details
of how the models are forced or how properties such as the land
surface are initialised. While there would be benefit in having
these set the same across all models, it is often more useful for
centres to carry out the experiments with settings relevant to their
typical use.

Table 1 shows that there are generally only a small number of
models of each type. LAMs in particular only had six different
models of which three were variants of WRF. The extent to which
we should consider the variants of WRF as different models is
quite subjective and through this article we will generally treat
all model submissions equally. Full details of all the individual
models used are available in the individual comparison articles
and these will not be discussed here in any detail.

Figure 1. Schematic of the models used in the various comparisons with their
relationships. Note that observations can be used in all components. CRMs and
LAMs have resolved convection so provide additional information to convective
parametrized models. SCMs are a tool to isolate climate model physics and keep
consistent forcing.

It is useful to consider the purpose of each model type in
this cross-comparison article. Figure 1 depicts some of the key
similarities and differences in the models used in this study, along
with the way in which they are forced. The CRMs and SCMs are
described here as development and research tools, i.e. they are
not generally used to make operational predictions of weather
or climate but more to understand atmospheric processes and
support the development of other models. The CRMs can provide
realistic cloud-scale motions to help diagnose how the processes
should be parametrized in the larger-scale models. The SCMs
allow us to isolate the model physics from the dynamics in a
computationally inexpensive tool; in Davies et al. (2013), this
efficiency has been exploited by carrying out an ensemble of
forcing to learn about the behaviour of the physics in the SCMs
as a function of the mean state and forcing. While there may
be some exceptions, the GAMs and LAMs can be considered
operational models as they are used to make predictions of
weather and climate, often operationally as part of a national
weather or climate service. It is the combination of all these
model types which allows us to draw further general conclusions
from this study. We are also able to identify key issues we
should address when we organise future model intercomparisons
involving SCMs, CRMs, GAMs and LAMs.
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2.2. Comparing the different forcing and boundary conditions

Variational analysis is used to derive the domain-mean large-
scale forcing dataset used to drive the SCMs and CRMs. The
forcing data have a 10 mb vertical resolution and 3 h temporal
resolution (centred in time) and were created using a combination
of observations and the ECMWF analysis (Xie et al., 2010). In
both the SCM and CRM integrations, the models were initialised
only once. The SCMs were then integrated for the entire length
of the experiment, with no nudging towards observed profiles.
In contrast, as described in Fridlind et al. (2012), the CRMs
were free running below 16 km, while above 16 km the vapour
and temperature profiles were nudged towards observed profiles.
Thus, both the CRMs and SCMs simulations of the troposphere
were free running for the entire period. There are pros and cons of
running the entire period, but free runs are common in CRM and
SCM intercomparisons (e.g. Xie et al., 2002; Xu et al., 2002). The
SCM article (Davies et al., 2013) focuses on the results from using
an ensemble of forcing created using variational analysis with the
precipitation perturbed within the observational uncertainties.
However, in this article we focus on the deterministic forcing
used as the basis for the CRM comparison; this forcing was also
used in the SCM article for comparison to the ensemble forcing
and was shown to give similar answers to the ensemble mean for
most diagnostics.

A notable difference between the deterministic SCM forcing
and the CRM forcing was the way in which the variational analysis
was used. The horizontal advection term (which is generally much
smaller than the vertical) is the same in both methods. However,
for the SCM comparison, the vertical velocity from the analysis
was used with the model predicted thermodynamic fields to
give the vertical advection term to drive the model. In contrast,
the CRM comparison used both the thermodynamic fields and
vertical velocities from the analysis to derive vertical advection
tendencies. Ghan et al. (2001) compared these two methods of
forcing during the SCM comparison of midlatitude continental
convection and it was concluded that there was no systematic
dependence on the forcing method employed. Later, however, we
will demonstrate that the different forcing method employed in
the CRM and SCM intercomparison leads to a difference in the
thermodynamic profile and is therefore a limitation of this cross-
model comparison and a difference which should be avoided in
future work. Hereafter we will refer to these methods as SCM
forcing and CRM forcing, although we note that either forcing
method can be applied to both SCMs and CRMs. A further
difference between the SCM and CRM forcing was that the CRMs
were transitioned from free-running below 15 km to nudging of
model domain-mean water vapour and potential temperature
towards observed domain-mean conditions with a 6 h time-
scale above 16 km (specification and discussion in Fridlind
et al. 2012). This was a pragmatic decision to better maintain
a tropopause layer structure consistent with observations while
not influencing total surface precipitation relative to a fully free-
running simulation. This difference was much less significant for
the results discussed in this article.

