
PCC Framework for Program-Generators ∗

Soonho Kong Wontae Choi Kwangkeun Yi
Seoul National University

{soon,wtchoi,kwang}@ropas.snu.ac.kr

Abstract

In this paper, we propose a proof-carrying code framework for program-generators. The en-
abling technique is abstract parsing, a static string analysis technique, which is used as a component
for generating and validating certificates. Our framework provides an efficient solution for certify-
ing program-generators whose safety properties are expressed in terms of the grammar representing
the generated program. The fixed-point solution of the analysis is generated and attached with the
program-generator on the code producer side. The consumer receives the code with a fixed-point
solution and validates that the received fixed point is indeed a fixed point of the received code. This
validation can be done in a single pass.

1 Introduction

To certify the safety of a mobile program-generator, we need to ensure not only the safe execution of
the generator itself but also that of the generated programs. Safety properties of the generated programs
are specified efficiently in terms of the grammar representing the generated programs. For instance, the
safety property “generated programs should not have nested loops” can be specified and verified by the
reference grammar for the generated programs.

Recently, Doh, Kim, and Schmidt presented a powerful static string analysis technique called abstract
parsing [4]. Using LR parsing as a component, abstract parsing analyzes the program and determines
whether the strings generated in the program conform to the given grammar or not.

In this paper, we propose a Proof-Carrying Code (PCC) framework [8, 9] for program-generators.
We adapt abstract parsing to check the generated programs of the program-generators. With the gram-
mar specifying the safety property of the generated programs, the code producer abstract-parses the
program-generator and computes a fixed-point solution as a certificate. The code producer sends the
program-generator with the computed fixed-point solution. The code consumer receives the program-
generator accompanied with the fixed-point solution and validates that the received fixed point is indeed
the solution for the received program-generator. Our framework can be seen as an abstraction-carrying
code framework [1, 5] specialized to program-generators which is modeled by a two-staged language
with concatenation.

This work is, to our knowledge, the first to present a proof-carrying code framework that certifies
grammatical properties of the generated programs. Directly computing the parse stack information as a
form of the fixed-point solution, abstract parsing provides an efficient way to validate the certificates on
the code consumer side. In contrast to abstract parsing, the previous static string analysis techniques [3,
7, 2] approximate the possible values of a string expression of the program with a grammar and see
whether the approximated grammar is included in the reference grammar. This grammar inclusion check
takes too much time and makes those techniques difficult to be used as a validation component of a PCC
framework.

E. Denney, T. Jensen (eds.): The 3rd International Workshop on Proof Carrying Code and Software Certification,
volume 0, issue: 0, pp. 18-22

∗This work was supported by the Brain Korea 21 Project, School of Electrical Engineering and Computer Science, Seoul
National University in 2009 and the Engineering Research Center of Excellence Program of Korea Ministry of Education,
Science and Technology(MEST) / Korea Science and Engineering Foundation(KOSEF). (R11-2008-007-01002-0).

18

PCC Framework for Program-Generators Kong, Choi, and Yi

2 Language

For the further development of our idea, we consider a two-staged language with concatenation in which
program-generators can be modeled. The language is an imaginary, first-order language whose only
value is code. The language is minimal, so as not to distract our focus on static analysis. For exam-
ple, loops and conditional jumps are without the condition expression, for which abstract interpretation
anyway considers all iterations and all branches.

A program is an expression e:

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3 | ‘ f

An expression can contain code fragments f :

f ∈ Frag ::= x | let | or | re | (|) | f1. f2 | ,e

Operational semantics of the language is defined in Figure 3 (left).
Expression or e1 e2 is for branches. It could be the value of e1 or the value of e2. Expression

re x e1 e2 e3 is for loops. Variable x has the value of e1 as its initial value. Loop body e2 is iterated ≥ 0
times. The result of each iteration e2 will be bound to x in e2 for next iteration or in e3 for the result of
the loop. Backquote form ‘ f is for code fragment f . We construct the fragment by using the following
tokens: variables, let, or, re, (, and). Compound fragment f1. f2 concatenates two code fragments f1
and f2. Comma fragment ,e first evaluates e then substitutes its result code value for itself. Note that the
meaning of ‘ f and ,e is the same as in LISP’s quasi-quotation system.

3 Abstract Parsing

In our framework, we use abstract parsing [4] as a component to generate and validate the certificate.
Abstract parsing derives data-flow equations from the program and solves them in the parsing domain.
In [6], we formulated abstract parsing in the abstract interpretation framework.

