Deriving Safety Cases from Machine-Generated Proofs

Nurlida Basir and Bernd Fischer Ewen Denney
ECS, University of Southampton SGT, NASA Ames Research Center
S0O17 1BJ, U.K Mountain View, CA 94035, U.S.A
(nb206r, b.T1scher) @cs. soton. ac. uk Ewen. W Denney @asa. gov
Abstract

Proofs provide detailed justification for the validity ofagihs and are widely used in formal
software development methods. However, they are often napd difficult to understand, because
they use machine-oriented formalisms; they may also bedbas@ssumptions that are not justified.
This causes concerns about the trustworthiness of usinggiqroofs as arguments in safety-critical
applications. Here, we present an approach to developyszdses that correspond to formal proofs
found by automated theorem provers and reveal the undgrfyjumentation structure and top-level
assumptions. We concentrate on natural deduction prodfstamw how to construct the safety cases
by covering the proof tree with corresponding safety caagrfrents.

1 Introduction

Demonstrating the safety of large and complex softwarenAisitte systems requires marshalling large
amounts of diverse information, e.g., models, code or rma#ttieal equations and formulas. Obviously
tools supported by automated analyses are needed to thiklproblem. For the highest assurance
levels, these tools need to produckeaceable safety argumettiat shows in particular where the code as
well as the argument itself depend on any external assungpbot many techniques commonly applied
to ensure software safety do not produce enough usablereédge., justification for the validity of their
claims) and can thus not provide any further insights or@wgpts. In contrast, in formal software safety
certification |3], formal proofs are available as evidendewever, these proofs are typically constructed
by automated theorem provers (ATPs) based on machinetediemalculi such as resolution]10]. They
are thus often too complex and too difficult to understand;abse they spell out too many low-level
details. Moreover, the proofs may be based on assumptiasate not valid, or may contain steps
that are not justified. Consequently, concerns remain alsing these proofs asgumentgather than
just evidencein safety-critical applications. In this paper we addrdssse concerns by systematically
constructing safety cases that correspond to formal prfooisd by ATPs and explicitly highlight the use
of assumptions.

The approach presented here reveals and presents théspumaferlying argumentation structure
and top-level assumptions. We work with natural deductid®) proofs, which are closer to human
reasoning than resolution proofs. We explain how to cogsthe safety cases by covering the ND proof
tree with corresponding safety case fragments. The arguimdmilt in the same top-down way as the
proof: it starts with the original theorem to be proved asttpegoal and follows the deductive reasoning
into subgoals, using the applied inference rules as siesteg derive the goals. However, we abstract
away the obvious steps to reduce the size of the construafety sases. The safety cases thus provide
a “structured reading guide” for the proofs that allows sderunderstand the claims without having to
understand all the technical details of the formal proof hivaery. This paper is a continuation of our
previous work to construct safety cases from informatiolhected during the formal verification of the
code [2], but here we concentrate on the proofs rather themdtification process.

2 Formal Software Safety Certification

Formal software safety certificationses formal techniques based on program logics to showhbat t
program does not violate certain conditions during its exea [3]. A safety propertys an exact char-

E. Denney, T. Jensen (eds.); The 3rd International Workshop on Proof Carrying Code and Software Certification,

pp. 13{17

13

(nb206r,b.fischer)@ecs.soton.ac.uk
Ewen.W.Denney@nasa.gov

Deriving Safety Cases from Machine-Generated Proofs Bisicher and Denney

acterization of these conditions, based on the operatesrahntics of the programming language. Each
safety property thus describes a class of hazards. They safgierty is enforced by safety policyi.e.,
a set of verification rules that take initial set of safetyuiegments that formally represent the specific
hazards identified by a safety enginéér [8], and derive a mamiproof obligations. Showing the safety
of a program is thus reduced to formally showing the validifythese proof obligations: a program is
considered safe wrt. a given safety property if proofs fer¢brresponding safety proof obligations can
be found. Formally, this amounts to showiBgJ A = P = C for each obligation i.e., the formalization
of the underlyingdomain theory Dand a set oformal certification assumptions éntail a conjecture,
which consists of a set of premisBghat have to imply theafety condition C