The GAMs wind, temperature, moisture, and surface pressure
were initialized at 0000 UTC daily from the ECMWF operational
analysis using the Cloud-Associated Parametrizations Testbed
(CAPT) approach (Phillips et al., 2004). Other fields, such as land
surface properties (vegetation, soil moisture and temperature)
were constrained to be as realistic as possible using a range of
methods in the various models. The methods were chosen by the
modelling centres themselves as the option they considered the
best choice for their modelling system. The second day (24–48 h)
of the forecasts was used for the comparisons made in this article.
This was chosen to allow spin-up of the models but still keeping
the large-scale dynamics close to the analysis. The different LAMs
were constrained in somewhat different ways for the dynamics,
thermodynamics and other fields such as land surface properties.
This was an example where the various centres have typical or

operational methods of driving their models and it was reasonable
that they were driven using their own methods. However, the
wind, temperature, moisture, and surface pressure in all models
were essentially initialised and driven at the boundaries either by
an analysis or by a short-range forecast initialised by the same
ECMWF analysis that was used by the GAMs.

To understand the role of the different forcing from these
experiments, it is useful to compare the ECMWF analysis to
the variational analysis. Figure 2 shows vertical velocity from
the ECMWF analysis (driving the LAMs and GAMs) and the
variational analysis (driving the CRMs and SCMs). A key
difference between the two forcings is that the strong upward
motion in the wet period around 23–25 January has quite a
different timing with the negative peak between 23 and 24 January
for the variational analysis, but this occurs a whole day later in
the ECMWF analysis. The mean vertical velocity from the wet
and dry periods (defined in Figure 3(a)) shows that the upward
velocities are typically stronger in the ECMWF analysis than they
are in the variational analysis. In the dry period, there is also
weak ascent in the ECMWF analysis while there is descent in the
variational analysis. The implications of these mean and timing
differences will be discussed during the evaluation of results from
the different models in the next section.

3. Cross-model comparison

It is a challenge to show the vast number of results from various
models in a simple set of plots. To do this we mainly focus on
showing a selection of basic fields as the mean of each model
type and the spread of those models. In plots used here we have
focused on the use of the mean and standard deviation between
models to describe the spread. It should be stressed that this
potentially hides a great deal of information and can lead to
somewhat misleading conclusions if more detailed analysis is not
carried out. This is particularly true because of the relatively small
sample sizes of models of each type (ten CRMs, six LAMs, nine
SCMs and nine GAMs). Later we show the specific implication of
the use of means and standard deviation for presenting the data.

By combining all models, we are removing the option for an
individual centre to identify its own model and development
needs. However, this level of detail would not be appropriate for
an overview article and also near-impossible to present clearly.
Instead we can highlight some basic interesting features from the
models as a whole and thus allow any centre to carry out further
work needed to review the performance of its model and any
required sensitivity studies.

As shown in Table 1, different types of model were run over
different sizes of experimental domain. To make an appropriate
comparison with the observations and between different types of
model, simulations from these four model types were all averaged
over the variational analysis domain, which is the same as the
TWP-ICE pentagonal sounding array. It should be noted that
the actual domain size represented by the GAMs is slightly larger
than the sounding array due to the coarse resolutions used in the
GAMs. In addition, since different GAMs were run with different
horizontal resolutions, model grid points used in the average
vary from two for the coarsest model to over one hundred for
models at 20 km resolution. As indicated in Lin et al. (2012), these
differences are small compared to the variations between these
GAMs. So we do not expect that they have large impact on our
analysis.