The key idea of abstract parsing is an abstraction of code. Code c is abstracted into a parse-stack
transition function f = λ p.parse(p,c) where parse is a parsing function defined by an LR parser genera-
tor with the safety grammar G. This choice of abstraction is necessary to handle code concatenation x.y.
If abstracted functions for the code fragments x and y are fx = λ p.parse(p,x) and fy = λ p.parse(p,y)
respectively, an abstracted function for the code concatenation x.y is constructed by function composition
of fx and fy as fx.y = fy ◦ fx.

As illustrated in Figure 1, we take a series of abstraction steps for the value domain of the semantics.

2Code

−→

2P → 2P2P→P D! → D!

−→ −→Collecting
Semantics

Concrete
Parsing

Semantics

First Step
Abstraction
Semantics

Parameterized
Abstract
Parsing

Semantics

Figure 1: Series of abstraction steps for the value domain in semantics where P is the set of parse stacks.

Starting from the collecting semantics defined in Figure 3 (middle), each abstraction of the value
domain derives new abstract semantics.

19

PCC Framework for Program-Generators Kong, Choi, and Yi

To ensure the termination of the analysis, we need to provide an abstraction for the infinite height
domain 2P. Instead of using a particular abstract domain for 2P, we parameterize this abstract domain by
providing conditions which an abstract domain D] needs to satisfy.

1. D] should be a complete partial order (CPO).

2. D] is Galois connected with the set of parse stacks 2P.

3. An abstracted parsing function Parse action] is defined as a sound approximation of the parsing
function Parse action which is defined by the LR parser generator with the safety grammar G.

Finally, we derive the abstract parsing semantics for D] as in Figure 3 (right).
Given a program-generator e and an empty environment σ0, the analysis computes F = [[e]]0D]σ0

which is of type D] → D]. To determine whether the programs generated by a program-generator e
conform to the safety grammar, we check that the following equation holds:

F(α2P→D]({pinit})) = α2P→D]({pacc})

where pinit and pacc are the initial parse stack and accepting parse stack for the safety grammar G.

4 PCC Framework for Program-Generators

Figure 2 illustrates a PCC framework for program-generators, an abstraction-carrying code framework [1,
5] specialized to program-generators by means of abstract parsing. The code producer and code con-
sumers share the safety grammar which specifies the safety properties of the generated programs.

Program-Generator Abstract
 Parser

Received
Program-Generator

Safety
Grammar

Code
Producer

Code
Consumer

Send

Receive Receive

Fixed Point

Send

Fixed Point
Checker

Figure 2: A proof-carrying code framework for program-generators.

The code producer proves the safety of the program-generator by abstract parsing with the shared
safety grammar. In a complex and iterative process, the analysis computes a fixed-point solution. This
solution is used as a certificate for the safety of the program-generator. The code producer uploads or
sends the program-generator with the computed fixed-point solution.

The code consumer downloads or receives the untrusted program-generator and its attached fixed-
point solution. The code consumer validates that the received fixed-point solution is indeed a fixed-point
solution of the received program-generator. In contrast to the computing a fixed-point solution on the
code producer side, checking can be done in a single pass.

20

PCC Framework for Program-Generators Kong, Choi, and Yi

5 Issues

The proposed framework addresses two fundamental PCC issues.

1. The certificate, a fixed-point solution for the program-generator, is generated automatically by
abstract parsing.

2. Checking procedure on the code consumer side is done efficiently by validating the received fixed-
point solution.

However, we have several issues for further investigation.

1. Size of the certificate: We are not sure that the size of the fixed-point solution which our framework
generates is small enough for the mobile platform. However, there are some ideas on reducing the
size of certificates. First, the certificate can be compressed. Abstract parsing uses an abstract parse
stack as a component of the value domain. Since a parse stack is a string of characters from a
pre-defined finite alphabet, an appropriate compression algorithm can be used to reduce the size of
fixed-point solution. Second, some parts of the certificate could be deleted as long as their recovery
takes linear time to the size of the received code.

2. Size of the trust base: Similar to other abstraction-carrying code frameworks, the certificate checker
of our framework is almost as complex as the certificate generator. It is essential to simplify the
certificate checker to reduce the size of the trust base.