The different parts of these proof obligations have différevels of trustworthiness, and a safety
case should reflect this. The hypotheses and the safetytimmdire inferred from the program by
a trusted software component implementing the safety yoliad their construction can already be
explained in a safety caskl [2]. In contrast, both the dontaory and the assumptions are manually
constructed artifacts that require particular care. Irtipalar, the safety case needs to highlight the use
of assumptions. These have been formulated in isolatiohdgafety engineer and may not necessatrily
be justified, and are possibly inconsistent with the domlagoty. Moreover, fragments of the domain
theory and the assumptions may be used in different contsatthe safety case must reflect which of
them are available at each context. By elucidating the réagdbehind the certification process and
drawing attention to potential certification problems réhis less of a need to trust the certification tools,
and in particular, the manually constructed artifacts.

3 Converting Natural Deduction Proofs into Safety Cases

Natural deduction(]6] systems consist of a collection ofgbmiles that manipulate logical formulas and
transform premises into conclusions. A conjecture is pnofrem a set of assumptions if a repeated
application of the rules can establish it as conclusion.eiHee focus on some of the basic rules; a full
exposition of the ND calculus can be found in the literati@ [

Conversion Process.ND proofs are simply trees that start with the conjectured@ioven as root, and
have given axioms or assumed hypotheses at each leaf. Eadbafaode is recursively justified by the
proofs that start with its children as new conjectures. Tihges between a node and all of its children
correspond to the inference rule applied in this proof st proof tree structure is thus a representation
of the underlying argumentation structure. We can use thepretation to present the proofssadety
cased[/]], which are structured arguments as well and representitkage between evidence (i.e., the
deductive reasoning of the proofs from the assumptionsaal#nived conclusions) and claims (i.e., the
original theorem to be proved). The general idea of the cmime from ND proofs to safety cases is
thus fairly straightforward. We consider the conclusioraagoal to be met; the premise(s) become(s)
the new subgoal(s). For each inference rule, we define aysedise template that represents the same
argumentation. The underlying similarity of proofs andetafcases has already been indicated in [7]
but as far as we know, this idea has never been fully exploregden been applied to machine-generated
proofs (see FigurEl 1 for some example rules and templatesk, e use the Goal Structuring Notation
[[7] as technique to explicitly represent the logical flow leé fproofs argumentation structure.

Implications. The implication elimination follows the general patterresdhed above but in the in-
troduction rule we again temporarily assurdeas hypothesis together with the list of other available
hypotheses, rather than deriving a proof for it. We then geeolcto deriveB, anddischargethe hypoth-
esis by the introduction of the implication. The hypothe&isan be used at given in the prove Bf
but the conclusio\ = B no longer depends on the hypotheAiafter B has been proved. In the safety
case fragment, we use a justification to record the use ofythethesisA, and thus to make sure that the

14

Deriving Safety Cases from Machine-Generated Proofs Bisicher and Denney

y

Suppose premise J1: {A} can be used

A=RB — e is true (=i) as hypothesis to subgoal (=>e)
3 = -e prove B

A=RB]
[reen][]
=>-Rules

Safety Case Templates for =>-Rules

Use implication to
reduce goal to new

o st
. Show for an T Show for all
Iy Lt arbitrary - Lisan domain J1: x can be
ﬂi- [t,\';’ J‘} gs VX - -1 W element of the arbltrary_ elements (Ue) replaced by ty
— V-1 V-2 domain (i) fresh obiect
x-A Al /x]

Safety Case Templates for O-Rules

Figure 1: Safety Case Templates for Natural Deduction Rules

introduced hypotheses are tracked properly.

Universal quantifiers. The ND proof rules for quantifiers focus on the replacementhef bound
variables with objects and vice versa. For example, in thmiehtion rule for universal quantifiers, we
can conclude the validity of the formula for any chosen daomme&ementt,. In the introduction rule,
however, we need to show it for an arbitary but fresh objgethat is, a domain element which does not
appear elsewhere i, A, or the domain theory and assumptions). If we can derive aff@oA, wherex

is replaced by the objett, we can then discharge this assumption by introduction efytiantifier. The
safety case fragments record this replacement as justiicalhe hypotheses available for the subgoals
in theV-rules are the same as those in the original goals.