3.1. Evolution of the models

Time series of some basic fields, such as precipitation, are
important to give a basic guide to the evolution of the weather
during the simulations, and these are shown in Figures 3 and 4.
The period we focus on is 22 January to 3 February. The LAMs
were only run for the period 0000 UTC on 23 to 0000 UTC on 26
January and the SCMs and GAMs were run for a longer period
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Figure 2. Comparison of the vertical velocity, ω, from the variational analysis (used to drive the CRMs and SCMs) and the ECMWF analysis (used to drive the GAMs
and LAMs), showing time–height plots of 6 h mean ω from (a) the variational analysis, (b) the ECMWF analysis, and (c) the difference between the ECMWF analysis
and the variational analysis. Also shown is the mean during the (d) wet and (e) dry periods (as defined in Figure 3).

than shown. The mean values use a 6 h averaging period. This was
a pragmatic choice, balancing the removal of shorter temporal
noise which makes the plot look too busy while maintaining
useful information around the temporal variability. The standard
deviations of the model spread were also calculated at these
6 h intervals but then averaged to 24 h to further remove noise.
Standard deviation is shown normalised by the multi-model mean
value. The spread was plotted separately from the mean, since
plotting together (as is done in some later plots) led to too much
clutter.

Figure 3(a) shows the time series of the multi-model mean
surface rain rate along with observations. Also highlighted on this
plot are two sub-periods we will describe as ‘wet’ and ‘dry’. The
wet period runs from 0000 UTC on 23 to 0000 UTC on 25 January
and the dry period from 1200 UTC on 25 to 1200 UTC on 2
February (day of year 33.5). These are chosen to allow us to sample
a period of organised convection producing heavy precipitation
and then a more suppressed period characterised by mid-level and
shallow convection or broken deep convection producing lighter
domain-averaged precipitation. The LAM simulations covered
only the wet period. One further point to note is that the periods

are based on the observed surface precipitation and timing errors
in some model types would influence results from this kind of
averaging; where relevant this is discussed.

From Figure 3(a) we can see that the CRMs and SCMs produce
very similar precipitation rates through the period, as we would
expect, due to these models being mostly constrained on the
longer time-scales by their forcing (as discussed in Fridlind et al.,
2012; Davies et al., 2012). Perhaps of interest is that the highest
peak rates are a little lower in the SCMs, something seen much
more strongly in the GAMs. This may suggest that the SCM is
trying to behave like the GAM but needs dynamical feedback
to show the full response, although it could also be related to a
low-level dry bias and the way the forcing is applied to the SCMs
(discussed later).

The GAMs have a significant delay (of 1 to 2 days) and a
reduced peak (by over 50%) in the large rain event on 23 January
but have similar amounts of rain during the latter part of the
period. The LAMs also show a reduced peak rain event, and
heavier than observed rain after the peak. However, the timing
of the peak event in the LAMs is much closer to the timing
of the observed peak than we see in the GAMs. As discussed
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Figure 3. Time series of mean and fractional standard deviation (FSD, defined as standard deviation normalised by the mean value) of (a) rain rate and (b) outgoing
long-wave radition (OLR). The time axis shows the day of the year at 0000 UTC.
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Figure 4. As Figure 3, but for (a) water vapour at 500 mb and (b) column water vapour.