References
[1] E. Albert, G. Puebla, and M. Hermenegildo. Abstract interpretation-based approach to mobile code safety. In

Proceedings of Compiler Optimization meets Compiler Verification, 2004.
[2] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh. A practical string analyzer by the widen-

ing approach. In Proceedings of the Asian Symposium on Programming Languages and Systems, volume 4729
of Lecture Notes in Computer Science, pages 374–388, Sydney, Austrailia, November 2006. Springer-Verlag.

[3] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise analysis of string expressions.
In Proceedings of the Static Analysis Symposium, pages 1–18. Springer-Verlag, 2003.

[4] Kyung-Goo Doh, Hyunha Kim, and David Schmidt. Abstract parsing: static analysis of dynamically generated
string output using LR-parsing technology. In Proceeeding of the International Static Analysis Symposium,
2009. Available from http://santos.cis.ksu.edu/schmidt/dohsas09.pdf.

[5] Manuel V. Hermenegildo, Elvira Albert, Pedro López-Garcı́a, and Germán Puebla. Abstraction carrying code
and resource-awareness. In Proceedings of the ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, pages 1–11, New York, NY, USA, 2005. ACM.

[6] Soonho Kong, Wontae Choi, and Kwangkeun Yi. Abstract parsing for two-staged languages with concatena-
tion. In Proceeeding of the International Conference on Generative Programming and Component Engineer-
ing, 2009. Available from http://ropas.snu.ac.kr/∼soon/paper/gpce09.pdf.

[7] Yasuhiko Minamide. Static approximation of dynamically generated web pages. In Proceedings of the Inter-
national Conference on World Wide Web, pages 432–441, New York, NY, USA, 2005. ACM.

[8] George C. Necula. Proof-carrying code. In Proceedings of The ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 106–119, New York, NY, USA, 1997. ACM.

[9] George C. Necula and Peter Lee. The design and implementation of a certifying compiler. In Proceedings
of the SIGPLAN Conference on Programming Language Design and Implementation, pages 333–344, New
York, NY, USA, 1998. ACM.

21

http://santos.cis.ksu.edu/schmidt/dohsas09.pdf
http://ropas.snu.ac.kr/~soon/paper/gpce09.pdf

PCC Framework for Program-Generators Kong, Choi, and Yi

PC
C

Fram
ew

ork
forProgram

-G
enerators

K
ong,C

hoi,and
Y

i

σ
∈

Env
=

Var→
C

ode
v∈

C
ode

=
Token

sequence
e∈

Exp
f∈

Frag

σ
#

0
e⇒

v

σ
#

0
x⇒

σ
(x)

(variable)

σ
#

0
e1 ⇒

v
σ

[x%→
v]#

0
e2 ⇒

v ′

σ
#

0
let

xe1 e2 ⇒
v ′

(letbinding)

σ
#

0
e1 ⇒

v
σ
#

0
or

e1 e2 ⇒
v

σ
#

0
e2 ⇒

v
σ
#

0
or

e1 e2 ⇒
v

(branch)

σ
#

0
e1 ⇒

v
σ

[x%→
v]#

0
loop

xe2 e3 ⇒
v ′

σ
#

0
re

xe1 e2 e3 ⇒
v ′

(loop)

σ
#

0
e2 ⇒

v
σ

[x%→
v]#

0
loop

xe2 e3 ⇒
v ′

σ
#

0
loop

xe2 e3 ⇒
v ′

σ
#

0
e3 ⇒

v
σ
#

0
loop

xe2 e3 ⇒
v

σ
#

1
f⇒

v
σ
#

0
‘

f⇒
v

(back
quote)

σ
#

1
f⇒

v

σ
#

1
x⇒

x
σ
#

1
let

⇒
let

σ
#

1
or
⇒

or
(token)

σ
#

1
re
⇒

re
σ
#

1
(
⇒

(
σ
#

1
)
⇒

)

σ
#

1
f1 ⇒

v1
σ
#

1
f2 ⇒

v2
σ
#

1
f1 .f2 ⇒

v1 v2
(concatenation)

σ
#

0
e⇒

v
σ
#

1
,e⇒

v
(com

m
a)

Figure
1:O

perationalsem
antics

ofthe
language.

2.
C

om
pute

Fixed
Point

Solution:
The

code
producer

proves
the

saftey
of

the
program

-generator
by

abstractparsing
w

ith
the

shared
safety

gram
m

ar.
In

a
com

plex
and

iterative
process,analysis

com
putes

fixed
point

solution.
This

solution
is

used
as

a
proof

for
the

safety
of

the
program

-
generator.