4 Hypothesis Handling

An automated prover typically treats the domain thddrgnd the certification assumptioAss premises
and tries to derive\ (D UA) A P = C from an empty set of hypotheses. As the proof tree growsethes
premises will be turned into hypotheses, using-theintroduction rule (see Figufd 1). In all other rules,
the hypotheses are simply inherited from the goal to the callsg However, not all hypotheses will
actually be used in the proof, and the safety case shouldidfiglthose that are actually used. This is
particularly important for the certification assumptiohWde can achieve this by modifying the template
for the =- introduction (see FigurEl 2a). We can distinguish betwéenhlypotheses that are actually
used in the proof of the conclusion (denotedAy...,Ax) and those that are vacuously discharged by
the =- introduction (denoted b+ 1,..,A,). We can thus use two different justifications to mark this
distinction. Note that this is only a simplification of theepentation and does not change the structure
of the underlying proof, nor the validity of the original dodt is thus different from using aelevant
implication [1] under whichA = B is only valid if the hypothesis A is actually used.

In order to minimize the number of hypotheses tracked by #ietg case, we need to analyze the
proof tree from the leaves up, and propagate the hypothesesds the root. By revealing only these
used hypotheses as assumptions, the validity of their uderiving the proof can be checked more easily.
In our work, we also highlight the use of the external cewificn assumptions that have been formulated
in isolation by the safety engineer. For example, in Fiflrgt2e hypothesis hasnit(float 7_0e_minus 1,
angvel), meaning that a particular floating point variable esgmts an angular velocity, has been speci-

15

Deriving Safety Cases from Machine-Generated Proofs Bisicher and Denney

C1l:has_unit(float Hypothesis has_unit(float_7_0Oe_ Conclusion has_unit(float_7_0e_

. . B : €= . . R
H= Ar..OADAwD. Ay = B _7_0e_minus_1, minus_1,ang_vel) is valid | minus_1,ang_vel) is valid
ang_vel) is an 1
external !
hypothesis :
J1: {As,.., A} used to Argument over 1 Argument over J1: The
Suppose premises prove B establishment of : Muscadet conclusion
{A,..,A} are true hypothesis I stop_hyp_ rule is valid if the
(=) 32: {Aks1,...,An} not i :;yeglligeys
used to prove B !
Hypothesis is built by using '_ _ ___| The conclusion to be
ang_vel_7_0Oe_minus_1_rule proved is an external
‘ HU{As..A}|=B ‘ from the valid axiom hypothesis
(Axiom)
ang_vel_7_0
e minus 1
a) b)

Figure 2: Hypothesis Handling

Abstraction

G12: leq (3, 5)
S10: transitivity_leq

G12: leq (3, 5) Abstraction G12: leq (3, 5)
J1: Based on S10: Partial
S10: Partial order o order reasonin
reasoning :[ﬁgsltlvltyileq [¢]

J1: Based on
transitivity_leq,
leq_gtl, gt 5_4
andgt_4_3

[c13eq@5) || [c1alea 4 |
‘

! ' i]
‘ ‘ i [c13leq@5) | [clatea) !
S11: leq_gtl S13: leq_gtl | 1 ‘ ‘ | e o
- leq_g -leq_g | ' N N N N (axiom) (axiom)
3 J2: Based ! S11: Partial S12: Partial i J3: Based a5 4 ot 43
I [' on leq_gtl, 1 order order >| onleq_gtl,
‘ G15: gt (5, 4) ‘ G16: gt (4, 3) ‘ ' gt.5 4rules |! reasoning reasoning 1| gt_4_3rules
I I ! b '

i ! 1
Sl12:gt 5_4 S14:gt 4.3 ! e i 777777777777777777 l ,,,,,,,,,

i
' ¥ : S1: S2:
S1 s2 3 (axiom) (axiom)
. : t5 4 t4.3
(axiom) (axiom) : gts gt 4

gt 5_4 gt 4.3 !
i
i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3: Abstraction of Proof Safety Case

fied as external assumption. This is tracked properly in #fietg case, and its role in deriving the proofs
can be checked easily.

