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In January 2013 a false ammonia leak alarm resulted in the shutdown and partial depressurization of
one of the two International Space Station (ISS) External Active Thermal Control System (EATCS) loops.
The depressurization resulted in a vapor bubble of 18 liters in warm parts of the stagnant loop.

To repressurize the loop and regain system operation, liquid would have to be moved from the
Ammonia Tank Assembly (ATA) into the loop. This resulted in the possibility of moving cold (as low

as -30°C) ammonia into the water-filled Internal Active Thermal Control System (IATCS) interface heat
exchangers. Before moving forward, the freezing potential of the repressurization was evaluated
through analysis — using both a Thermal Desktop SINDA/FLUINT model and hand calculations. The
models yielded very different results, but both models indicated that heat exchanger freezing was not
anissue. Therefore, the repressurization proceeded.

The presentation describes the physical situation of the EATCS prior to repressurization and discusses
the potential limits and pitfalls of the repressurization. The pre-repressurization analytical models and
their results are discussed. The successful repressurization is describled and the results of a post-event
model assessment is detailed.
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The Event

* OnJanuary 14, the Node 2 LTL (low temperature
internal water loop) accumulator volume
increased instantaneously by 15% to 55.62%

* The resulting accumulator volume measurement
was high enough to trigger an ammonia alarm
— an ammonia leak into the internal thermal control
system (ITCS) would increase the accumulator
guantity
e After some time, it was noted that the loop
pressure was increasing so the ammonia leak
protocol was triggered
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The data source, "Archive File: MSTR 15.001.00.08%, was opened



The Leak Protocol

Stop external active thermal control system (EATCS)
ammonia pump

— reduces pressure at the heat exchangers

Isolate ammonia tank assembly (ATA) which is used as a
system accumulator

— isolates the large (~130 kg or 300 |b) reservoir of ammonia
Vent nitrogen from one of the isolated radiator flow paths
Open system to the now-vented radiator flow path

— creates ullage in the system

System becomes two-phase and will reach the saturation

pressure associated with the temperature of the warmest
fluid



Normal Operating Conditions
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Aftermath

All ITCS HXs continued to flow except for the APM LT HX which was bypassed and
the core heater was enabled

Volume calculations (the volume of the radiator passage — the pump accumulator
A volume) showed that 18 liters (0.64 ft3) of ammonia vapor had been formed

— 0.1kg(0.21 lbm) of vapor

— requires 120 kJ (110 BTU) of energy

raise 1 liter of water 28°C

— energy is available in the fluid itself and in the lines and fittings

Over time the fluid pressure adjusted to the highest temperature in the loop
(endcone lines)

— the liquid/vapor interface was located there
— the local temperature set the pressure

The pressure beat over the orbit as the average loop temperature (and average
liguid density) cycled - moving the fluid between cooler and warmer parts of the
endcone)

— 905 to 950 kPa >> 21.7 to 23.3°C (71-74°F)

liquid (vapor |
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Aftermath

Because Loop B was stagnant, the liquid in the lines outside of the
heated endcones was free to drop to the local environment
temperature

Of most concern was the boom tray temperature, which is the fluid
closest to the endcones (where the heat exchangers reside)

— during repressurization, this fluid would fill the endcones, then the
heat exchangers

Passive thermal analysis of boom tray temperatures
— fluid upstream of Node 3 heat exchanger was -30°C (-22°F)
— fluid upstream of Node 2 heat exchangers was 0°C (32°F)

18 liters (0.64 ft3) of vapor would fill 40 m (135 ft) of 1 inch tubing
— not enough to completely fill the endcones

— we could not know which endcone lines were filled and which were
empty



Node 2 Endcone Layout / IFHX
Locations
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Starting Conditions for Refill

Node 3 LT HX was flowing and was warm
Node 2 LT HX was flowing
JEM MT HX was flowing

APM LT HX was isolated and its heaters were on
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@
g:goyed Pl P >EM It_ine
— =] 1 [Tawm ] e

Deployed

RAD
Deployed




Limitations

We did not want to send subfreezing ammonia to the heat exchangers
mounted on Node 2 (Node 2 LT, JEM MT and APM LT)

— 0°C fluid in boom trays
— 2.8 liters (0.1 ft3) of volume in shortest leg to APM LT

— required dwell time of four hours to increase temperature to 5.5°C 42°F
(required margin)

We did not want to send subfreezing ammonia to the Node 3 LT heat
exchanger

— -29°C (-20°F) fluid in boom trays

— 0.8 liters (0.03 ft3) of volume in shortest leg to APM LT

— required dwell time exceeded 12 hours to increase temperature to 5.5°C 42°F

EATCSLoopB Node Node 3

AFT Endcone Endcone
-

Node 3
LT HX

Node 2
X
S0-3B 2A2B S0-2B 3A3B
DDCU MBSU DDCU MBSU
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Previous PMA Recovery Procedure

Open ATA to system

Pressurize enough to introduce enough liquid into
system to fill the shortest leg (from boom tray to HX)

Dwell to allow fluid to warm to endcone temperature
Repeat

With 0.8 liters (0.03 ft3) critical volume and dwell time
>12 hours, this would have required more than 10 days



Initial Idea

* Since Node 3 LT was flowing and warm,

— pressurize accumulator to a pressure below one that would
force liquid into the Node 3 LT HX

