
Assurance Cases for Proofs as Evidence
Sagar Chaki Arie Gurfinkel Kurt Wallnau Charles Weinstock

Software Engineering Institute, Carnegie Mellon University
Pittsburgh, PA

{chaki|arie|kcw|weinstock}@sei.cmu.edu

Abstract

Proof-carrying code (PCC) provides a “gold standard” for establishing formal and objective con-
fidence in program behavior. However, in order to extend the benefits of PCC – and other formal
certification techniques – to realistic systems, we must establish the correspondence of a mathemat-
ical proof of a program’s semantics and its actual behavior. In this paper, we argue that assurance
cases are an effective means of establishing such a correspondence. To this end, we present an assur-
ance case pattern for arguing that a proof is free from various proof hazards. We also instantiate this
pattern for a proof-based mechanism to provide evidence about a generic medical device software.

1 Introduction

Today’s information-based society is dependent on software for its well-being. Software is ubiquitous
and invisible in everything from entertainment to critical infrastructure; “out of sight, out of mind”
describes current public sentiment about this dependence. Moreover, software components are being
interconnected in ways that were never anticipated, or in some cases intended. The adverse effects of
software failures resulting from this increased coupling are difficult to contain. Software development has
become a commodity service, and software supply chains span the globe; the provenance of any complex
software package is, and will likely remain, unknown. Thus, there is an urgent and well recognized need
for justifiable confidence that software will behave as intended by the consumer. Moreover, the source
of this confidence must be the software artifact itself, and not the identity of, or the processes used by,
the software producer. Known provenance and processes are useful, but are not always available to
consumers, and do not guarantee acceptable behavior.

Proof-carrying code (PCC) [9] is a “gold standard” for establishing justifiable confidence in program
behavior, and has been the epicenter of many recent technical advancements. For example, Chaki et al.
have developed [3] a certifying model checker (CMC) and associated machinery to produce PCC against
any linear temporal logic (LTL) specification. However, in order to extend the benefits of PCC, and other
formal technologies, to large complex systems, we must establish correspondence of a mathematical
proof within a formal system and the behavior that is exhibited in the real world. In this paper, we argue
that assurance cases [5] (or cases, for short) provide an effective solution to this correspondence problem.
An assurance case is a structured argument that a claimed system-level property has been achieved.
Assurance cases employ defeasible reasoning, where a premise (ultimately, evidence) usually implies a
conclusion. Defeasible reasoning offers an intermediate ground between formal notions of soundness
and completeness and the intrinsic uncertainty and incompleteness of any large scale, complex system.

We present an assurance case pattern for arguing that any formal proof is free from various hazards to
proof validity. Our pattern handles proof hazards arising from the use of the formal technology (did we
model the right behavior?), as well as from the technology itself (do we trust the theorem prover?). Our
approach has several benefits. First, it captures, in pattern form, a variety of threats to the validity of any
formal evidence, in effect normalizing and improving the quality of such evidence. Second, the pattern
can be extended to argue about the benefits of specific technologies, for example to show why PCC allows
us to eliminate model checkers, theorem provers, and even compilers from the trusted computing base.
Finally, case patterns and their instances are amenable to being expressed in precise notation, recorded,
shared, reviewed, and revised. We demonstrate the effectiveness of our case pattern by instantiating it for

E. Denney, T. Jensen (eds.): The 3rd International Workshop on Proof Carrying Code and Software Certification,
volume 0, issue: 0, pp. 23-28

23

Assurance Cases for Proofs as Evidence Chaki, Gurfinkel, Wallnau, Weinstock

C: Property <X>: Property <X> holds (for the actual system)
Ev: Proof: Proof of property <X>, e.g, results of model checking various safety and liveness properties on a state machine model of the system

C: Software <S> satisfies desired safety policies <P>

C0: Property: Assertion <X> is never violated S0: Prove absence of assertion failures Ctx0: This is a safety property. It can be reduced to a set of program assertions.
S1: Certificate Hazards: Argue over the various ways in which the certificate could be wrong

Ctx1: Certificate

Hazards. Unrecognized assumptions, invalid assumptions, modeling abstraction error, unsound proof logic, implementation inconsistent with model
C1: Assumptions

valid: All assumptions relevant to the certificate are valid C2: Sufficiently accurate model: The model used in the certificate is sufficiently accurate to justify the certificate’s conclusions in the real world C3: Sound proof: The chain of logic in the proof <Pr> is sound
C4: Implementation

and model are

consistent: The implementation is consistent with the model
Ev0: Safety

Theorem: If there exists an Invariant with a valid VC, then the assertion <X> is never violated Ev1:

Certificate: Invariant <I> and Proof <Pr> of Verification Condition
Figure 1: (Left) GSN notation; (Right) top-level GIP assurance case pattern.

a specific application of CMC and PCC technology to provide evidence about software in a hypothetical
infusion pump. Our results are preliminary, but encouraging. We believe that, ultimately, such use of
cases improves the transitionability of formal techniques to practical situations.