3

PC
C

Fram
ew

ork
forProgram

-G
enerators

K
ong,C

hoi,and
Y

i

σ
∈

Env
=

Var→
C

ode
v∈

C
ode

=
Token

sequence
e∈

Exp
f∈

Frag

σ
#

0
e⇒

v

σ
#

0
x⇒

σ
(x)

(variable)

σ
#

0
e1 ⇒

v
σ

[x%→
v]#

0
e2 ⇒

v ′

σ
#

0
let

xe1 e2 ⇒
v ′

(letbinding)

σ
#

0
e1 ⇒

v
σ
#

0
or

e1 e2 ⇒
v

σ
#

0
e2 ⇒

v
σ
#

0
or

e1 e2 ⇒
v

(branch)

σ
#

0
e1 ⇒

v
σ

[x%→
v]#

0
loop

xe2 e3 ⇒
v ′

σ
#

0
re

xe1 e2 e3 ⇒
v ′

(loop)

σ
#

0
e2 ⇒

v
σ

[x%→
v]#

0
loop

xe2 e3 ⇒
v ′

σ
#

0
loop

xe2 e3 ⇒
v ′

σ
#

0
e3 ⇒

v
σ
#

0
loop

xe2 e3 ⇒
v

σ
#

1
f⇒

v
σ
#

0
‘

f⇒
v

(back
quote)

σ
#

1
f⇒

v

σ
#

1
x⇒

x
σ
#

1
let

⇒
let

σ
#

1
or
⇒

or
(token)

σ
#

1
re
⇒

re
σ
#

1
(
⇒

(
σ
#

1
)
⇒

)

σ
#

1
f1 ⇒

v1
σ
#

1
f2 ⇒

v2
σ
#

1
f1 .f2 ⇒

v1 v2
(concatenation)

σ
#

0
e⇒

v
σ
#

1
,e⇒

v
(com

m
a)

Figure
1:O

perationalsem
antics

ofthe
language.

2.
C

om
pute

Fixed
Point

Solution:
The

code
producer

proves
the

saftey
of

the
program

-generator
by

abstractparsing
w

ith
the

shared
safety

gram
m

ar.
In

a
com

plex
and

iterative
process,analysis

com
putes

fixed
point

solution.
This

solution
is

used
as

a
proof

for
the

safety
of

the
program

-
generator.

3

PC
C

Fram
ew

ork
forProgram

-G
enerators

K
ong,C

hoi,and
Y

i

2
C
o
d
e

−→

2
P
→

2
P

2
P
→

P
D

!→
D

!

−→
−→

C
ollecting

Sem
antics

C
oncrete

P
arsing

Sem
antics

F
irst

Step
A

bstraction
Sem

antics

P
aram

eterized
A

bstract
P
arsing

Sem
antics

Figure
2:Series

ofabstraction
steps

forthe
value

dom
ain

in
sem

antics

C
ode

=
Token

sequence
σ
∈

Env
=

Var→
C

ode

[[e]] 0∈
2

Env→
2

C
ode

(stage-0
sem

antics)

[[f]] 1∈
2

Env→
2

C
ode

(stage-1
sem

antics)

[[x]] 0Σ
=

{σ
(x)|σ

∈
Σ}

[[let
x

e1
e2]] 0Σ

=
⋃σ
∈Σ

⋃

c∈
[[e1]] 0{σ

} [[e2]] 0{σ
[x#→

c]}

[[or
e1

e2]] 0Σ
=

[[e1]] 0Σ
∪

[[e2]] 0Σ

[[re
x

e1
e2

e3]] 0Σ
=

⋃σ
∈Σ [[e3]] 0{σ

[x#→
c]|c∈

fixλC
.[[e1]] 0{σ

}∪
[[e2]] 0{σ

[x#→
c ′]|c ′∈

C
}}

[[‘
f]] 0Σ

=
[[f]] 1Σ

[[x]] 1Σ
=

{x}
[[let]] 1Σ

=
{let}

[[or]] 1Σ
=

{or}
[[re]] 1Σ

=
{re}

[[(]] 1Σ
=

{(}
[[)]] 1Σ

=
{)}

[[f1 .f2]] 1Σ
=

⋃σ
∈Σ {xy|x∈

[[f1]] 1{σ
}∧

y∈
[[f2]] 1{σ

}}

[[,e]] 1Σ
=

[[e]] 0Σ

Figure
3:C

ollecting
sem

antics
ofthe

language.