— observe the Node 2 endcone volume limit of 2.8 liters (0.1 ft3)
— wait for required dwell time
— repeat
* One successful push was obtained but it was clear that we
would soon run out of pressure headroom

— as we pushed more liquid into the system, the liquid/vapor
interface would be forced into warmer areas, creating higher
pressures

— Node 3 LT-induced saturation pressure limit would be reached
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Follow-on Idea

* Could we show that freezing would not occur
even if cold ammonia entered the Node 3 heat
exchanger?

e That would allow us to use

* only the limit of the Node 2 endcone volume - 2.8 liters
(0.1 ft3)

e ashorter dwell

— 4 hours since the boom tray upstream of Node 1 was at
0°C



Current Configuration

Water

A 1500 Ibm/hr @ >27°C (80°F)
| Pea = 1200 kPa (153 psia)
Node 3 LTL H/X j

T T~ _ 0.032in orifice

T

1035 kPa (144 to 150.6 psia)

Ammonia
pressure ranges from 990 to

'ZOOF_ contemporaneous
Ammonig chart




Pressure Increase Scenario

* Consider the loop pressure to be constant at
1000 kPa

* |f the loop pressure is increased

— Once p>1200 kPa condensation will occur

* condensation can be limited by available heat transfer
or vapor inflow

— Once all vapor is condensed, liquid ammonia will
be pulled into the heat exchanger core

* 19:1 density ratio

contemporaneous
chart




Pressure Increase Scenario

— Liquid inflow will be limited by the 0.032 inch

orifice
orifice orifice m dot minutes
Ap Ap (kPa) | (lbm/hr) | tofill
(psid) core
1 6.9 7 9

5 34.5 16 4
10 69.0 23 3

orbital cycle A is ~45 kPa

contemporaneous
chart




In the Heat Exchanger
|

T (°F) {

80

-22

— Heat exchanger effectiveness is near unity

— When cold inflow begins, the water temperature at
the exit (LHS) is 80°F

— As cold flow has passes through the core, the water
exit temperature drops

— Minimum water exit temperature occurs when entire

core has experienced cold flow contemporaneous

chart




At the Heat Exchanger Water Exit

e Ammoniais as cold as -20°F
e Water is colder than 80°F

AVATANAVEVATST RS WA
PR R ~— \water
AR AT AR FRA TR VA KAl

rri AN ) ) ,,

ARV AV A AVAR AV AT ammonia
B SR DA DAY

 Core metal temperaue will be determined by
relative magnitude of water and ammonia heat
transfer

— UA,ter”UA, 1 monia SO COre temperature will be closer to
the water temperature than to the ammonia

temperature contemporaneous

chart




Two Results

e Detailed SINDA/FLUINT model indicated that
the minimum metal temperature was >15°C
(60°F)

¢ Hand Calculation measured water

764 S e .

5%A S Zzpoo BW \ousest Bl i (7) Ak
¢ = 1 , {
) 3 @ (066 Vowt/hv
—ae)

35.3°F=1.8°C



Flowing IFHX Model Schematic
Normal operation
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Why The Difference? (in Hindsight)

* The SINDA/FLUINT model took the heating from warm
metal into account

— ammonia was warmed to -25°C (-13°F)
but that was not the largest effect

The model element size was 0.2 inches

— because the ammonia flow was so low (about 100:1 ratio), all
the heat transfer took place in the first element or two

The model was returning the average metal temperature
within the first element, not the minimum temperature
(which would occur at the entrance)

We were safe to proceed despite the difference in the
results because even the conservative hand calculation
showed positive margin
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The Right Answer

e Hand calculation

model water exit

/ temperature
77.4°F TR e - |

37.7°F A = 31000 Bt

| @ 1500 |bwn/bs
T 38.7°F OK! '
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C Zz2ppo BW sect dest dote pon v
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-12°F

38.7°F=3.7°C



The Home Stretch

* Since we were no longer concerned about
freezing in the flowing Node 3 LT HX, the stagnant
APM LT HX became the limiting factor

 Upstream of APM LT HX

— 0°C fluid in boom trays
— 2.8 liters (0.1 ft3) volume in shortest upstream leg
— required dwell time of four hours

e 2.8 liter (0.1 ft3) insertions on 4 hour centers
were begun
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The Denouement

» System hard packed after 15.7 liters (0.56 ft3)
of ammonia inserted (vs. 17.9 liter - 0.64 ft3
initial estimate)

— based on ATA quantity change

e System was ready to be restarted 4 days after
ammonia alarm event



Backup
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How Did We Know That There Was No Leak?

* Accumulator spike was not right

— instantaneous accumulator level change is indicative
of a large leak

— a large leak would have stroked the accumulator fully

* Parcs””Pires

 There was no instantaneous change in loop
pressure

— changes in gas cap accumulator quantity always result
in changes in loop pressure



Node 3 Endcone and Heat Exchangers
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INTERNATIONAL
SPACE STATION

e water values used directly
from vendor data

e ammonia values
developed from basic
principles

— pure laminar flow does not
allow for UA enhancement

from serpentine nature of
flow path

HX ORU FCA/PCA OVERVIEW
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Simplified Model Schematic
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Flowing IFHX Model Schematic
Normal operation

Water (boundary plena)
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IFHX
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Loop Configurations

Heat Rejection Subsystem
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