2 Assurance Cases and Infusion Pump Scenario

An assurance case uses a claims-argument-evidence structure to demonstrate the truth of some assertion.
It consists of a top-level claim supported by subclaims. Each subclaim is further decomposed into sub-
subclaims, and so on, until a claim is directly supported by evidence, i.e., data that is sufficient to support
a claim without further argument. Typical examples of evidence are test results, analyses, information
about the competency of personnel, etc. The quality of the case (i.e., its soundness and the extent to
which it is convincing in supporting its top-level claim) depends on the claim structure and the quality of
the presented evidence.

An assurance case is an example of defeasible reasoning, i.e., reasoning where “the correspond-
ing argument is rationally compelling but not deductively valid ... the relationship of support between
premises and conclusion is a tentative one, potentially defeated by additional information” [10]. The
logical form of a defeasible inference is: if E then(usually) C unless R,S,T, etc. In other words, claim
C follows from evidence E, unless this inference is invalidated by deficiencies R, S, T , etc. The set of
deficiencies is never completely known. Even if we argue ¬R, ¬S, and ¬T , new information (e.g., U)
could invalidate the E ⇒ C inference, or the demonstration of, say, ¬R. Therefore, confidence in C is
improved by capturing as many deficiencies as possible, and showing their absence.

Infusion Pump Scenario. An infusion pump infuses fluids, medication or nutrients into a patient’s
circulatory system. Our case study involves a Generalized Infusion Pump (GIP), which includes a built-
in drug library. The drug library contains a list of drugs, and, for each drug, the following: (a) drug name,
(b) drug concentration, and (c) for each clinical setting, the soft (and hard) minimum (and maximum)
allowed infusion rates. The acceptable infusion rate in an emergency environment may be significantly
higher than that in a patient room. The acceptable infusion rate for an adult may be significantly higher
than for an infant. The GIP consults the drug library when the caregiver is programming an infusion.

We assume the following scenario: (i) the GIP uses an established software and hardware architec-

24

Assurance Cases for Proofs as Evidence Chaki, Gurfinkel, Wallnau, Weinstock

C1: Assumptions valid: All assumptions relevant to the certificate are valid
C5: Assumptions identified: All assumptions relevant to the certificate’s identity have been identified C6: No invalid assumptions: Every identified assumption used in the certificate is valid for the actual system

C7: Assumption valid: <Assumption i> is valid i = 1 ... n
C8: Past Experience: In similar systems, <Assumption i> has proven to be valid

C9: Assumption

Analysis: <Assumption i> is proven to be valid C10: Defensive check: <Assumption i> is validated at runtime by the implementation C11: Failure Analysis: No test failures invalidates <Assumption i>
Ev2: Experience

Ev3: Analysis Results Ev4: Code review results Ev5: Failure Analysis Results
Must be expanded further one or more

C2: Sufficiently accurate model: The model used in the certificate is sufficiently accurate to justify the certificate’s conclusions in the real world Ctx2: Sufficiently accurate: Aspects ignored by the model used in the proof do not invalidate the proofs conclusion
C12: VC-Gen correctness: Model <M> of program execution used by the VC generator <G> is sufficiently accurate

C14: Past

Experience: Previous uses of <G> have not revealed any inaccuracies in its model
Ev7: Experience

C16: Testing: No test failure invalidates <M>. Test cases used are adequate.
Ev9: Testing results

C17: Mechanical

proving: The correctness of <M> has been proved manually.
Ev10: Manually generated proofs

C13: Logical

Consistency: The logic <L> used by <G> is believed to be consistent
Ev6: Scrutiny and Peer-review results

C15: Human review: Results of human review of the code show that <G> models the hardware instruction set semantics correctly
Ev8: Code review results

Figure 2: Case patterns for “assumptions valid” (top) and “sufficiently accurate model” (bottom).

ture, (ii) the GIP software is supplied by third parties, and (iii) the GIP manufacturer requires certifiable
assurance that the delivered GIP software satisfies the following three (publicly specified) safety poli-
cies: (P1) if the infusion rate of the selected drug is within the soft bounds appropriate to the setting, the
GIP accepts the programming; (P2) if the infusion rate is outside of the soft bounds but within the hard
bounds the GIP accepts the programming only after a warning and a required override by the caregiver;
(P3) the GIP cannot be programmed with an infusion rate outside of the hard bounds.