in Zhu et al. (2013), the extended period of intense rain in the
LAMs is the result of differences in mesoscale organisation in the
inner model domain. For example, some models maintained the
cyclone in the domain for longer than observed, which resulted
in an increase in the period of intense precipitation. This issue is
not seen in the CRMs and SCMs because these model types were
constrained by the applied large-scale forcing. As the LAMs and
GAMs are both run from the ECMWF analysis, this suggests that
the large delay and reduction in the peak rain in the GAMs is,
at least in part, due to the physics or dynamics in these models
and not simply an issue with the forcing, which in Figure 2 was
shown to have around a 1 day delay compared to the variational
analysis. Issues with GAMs raining too frequently, producing
too much lighter rain and not enough heavy rain events, has
been noted before (Sun et al., 2006; Wilcox and Donner, 2007;
Stephens et al., 2010) and this may be a useful case to study this.
We also speculate here that the delay in the ECMWF analysis
compared to the observationally based variational analysis may
be due to the physics of the ECMWF model. The ECMWF physics
will influence their analysis whereas the variational analysis uses
precipitation observations directly to modify the divergent wind
field. The SCM results highlight that this issue is not well studied
in an SCM due to the need for a dynamical feedback.

The spread in the precipitation between models is shown in
the top panel of Figure 3(a). The SCMs have larger spread than
the CRMs, suggesting that, although precipitation is dynamically
constrained on longer timescales, different SCMs can still produce
quite different rain rates on a 6 h time-scale. The GAMs produce
the largest spread between models on average, although it is clear
that the LAMs vary a lot in their precipitation fields on 25 January
as the large rain event moves away from the domain.

Figure 3(b) shows the time series and spread of outgoing long-
wave radiation (OLR). The GAMs and LAMs lack of very intense
precipitation, which is reproduced in the CRMs and SCMs, is also
clear in the OLR with both model types missing the dip around
24 January. The CRM and SCM have larger than observed OLR
between 25 and 30 January, suggesting a lack of cirrus cloud that
was clearly seen in the observations and captured by the forcing
data (Xie et al., 2010). While the GAMs look better during the first
half of this period, this is probably associated with the delay in
the main convective event rather than them having a better cirrus
representation. Overall, it appears that the GAMs and CRMs
perform better than the SCMs. When we look at the spread of
the models for OLR (Figure 3(b), top) it is clear that, although
the GAMs do well in the multi-model mean, there is much larger
spread than that exhibited by the CRMs and SCMs.
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Figure 4 shows the mean and fractional standard deviation
of (a) vapour on the model levels closest to 500 mb and (b)
column integrated water vapour. In Figure 4 we see that in
general the means of the CRMs compare well to observations.
The good agreement between CRMs and observations in Figure
4(a) may suggest that the resolved convection is doing a good job
of moistening the mid-troposphere. The GAMs and LAMs also
capture the general water vapour trends, but seem to miss the
steep drop in both column vapour and vapour at 500 mb around
the heavy rain event. This is consistent with them delaying and
reducing the peak in the precipitation during these events. We
note here that we would expect the GAMs to remain reasonably
close the observations as the analysis focuses on the 24–48 h
period of the forecast, so long-term biases are not able to grow.
On the other hand, the SCMs have already generated an obvious
dry bias in both the column vapour and the mid-tropospheric
vapour content at 500 mb by 22 January. This dry bias grows
through the first half of the run. The dry bias at 500 mb in
the SCMs may be a consequence of the convection schemes
not responding to free tropospheric humidity and thus not
producing an appropriate amount of mid-depth convection; this
issue is reviewed in DelGenio et al. (2012). The causes of the
overall dry bias exhibited by the SCMs are discussed in more
detail in section 3.2. The spread in 500 mb water vapour and
column vapour (Figure 4(a, b), top) in the GAMs and CRMs is
similar through most of the period. The SCMs exhibit a larger
spread than the other models which is in part because the mean is
smaller but there is more absolute spread. This could be consistent
with the fact that some convection schemes are more capable of
moistening the free troposphere (as discussed in Lin et al., 2012)
and do not have such large biases.