5 Proof Abstraction

We have applied our approach to proofs found by the Musc@&@Jehgorem prover during the formal
certification of the frame safety of a component of an atétadntrol system as an example. Muscadet is
based on ND, but to improve performance, it implements atadf derived rules in addition to the basic
rules of the calculus. This includes rules for dedicatecaétyuhandling, as well as rules that the system
builds from the definitions and lemmas, and that correspbadapplication of the given definitions and
lemmas. While these rules make the proofs shorter, thejelaumber makes the proofs also in turn
more difficult to understand. This partially negates theyioal goal of using a ND prover. We thus
plan to optimize the resulting proofs by removing some of llbek-keeping rules (e.g., retuproof)
that are not central to the overall argumentation struct@inilarly, we plan to collapse sequences of
identical book-keeping rules into a single node. In gendralvever, we try to restructure the resulting
proof presentation to help in emphasizing the essentiafmt@ps. In particular, we plan to group sub-
proofs that apply only axioms and lemmas from certain olwiparts of the domain theory (e.g., ground
arithmetic or partial order reasoning) and represent themsingle strategy application. Figlile 3 shows
an example of this. Here, the first abstraction step colafismsequences rooted in G13 and G14, noting
the lemmas which had been used as strategies as justifisationkeeping the branching that is typical
for the transitivity. A second step then abstracts this ansawell.

16

Deriving Safety Cases from Machine-Generated Proofs Bisicher and Denney

6 Conclusions

We have described an approach whereby a safety case is usetbtagctured reading” guide for the
safety proofs. Here, assurance is not implied by the trugténATPs but follows from the constructed
argument of the underlying proofs. However, the straigfod conversion of ND proofs into safety
cases turn out to be far from satisfactory as the proofs &ffgicontain too many details. In practice, a
superabundance of such details is overwhelming and uplikgbe of interest anyway so careful use of
abstraction is needed![5].

The work we have described here is still in progress. So farhave automatically derived safety
cases for the proofs found by Muscadet prover [9]. This wasknplements our previous workl[2]
where we used the high-level structure of annotation imfeeeto explicate the top-level structure of
such software safety cases. We consider the safety caserassadp towards a fully-fledged software
certificate management system [4]. We also believe thatesaarch will result in a comprehensive safety
case (i.e., for the program being certified the safety logia] the certification system) that will clearly
communicate the safety claims, key safety requirements,eaidence required to trust the software
safety.

Acknowledgements. This material is based upon work supported by NASA under ds/&CC2-1426 and
NNAO7BB97C. The first author is funded by the Malaysian Gaveent, IPTA Academic Training Scheme.

References

[1] A.R. Anderson and N. Belnajkntailment: the logic of relevance and necessRyinceton University Press,
1975.

[2] N. Basir, E. Denney, and B. Fischer. Constructing a Safidse for Automatically Generated Code from
Formal Program Verification Informatiotin SAFECOMP’08pages 249-262, 2008.

[3] E. Denney and B. Fischer. Correctness of Source-Levelt&olicies . InProc. FM 2003: Formal Methods
2003.

[4] E. Denney and B. Fischer. Software Certification and Bafe Certificate Management Systems (position
paper). Proceedings of the ASE Workshop on Software Certificate Emant Systems (SoftCeMent ;05)
pages 1-5, 2005.

[5] E. Denney, J. Power, and K. Tourlas. Hiproofs: A HieracehNotion of Proof Tree. IrProceedings of
the 21st Annual Conference on Mathematical Foundationsaji@mming Semantics (MFPS XX¥plume
155, pages 341 — 359, 2006.

[6] M. Huth and M. Ryan.Logic in Computer Science Modelling and Reasoning aboue8ysvolume 2nd
Edition. Cambridge University Press, 2004.

[7]1 T. P. Kelly. Arguing Safety - A Systematic Approach to Managing Safese€£#hD thesis, University of
York, 1998.

[8] N. G. LevesonSafeware: System Safety and Comput@ddison-Wesley, 1995.

[9] D. Pastre. MUSCADET 2.3: A Knowledge-Based Theorem EBrd®ased on Natural Deduction. IBCAR
pages 685-689, 2001.

[10] J. A. Robinson. A Machine-Oriented Logic Based on thed®ation Principle ACM, 1965.

17