3 GIP Assurance Case Pattern and Instantiation

We use the graphical goal structuring notation (GSN) [5] to express assurance cases. Fig. 1(left) shows, in
GSN, the case that “property <X>” holds because there is a proof of the property. Specifically, “property
<X> holds” is the claim, and “Proof of property <X>” is the evidence presented in support of this claim.
A rectangle indicates a claim, always phrased as a predicate. A circle (or ellipse) indicates evidence
(always stated in a noun phrase), and the arrow linking the claim to the evidence implies that the claim is
supported by the evidence. The little triangles at the bottom of the rectangle and circle indicate that the
claim and evidence are generic and need to be instantiated when this pattern is applied. Angled brackets
(<>) characterize what is to be instantiated. In the remaining cases, we omit such triangles when there is
an explicit <X> to be instantiated. Also, we use the following additional GSN features. A parallelogram

25

Assurance Cases for Proofs as Evidence Chaki, Gurfinkel, Wallnau, Weinstock

C3: Sound proof: The chain of logic in the proof <Pr> is sound
Ev14: Checker Validation: Validation evidence

Ev13: Review

Results: Results of proof review, showing items checked, experience of reviewers, etc.
C19: Mechanical check: A (mechanical) proof checker <C> has confirmed the validity of <Pr> C18: Validated prover. The <T> tool used to create the proofs is known to produce valid proofs

Ev11: Experience
C23: Past Experience: Previous uses of <C> has not revealed any errors in its operation

Ev15: Experience

C20: Human review: External reviewers have confirmed the soundness of <Pr>
C21: Reliable proof checker: <C> can be relied on to detect invalid proofs

Ev12: Checker

Results: Results from <C> C22: Validated checker: <C> has been validated
S2: Checker hazards. Argue over possible shortcomings in validating <C>.

C24: Testing: No test failures indicate errors in <C>. Test cases used are adequate.
Ev16: Testing results C25: Human review: Results of human code review have not unearthed any checker errors in <C>.

Ev17: Code review results

one or more

C4: Implementation and model are consistent: The implementation is consistent with the model Ctx3: Model of program execution used by compiler and VC generator
C26: Model of program execution used by the compiler <Co> and VC generator <G> are sufficiently similar
C27: Testing: No test failures differentiate between program execution models used by <Co> and <G>. Test cases used are adequate.

Ev18: Testing results C28: Human review: Results of human review of the code show conformance between execution models used by <Co> and <G>
Ev19: Code review results C29: Mechanical proving: Correspondence between <G>’s model and <Co>’s model has been proved mechanically

Ev20: Manually generated proofs
Figure 3: Case patterns for “sound proof” (top) and “implementation and model are consistent” (bottom).

refers to a strategy, while a rounded rectangle refers to a context. Empty diamonds refer to parts that
have been left out, but must be expanded further. Solid diamonds refer to a choice between various
alternatives. A solid circle denotes iteration.

Fig. 1(right) shows, in GSN, the top-level assurance case pattern for the generic claim “Software <S>
satisfies desired safety policies <P>”. It leaves the following four sub-claims to be expanded further:
(C1) assumptions valid, (C2) sufficiently accurate model, (C3) sound proof, and (C4) implementation
and model are consistent. The case pattern for (C1) and (C2) are shown in Fig. 2. Note that the case
for (C1) has a sub-claim “assumptions identified” that we do not expand further for brevity. The case
patterns for (C3) and (C4) are shown in Fig. 3.

Certification Mechanism. We consider a specific certification mechanism, called PCCCMC, that uses
a combination of PCC and CMC to provide formal evidence of safe runtime behavior of programs [3].
The input to PCCCMC is a C program P containing an assertion ASRT. The output is a proof-certificate
consisting of an invariant INVAR and a proof PROOF. Let P be the GIP software such that ASRT enforces
the desired safety policies P1–P3. Then a run of PCCCMC on P consists of the following steps: (i)
INVAR is generated using a certifying software model checker CMC; (ii) a verification condition VC is

26

Assurance Cases for Proofs as Evidence Chaki, Gurfinkel, Wallnau, Weinstock

generated using weakest preconditions by a VCGEN tool; intuitively, VC is a logical formula in a suitable
logic L expressing that INVAR is inductive and implies ASRT; (iii) PROOF is generated by checking the
validity of VC using a proof-generating theorem prover PROVER, (iv) PROOF is checked via a CHECKER.
The correctness of PCCCMC relies on the “safety theorem” which basically states that P does not violate
ASRT at runtime if there exists an INVAR for which the VC is valid.