Overall, Figure 3 shows the GAMs and CRMs simulate OLR
better than the SCMs, presumably because the GAMs and CRMs
do not exhibit the large dry bias and associated lack of mid- to
high-level cloud seen in the SCMs. GAMs tend to produce the
largest spread in OLR. This suggests that modelling centres should
focus their attention on OLR and in particular its links with the
behaviour of their convection schemes during both the wet and
dry period. An SCM may be a useful tool for this; however, care
must be taken since Figure 4 demonstrates large water vapour
biases seen in this model type for these simulations, which have a
strong influence on the OLR.

3.2. The wet and dry periods

Figure 5 shows the profiles of temperature and water vapour
mixing ratio for the models and the ECMWF analysis differenced
from the variational analysis averaged over the wet and dry periods
(as indicated in Figure 3(a)). While not shown here, we note that
the temperature and water vapour profiles taken directly from
the radiosondes were a good match to the variational analysis, so
the differences plotted are a true bias from observations. The first
point to note from Figure 5 is that, particularly for temperature
but also for water vapour, there are very large biases in the mean
of the SCMs. The multi-model spread is large, but in the wet
period there is no overlap between a standard deviation from the
mean and the other models. As CRMs do not exhibit these same
biases but are forced in a similar way, the biases are either related
to the physics in the SCMs or to the different ways in which the
forcing was applied in the two model types.

To investigate whether the method of forcing is leading to
differences in the CRMs and SCMs, we carried out a sensitivity
study using the Met Office CRM. Figure 6 shows the temperature
and moisture bias from the wet period using the two methods
for forcing the CRMs and SCMs. It is clear that the standard
CRM forcing method and the SCM forcing method do lead to
significantly different biases. In the lowest few kilometres, the
temperature and water vapour bias in the Met Office CRM looks
much more like the multi-model mean SCM bias, when the SCM
forcing method is applied. However, above this the Met Office

Table 2. A summary of the feedback of the SCM-type forcing on the model bias.

Situation Model bias Feedback with SCM forcing

Convergence Negative bias Increased negative bias
Convergence Positive bias Increased positive bias
Divergence Negative bias Reduced negative bias
Divergence Positive bias Reduced positive bias

CRM appears to behave a little more like other CRMs, suggesting
that the main influence of the forcing is in the lowest 5 km. This
can be understood if we think about the convergence of water
vapour with the two forcing methods, noting that during the wet
periods there is a convergence of water vapour through much of
the lower troposphere due to the vertical motion (Figure 2). In the
CRM forcing method, the water vapour convergence is prescribed
by the observations. However, in the SCM method of forcing the
water vapour convergence is determined by the predicted water
vapour in the model. Application of the SCM forcing to the CRM
results in a 30% reduction in water vapour convergence due to the
bias. As the SCMs and CRMs have a negative bias in water vapour
in the lower troposphere, the convergent term of the forcing will
give a positive feedback on this bias with the SCM style of forcing.
Table 2 summarises the convergent term of the forcing feedback
on the average bias.

The sensitivity to the forcing method (Figure 6) suggests that
the SCMs general cold/dry bias in the mid to upper troposphere
(Figure 5) is not entirely an artifact of the forcing because the
bias is much smaller in the CRM using identical forcing. Also,
while we would expect the low-level dry bias also to contribute to
such a bias (less moisture for latent heating in convection), this
low-level dry bias is also present in the CRMs but the upper-level
bias is much smaller. Therefore, this cold/dry bias may well be of
interest to model developers as it is also evident in the full GAMs
(although with a smaller magnitude for reasons discussed later).

The multi-model spread (of each model type) (Figure 5) is
consistent with time series. The SCMs have a larger spread than
the CRMs presumably because convection is parametrized in
significantly different ways in the different SCMs. The GAMs
have a larger spread than the LAMs for the same reason. The
GAMs and LAMs both have lower spread than the CRMs and
SCMs for two main reasons. Firstly, they are only 24–48 h into the
forecast so very large biases do not have time to grow. Secondly,
it is typical for large-scale dynamical feedbacks in the GAMs to
prevent biases of the magnitude of those seen in the SCMs from
developing.