3.
Send

Fixed
Point

Solution
:

The
code

producer
uploads

or
sends

the
program

-generator
w

ith
com

puted
fixed

pointsolution.

4.
R

eceive
Fixed

PointSolution
:The

code
consum

erdow
nloads

orreceives
the

untrusted
program

-
generatorand

its
attached

fixed
pointsolution.

5.
C

heck
Fixed

PointSolution
:

The
code

consum
erchecks

thatthe
received

fixed
pointsolution

is
indeed

fixed
pointsolution

ofthe
received

program
-generator.

In
contrastto

the
com

puting
fixed

4

PC
C

Fram
ew

ork
forProgram

-G
enerators

K
ong,C

hoi,and
Y

i

2
C
o
d
e

−→

2
P
→

2
P

2
P
→

P
D

!→
D

!

−→
−→

C
ollecting

Sem
antics

C
oncrete

P
arsing

Sem
antics

F
irst

Step
A

bstraction
Sem

antics

P
aram

eterized
A

bstract
P
arsing

Sem
antics

Figure
2:Series

ofabstraction
steps

forthe
value

dom
ain

in
sem

antics

C
ode

=
Token

sequence
σ
∈

Env
=

Var→
C

ode

[[e]] 0∈
2

Env→
2

C
ode

(stage-0
sem

antics)

[[f]] 1∈
2

Env→
2

C
ode

(stage-1
sem

antics)

[[x]] 0Σ
=

{σ
(x)|σ

∈
Σ}

[[let
x

e1
e2]] 0Σ

=
⋃σ
∈Σ

⋃

c∈
[[e1]] 0{σ

} [[e2]] 0{σ
[x#→

c]}

[[or
e1

e2]] 0Σ
=

[[e1]] 0Σ
∪

[[e2]] 0Σ

[[re
x

e1
e2

e3]] 0Σ
=

⋃σ
∈Σ [[e3]] 0{σ

[x#→
c]|c∈

fixλC
.[[e1]] 0{σ

}∪
[[e2]] 0{σ

[x#→
c ′]|c ′∈

C
}}

[[‘
f]] 0Σ

=
[[f]] 1Σ

[[x]] 1Σ
=

{x}
[[let]] 1Σ

=
{let}

[[or]] 1Σ
=

{or}
[[re]] 1Σ

=
{re}

[[(]] 1Σ
=

{(}
[[)]] 1Σ

=
{)}

[[f1 .f2]] 1Σ
=

⋃σ
∈Σ {xy|x∈

[[f1]] 1{σ
}∧

y∈
[[f2]] 1{σ

}}

[[,e]] 1Σ
=

[[e]] 0Σ

Figure
3:C

ollecting
sem

antics
ofthe

language.

3.
Send

Fixed
Point

Solution
:

The
code

producer
uploads

or
sends

the
program

-generator
w

ith
com

puted
fixed

pointsolution.

4.
R

eceive
Fixed

PointSolution
:The

code
consum

erdow
nloads

orreceives
the

untrusted
program

-
generatorand

its
attached

fixed
pointsolution.

5.
C

heck
Fixed

PointSolution
:

The
code

consum
erchecks

thatthe
received

fixed
pointsolution

is
indeed

fixed
pointsolution

ofthe
received

program
-generator.

In
contrastto

the
com

puting
fixed

4

PC
C

Fram
ew

ork
forProgram

-G
enerators

K
ong,C

hoi,and
Y

i

σ
∈

EnvD
! =

Var→
V

!

[[e]] 0D
! ∈

EnvD
! →

V
!

(stage-0
abstractsem

antics)

[[f]] 1D
! ∈

EnvD
! →

V
!

(stage-1
abstractsem

antics)

[[x]] 0D
! σ

=
σ

(x)

[[let
x

e1
e2]] 0D

! σ
=

[[e2]] 0D
! (σ

[x#→
[[e1]] 0D

! σ
])

[[or
e1

e2]] 0D
! σ

=
[[e1]] 0D

! σ
$

[[e2]] 0D
! σ

[[re
x

e1
e2

e3]] 0D
! σ

=
[[e3]] 0D

! (σ
[x#→

fixλ
k.[[e1]] 0D

! σ
$

[[e2]] 0D
! (σ

[x#→
k])])

[[‘
f]] 0D

! σ
=

[[f]] 1D
! σ

[[t]] 1D
! σ

=
λ

D
.Parse

action
!(D

,t)

[[f1 .f2]] 1D
! σ

=
[[f2]] 1D

! σ
◦[[f1]] 1D

! σ
[[,e]] 1D

! σ
=

[[e]] 0D
! σ

Figure
4:A

bstractparsing
sem

antics
ofthe

language.