Pattern Instantiation. We now instantiate our assurance case patterns in the context of PCCCMC. In
the top-level pattern (see Fig. 1) we instantiate S with the GIP Software, P with P1–P3, and X with ASRT.
Also, we instantiate I with INVAR, and P by PROOF. In the pattern for C1, we identify and instantiate as
many assumptions as possible that are relevant to the certificate. In the pattern for C2, we instantiate G by
VCGEN, M by the execution semantics of the GIP Software used by VCGEN, and L by L . In the pattern
for C3, we instantiate P by PROOF, T by PROVER, and C by CHECKER. Finally, in the pattern for C4, we
instantiate G by VCGEN and C by COMPILER used to compile the GIP software before deployment.

Related Work. Kelly [5] provides more information on assurance cases and GSN. Weaver [11] doc-
uments the use of assurance cases (and case patterns) in software. Assurance cases have been used to
address system safety [6], and to justify safety and dependability claims [7]. Arney et al. have developed
a set of requirements and a hazard analysis for a generic infusion pump [1]. Goodenough and Wein-
stock [4] explore demonstrating the quality of the evidence in an assurance case, and using assurance
cases for medical devices [12]. Basir et al. [2] have looked at automatically generating safety cases from
the formal annotations used to construct Hoare-style proofs of program correctness. Our approach is less
automated, but potentially applicable to a wider class of proof-generation techniques. PCC [9] was intro-
duced by Necula and Lee and provides an effective means for providing objective evidence of memory
safety properties of low-level. CMC [8] aims to generate proof-certificates by extending model checking
algorithms. Chaki et al. [3] have explored combinations of PCC and CMC to generate proof-certificates
of expressive properties on low-level programs. Our work is aimed at extending these, and other, formal
techniques to provide objective confidence about the safe execution of realistic systems.

Conclusion and Future Work. We report on preliminary work in using assurance cases to bridge
the gap between a proof about a program’s semantics in a formal system, and its actual behavior in
the real world. To this end, we present an assurance case pattern for arguing that a proof is free from
various validity hazards. We also instantiate this pattern for a specific application of formal certification
technology to an infusion pump software. An important question is if our pattern is instantiable with
formal certification schemes other than PCCCMC, and how to make it more robust and complete.

References

[1] D. Arney, R. Jetley, P. Jones, I. Lee, and O. Sokolsky. Generic Infusion Pump Hazard Analysis and Safety
Requirements. Technical report MS-CIS-08-31, University of Pennsylvania, October 2008.

[2] N. Basir, E. Denney, and B. Fischer. Constructing a safety case for automatically generated code from formal
program verification information. In Proc. of SAFECOMP, 2008.

[3] S. Chaki, J. Ivers, P. Lee, K. Wallnau, and N. Zeilberger. Model-driven construction of certified binaries. In
Proc. of MODELS, 2007.

[4] J. Goodenough and C. Weinstock. Hazards to Evidence: Demonstrating the Quality of Evidence in an
Assurance Case. Technical Report CMU/SEI-2008-TN-016, SEI, 2008. in preparation.

[5] T. Kelly. Arguing Safety. PhD thesis, Univ. of York, 1998.
[6] T. Kelly and R. Weaver. The Goal Structuring Notation – A Safety Argument Notation. In Proc. of the

Dependable Systems and Networks Workshop on Assurance Cases, 2004.
[7] L. Millett. Software for Dependable Systems: Sufficient Evidence?, 2007.

http://www.nap.edu/catalog.php?record id=11923.
[8] K. S. Namjoshi. Certifying Model Checkers. In Proc. of CAV, 2001.

27

Assurance Cases for Proofs as Evidence Chaki, Gurfinkel, Wallnau, Weinstock

[9] G. C. Necula. Proof-Carrying Code. In Proc. of POPL, 1997.
[10] Stanford Encyclopedia of Philosophy: Defeasible Reasoning, 2005.
[11] R. Weaver. The Safety of Software – Constructing and Assuring Arguments. PhD thesis, Univ. of York, 2003.
[12] C. Weinstock and J. Goodenough. Towards Assurance Cases for Medical Devices. Technical Report

CMU/SEI-2009-TN-018, SEI, 2009. in preparation.

28