Figure 7 shows profiles of the mean and spread of cloud
fractions from the different models. During the wet period there
are notable differences in the means, with the CRMs producing
less cloud fraction below 5 km and more above. The GAMs and
LAMs also have lower fractions than the SCMs. This may suggest
there are issues around the forcing during this period leading to
these differences but, given the very large multi-model spread, care
should be taken into reading too much into this. It is also worth
noting that the cloud fraction profiles are consistent with the OLR
presented in Figure 3, namely, the CRMs produce the largest cloud
fraction in Figure 7(a) and this corresponds to the lowest OLR
during the wet period. Likewise the LAMs and GAMs simulate
lowest cloud fractions, which is consistent with the largest OLR
during the wet period. The mean of the cloud fractions during the
dry period agree reasonably well across model types, particularly
above the freezing level. However, again given the large spread of
all model types, this would seem an area for all modellers to focus
further attention on. We note here that the CRMs cloud fraction
is produced from resolved cloud-scale motion whereas the SCMs
and GAMs will all have a parametrization scheme to represent
this. Above the freezing level, CRMs have as large a spread in
cloud fraction as the SCMs and GAMs and this should be a focus
for those who develop and evaluate CRMs. Fridlind et al. (2012)
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Figure 5. Mean temperature and water vapour mixing ratio biases (multi-model mean differenced from the variational analysis) and the multi-model spread shown
as a standard deviation each side of the mean: temperature bias for (a) the wet period and (b) the dry period, and water vapour bias for (c) the wet period and (d) the
dry period. Also included is the mean ECMWF analysis.
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Figure 6. The sensitivity of the two forcing methods on (a) the temperature bias and (b) the moisture bias during the wet period using the Met Office CRM. Also
included are the CRM and SCM multi-model means from Figure 5.
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Figure 7. Domain-mean cloud fraction profiles and spread (shown as a standard deviation each side of the mean) for the (a) wet and (b) dry periods. In the
CRM/LAMs, a point is considered cloudy if it has a water content greater than 10−3 g kg−1.

suggest that CRM cloud fraction differences are attributable in
part to differing ice nucleation schemes.

Figure 8 shows profiles of the domain mean and spread of ice
and liquid water content. The liquid water shows that there is
much lower spread in CRMs and LAMs and the means agree well
with each other in the wet period (when the LAMs were run).
This suggests that, for models which resolve cloud-scale motions,
there is general agreement on the amount of cloud water which
should be produced. On the other hand, the ice is a different
story. In the wet period there are both large differences between
the mean profiles for the model types and also large spread of ice
for all model types. In the mean, perhaps of particular note are
the low ice contents in the GAMs during this period; most of the
SCMs had similarly low ice contents, although the mean does not
show this and this is discussed later.

A potential reason for the differences in the mean ice contents
in the CRMs and GAMs is related to what defines the ice water
content. In the CRMs any solid hydrometeors (including snow
and graupel) are included in Figure 8, whereas many GAMs and
SCMs do not represent these species explicitly and therefore do
not report them. While this difference may be a simple diagnostic
issue, there are also potential modelling issues to consider. In
particular, the snow and, to a lesser extent, graupel is important
for radiative transfer (e.g. Petch, 1998) and if ignored in the
GAMs there is likely to be compensating tuning to add in this
missing cloud. While the CRM comparison did not request a
breakdown of the ice into separate categories (owing to a lack
of observation constraints for separate components), we do have
this information from some models. As an example, Figure 9
shows the role of including all precipitating hydrometeors into
the calculations of water content and cloud fraction for the Met
Office CRM. While this impact will depend strongly on the
microphysics scheme, it does highlight the need for significant
care when we compare water contents and cloud fractions in
convective situations.

Yet another issue to deal with when diagnosing and comparing
water contents and cloud fraction is the role of the convection
scheme in GAMs and SCMs. While convective schemes may
detrain condensate into the large scale, they also have implied
water content which are often not diagnosed and reported, not
used in the radiation schemes, or both. We believe this should
also be a focus for future comparisons.