P
ro

g
ra

m
-G

e
n

e
ra

to
r

A
b

s
tra

c
t

 P
a

rs
e

r

R
e

c
e

iv
e

d
P

ro
g

ra
m

-G
e

n
e

ra
to

r

S
a

fe
ty

G
ra

m
m

a
r

C
o

d
e

P

ro
d

u
c
e

r

C
o

d
e

C

o
n

s
u

m
e

r

S
e

n
d

R
e

c
e

iv
e

R
e

c
e

iv
e

F
ix

e
d

 P
o

in
t

S
e

n
d

F
ix

e
d

 P
o

in
t

C
h

e
c
k
e

r

Figure
5:A

proof-carrying
code

fram
ew

ork
forprogram

-generators

pointsolution
in

the
code

producerside,checking
can

be
done

in
a

single
pass.

5
Issues

The
proposed

fram
ew

ork
addresses

tw
o

fundam
entalPC

C
issues.

1.
The

certificates,a
fixed

pointsolution
for

the
program

-generator,is
generated

autom
atically

by
abstractparsing.

2.
C

hecking
procedure

on
the

code
consum

erside
isdone

efficiently
by

verifying
received

fixed
point

5

PC
C

Fram
ew

ork
forProgram

-G
enerators

K
ong,C

hoi,and
Y

i

σ
∈

EnvD
! =

Var→
V

!

[[e]] 0D
! ∈

EnvD
! →

V
!

(stage-0
abstractsem

antics)

[[f]] 1D
! ∈

EnvD
! →

V
!

(stage-1
abstractsem

antics)

[[x]] 0D
! σ

=
σ

(x)

[[let
x

e1
e2]] 0D

! σ
=

[[e2]] 0D
! (σ

[x#→
[[e1]] 0D

! σ
])

[[or
e1

e2]] 0D
! σ

=
[[e1]] 0D

! σ
$

[[e2]] 0D
! σ

[[re
x

e1
e2

e3]] 0D
! σ

=
[[e3]] 0D

! (σ
[x#→

fixλ
k.[[e1]] 0D

! σ
$

[[e2]] 0D
! (σ

[x#→
k])])

[[‘
f]] 0D

! σ
=

[[f]] 1D
! σ

[[t]] 1D
! σ

=
λ

D
.Parse

action
!(D

,t)

[[f1 .f2]] 1D
! σ

=
[[f2]] 1D

! σ
◦[[f1]] 1D

! σ
[[,e]] 1D

! σ
=

[[e]] 0D
! σ

Figure
4:A

bstractparsing
sem

antics
ofthe

language.

P
ro

g
ra

m
-G

e
n

e
ra

to
r

A
b

s
tra

c
t

 P
a

rs
e

r

R
e

c
e

iv
e

d
P

ro
g

ra
m

-G
e

n
e

ra
to

r

S
a

fe
ty

G
ra

m
m

a
r

C
o

d
e

P

ro
d

u
c
e

r

C
o

d
e

C

o
n

s
u

m
e

r

S
e

n
d

R
e

c
e

iv
e

R
e

c
e

iv
e

F
ix

e
d

 P
o

in
t

S
e

n
d

F
ix

e
d

 P
o

in
t

C
h

e
c
k
e

r

Figure
5:A

proof-carrying
code

fram
ew

ork
forprogram

-generators

pointsolution
in

the
code

producerside,checking
can

be
done

in
a

single
pass.

5
Issues

The
proposed

fram
ew

ork
addresses

tw
o

fundam
entalPC

C
issues.

1.
The

certificates,a
fixed

pointsolution
for

the
program

-generator,is
generated

autom
atically

by
abstractparsing.

2.
C

hecking
procedure

on
the

code
consum

erside
isdone

efficiently
by

verifying
received

fixed
point

5

Figure
3:O

perationalsem
antics,collecting

sem
antics,and

abstractparsing
sem

antics
ofthe

language.

22