3.3. Presentational issues

It was noted in the discussion about ice content that most of the
SCMs had lower ice contents than the mean shown and that they

were more similar to the GAMs. To highlight this, Figure 10 shows
the ice content profiles from all the SCMs for the dry period; the
wet period is not included but showed the same feature to a
slightly lesser extent. It is clear from Figure 10 that there is a single
outlier from other models and this is making a large contribution
to the mean and spread. It would be possible to remove this
outlier from the data, but there is not a good reason to do this
and we noted that CRMs and LAMs had significantly higher ice
contents than most of the SCMs. Another alternative would be to
plot the median and interquartile range as shown on the figure.
While this would be an entirely valid option, this is another way of
downweighting outliers, and with relatively small samples (6–10
models) it may be preferable to plot both and ensure the true
story is presented in any reporting of the results. For other issues
discussed in this article, the averaging used in the plots did not
influence the conclusions and therefore we have plotted mean
values and standard deviations from this mean. However, when
modelling centres use the data from this comparison, they should
be aware of these issues.

4. Summary and discussion

In this article we have presented some basic fields from four
intercomparisons of different model types, all simulating the
TWP-ICE field campaign. This is the first example where there has
been a coordinated effort to have CRMs, SCMs, GAMs and LAMs
all evaluated for the same case. The large variety of observations
and the high temporal sampling of atmospheric conditions, along
with the availability of four separate model intercomparisons,
make this a very good study for those developing their regional and
global atmospheric models. The analysis in this article focused on
comparing the multi-model means and the multi-model spread
for each model type. When needed, we also performed some
additional sensitivity studies using a single model. Conclusions
from our analysis fall broadly into three categories. Firstly, there
are the issues and lessons learnt about the design of multi-model
type intercomparison experiments with recommendations for
improvements in the future. Secondly, we highlight areas where
most (or all) of the models of a given type are seen to perform
poorly or have large spread, and therefore which require attention
by model developers. Thirdly, we highlight where care needs to
be taken when analysing and plotting model diagnostics.

Where possible the models were forced in a similar way.
However, pragmatic choices were made, and, because it was not
considered a key issue when the case was designed, the SCMs and
CRMs applied their vertical forcing term differently. While both
used the same observationally derived vertical velocity, SCMs were
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Figure 8. Domain-mean cloud water content profiles and spread (shown as a standard deviation each side of the mean). Included are ice mixing ratio for (a) the wet
period and (b) the dry period, and liquid water mixing ratio for (c) the wet period and (d) the dry period. Note that the wet period has an x-axis range five times larger
than the dry period.
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Figure 9. (a) solid water content and (b) fractional cloud cover for the wet period. Included are the profiles and spread from the CRMs and GAMs and a sensitivity
study with the Met Office CRM where precipitating hydrometeors are included in the calculation.
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forced by advecting their predicted temperature and moisture
whereas CRMs were forced by advecting the observed temperature
and moisture. This was shown to be important for our results
with the SCMs growing a dry bias when there was convergence.
While there is no obviously correct method for forcing SCMs
and CRMs, it is important for future model comparisons such
as this to use the same method (or both). The general strengths
and weaknesses of both methods of forcing SCMs and CRMs
used here are worth highlighting. The methods try to seperate
the biases due to the physics from those due to the dynamics;
however, such methods stop us from seeing how physical errors
interact with the large scale. This is a reason why SCMs on their
own cannot be used as a tool for developing parametrisations and
why other methods such as weak temperature gradient have been
employed in some studies (e.g. Sobel et al., 2001). Also shown in
this work is that the SCMs (and CRMs to some extent) generate
large biases in their temperature or moisture profiles which are
not seen in the GAMs or LAMs which used a series of short-range
forecasts. As these biases may well influence many other physical
aspects of the models, it is our recommendation that the SCMs are
run as a series of short-range forecasts (as we do with the GAMs).
As SCMs are computationally inexpensive to run, it should not
be a problem for this to be done in addition to the longer free
runs.

We also highlighted two key differences between the variational
analysis and the ECMWF analysis. Firstly, there was stronger
upward motion in the ECMWF analysis, although this was not
linked with any specific differences between model types in our
analysis. Secondly, the strongly forced rain event was of the
order of a day later in the ECMWF analysis and this led to an
expected delay in the peak rain produced in the LAMs and GAMs.
Interestingly, the GAMs delayed the peak rain rate by a further
day when compared to the LAMs and produced a weakened peak.
As a reduced range of precipitation rates is a typical feature in
many climate models (Stephens et al. 2010), we suggest that this
may be a useful test case to study this despite the fact that there
is already a signal for this in the driving analysis. The SCMs also
produced a reduced peak in precipitation when compared to the
CRMs.

A key finding of this study was that all model types had a lower
tropospheric dry bias for this case and that the ECMWF analysis
itself had a significant dry bias, particularly in the lowest levels. We
speculated that, as all the GAMs had a tendency to produce a large
dry bias, it was therefore the model contribution to the ECMWF
analysis which led to bias in the analysis itself. It is possible that
the dry bias which was seen most strongly in the SCMs and the
GAMs could be the cause of the reduced precipitation intensity
in the GAMs and the SCMs since they will have a reduced source
of moisture for producing the precipitation.

This study also highlighted that there remains a great deal
of uncertainty in ice microphysics across models. There was
essentially a large spread in ice contents for all four model types
which, given they all typically use similar bulk microphysical
schemes, suggests that this remains an area for model developers
on which to focus their attention. It also means there are no
reference models for this kind of experiment, so observations to
constrain the models remain a critical requirement. Liquid cloud
was a somewhat different story. In the models which had explicit
convection or cloud-scale dynamics (LAMs and CRMs), there was
good agreement and small multi-model spread in liquid water
profiles. However, for models with parametrized convection,
there were notable differences from the CRMs and LAMs and large
multi-model spread. The focus of those developing convection
schemes tends to be on their impacts on the vertical transport of
heat and water vapour, and on surface precipitation. The results
shown here suggest that there also needs to be a focus on the
clouds produced.

The challenges of comparing clouds and microphysical
properties across model types were also highlighted in this paper.
In particular, we noted that bulk microphysical schemes make
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Figure 10. SCM ice contents averaged for the dry period.

different assumptions about how each category (e.g. snow, ice
and graupel) is defined. However, often only the ice is prognostic
and reported in many SCMs and GAMs, i.e. a precipitating
ice hydrometeor content is not always diagnosed or reported.
This makes a comparison with CRMs and LAMs difficult. An
appropriate comparison may be to use the water content as
seen in the radiation scheme, but it is quite possible that many
models do not consider precipitating ice despite its significant
contribution to optical depth (Petch, 1998). Therefore, to really
understand how clouds compare across models of all types,
we need to be very specific about the species in the model.
While forward modelling and simulators can help (and this
was used to compare CRMs with radar in Fridlind et al., 2012),
model developers would benefit from some clear comparisons of
different hydrometeor types, clearly defining what they are, and
how they influence radiative transfer. We acknowledge that it may
be premature to focus solely on ice hydrometeor type, given that
there is a lack of observational constraint. However, it is useful
to understand how different treatments of the microphysics and
their application within radiation schemes vary between models
and to identify the impact of these differences. We therefore
have a further recommendation for future multi-model type
intercomparisons to clearly diagnose all hydrometeor types in
their models separately and to define how they interact with
radiation.

In summary, the TWP-ICE field campaign and the inter-
comparisons of four different model types provide an extremely
valuable resource for those developing models. This article (along
with the four individual intercomparison articles) highlights some
interesting features which this experiment can be used to study
further, but there are likely to be many more. We have also
made recommendations for some changes to the forcing for those
using this case for their model development, as well as vari-
ous recommendations for those involved in coordinating future
multi-model type intercomparisons.
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