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Classical stability analysis consists of breaking the feedback loops one at a time and
determining separately how much gain or phase variations would destabilize the stable
nominal feedback system. For typical launch vehicle control design, classical control
techniques are generally employed. In addition to stability margins, frequency domain
Monte Carlo methods are used to evaluate the robustness of the design. However, such
techniques were developed for Single-Input-Single-Output (SISO) systems and do not take
into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-
Multi-Output (MIMO) systems. Robust stability analysis techniques such as H. and p are
applicable to MIMO systems but have not been adopted as standard practices within the
launch vehicle controls community. This paper took advantage of a simple singular-value-
based MIMO stability margin evaluation method based on work done by Mukhopadhyay
and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes
a simultaneous multi-loop gain and phase margin that could be related back to classical
margins. The results presented in this paper suggest that for the SLS system, traditional
SISO stability margins are similar to the MIMO margins. This additional level of
verification provides confidence in the robustness of the control design.

Note to readers: the axes labels were taken off some figures to meet International Traffic in Arms
Regulations (ITAR) requirements.

Nomenclature

Kn = Gain variation

®n = Phase variation

L = Uncertainty matrix

KG = Open loop transfer function matrix

o = Minimum Singular value

a = Maximum Singular value

K s1s0,aero = Smallest SISO aerodynamic gain margin

Kn MmO, aero = Equivalent MIMO aerodynamic gain margin

Knsisors = Smallest SISO rigid body gain margin

KnMimore = Equivalent MIMO rigid body gain margin

Kn sisosimul & @nsisosimat = Smallest SISO simultaneous gain and phase margins
Kn,mimvo simut & @nmivosimat = Equivalent MIMO simultaneous gain and phase margins
(WSISO.RB = Frequency that corresponds to Knsisors

WSIS0.aero = Frequency that corresponds to Kn siso,aero

(WMIMO simul = Frequency that corresponds to the minimum singular value of the MIMO system
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I. Introduction

The design of NASA’s Space Launch System (SLS) vehicle? represents a challenging task that requires careful
tradeoff between maximizing rigid body performance while stabilizing effects such as fluid slosh and flexible
dynamics with adequate margins. The standard flight heritage architecture of integrating a PID controller with a
linear bending filter is the traditional choice for large launch vehicles. The controller gains and filters are optimized
assuming decoupling in roll, pitch, and yaw. This assumption is valid considering the inertial coupling and
aerodynamic cross-axis coupling terms are generally small for launch vehicles. Under the assumption that the SLS
time-varying dynamics and control system can be frozen over a short period of time and linearized, classical
stability techniques such as Root Locus, Nyquist, and Nichols are used to evaluate the stability margins of the
system.

Gain and phase margins results from classical methods are a form of unstructured uncertainty®. They indicate
how much gain or phase variations at specific crossover frequencies can be tolerated before the closed loop system
becomes unstable. Typical designs employ 6 dB and 30 degrees of gain and phase margin requirements. For
dispersed frequency domain Monte Carlo analysis* those metrics can be reduced to 3 dB and 20 degrees
respectively.

Stability robustness analysis aims to measure how model parameter variations or uncertainties affect the stability
of the feedback system. Structured singular value techniques developed by Doyle® provide control engineers with a
guideline on how to quantify the robust stability of a multivariable feedback system. Mukhopadhyay and Newsom?
described a simple stability margin evaluation method that relates the singular values of the return difference matrix
to simultaneous gain and phase changes in all loops of a multi-loop system. Works by Yeh® and Anderson’ follow a
similar approach and apply the method to an aircraft model with as many as 8 states. The SLS open-loop
compensated system (controller and plant) carries as many as 500 states at a given operating condition. Reducing
the model via linear fractional transformation® and performing rigorous p analysis is time consuming and may not
yield results that are intuitive. The approach described by Mukhopadhyay and Newsom offers a quick and simple
way of assessing the stability robustness of the nominal multivariable feedback system that can be directly related
back to classical stability margins. The method is equivalent to having all the direct and cross-feed transfer
functions varied simultaneously in the worst-case direction. The worst-case variations in all loops is an extreme
case, hence the results generally tend to be conservative.

The purpose of this paper is to apply the method described in® that uses singular values to evaluate the robustness
of the SLS control system from a MIMO perspective. The paper is organized as follows: Section 1 provides the
reader with motivation behind this study. Section 2 offers relevant background information. Section 3 describes the
general approach behind this analysis. Section 4 applies this method to a simple 2x2 MIMO academic model of a
launch wvehicle. Section 5 shows results using the high-fidelity SLS simulation model and highlights the
comparisons between MIMO and SISO stability margins. Section 6 concludes the discussion and summarizes the
findings.

Il1. Background

In addition to the standard gain and phase margin requirements, a Nichols disc margin metric is used to evaluate
the closest approach on the Nichols space as shown in Fig. 1. The SLS vehicle is a conditionally stable system; the
aerodynamic and rigid body gain margins represent the range of loop gain the system must operate to maintain
stability. The concept of disc margin can be thought of as how much simultaneous gain and phase variations a
single loop can accommodate before becoming unstable. The disc is anchored at the critical point (0 dB, -180 deg)
with semi and major axes being the classical gain and phase margin requirements. If any part of the frequency
response enters the disc then the design is deemed to have been violated. Disc margin is a better approach for
determining acceptable variations because in general real life uncertainties do not occur in the form of a gain or
phase variation nor do they occur only at specific frequencies. A nonlinear analytical mapping can be used to
convert the Nichols disc margin to the Nyquist plane shown in Fig. 2. Once in the Nyquist plane, the ellipse is no
longer symmetric with respect to the critical point (-1, 0).
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Figure 2. Nyquist Plot with Disc Margin
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Despite the numerous frequency domain margin requirements, the major drawback to classical techniques is that
they apply only to time-invariant SISO systems. In Nyquist array analysis®, the radius of each Gershgorin circle
depends on the entire column or row of the transfer function matrix (TFM). Ignoring interaction between different
elements of the TFM can produce misleading stability results. For MIMO systems, the closed loop characteristic
equation (I+KG) is no longer a scalar but a matrix. The generalized Nyquist stability criterion® shown by Eq. (1)
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states that the MIMO feedback system is stable if and only if the number of counter-clockwise encirclements P, of
the critical point (the origin) by the contour det(1+KG) is equal to the number of unstable open-loop poles Po.

Aargdet[l + KG(jw)|=—-27(P, -P,) (1)
Figure 3 is a sample MIMO Nyquist diagram. As oppose to SISO systems, the shortcoming of plotting the

determinate locus on the s-plane of a MIMO system and inspecting the distance to the critical point is that it is not
always a good representation of relative stability margin.
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Figure 3. MIMO Nyquist Plot

I11. Approach

The approach in Mukhopadhyay and Newsom? relates the minimum singular value (o) of the return difference
matrix (I+KG) to gain (K,) and phase variations (@n) in all loops (roll, pitch, and yaw for the SLS system)
simultaneously. Figure 4 is a simplified block diagram, where KG represents the nominal 3x3 open loop transfer
function matrix (OLTFM) and L represents the 3x3 diagonal complex gain uncertainty matrix composed of K, and
@n shown in Eq 2. The derivation in relating ¢ of the return difference matrix of the nominal system to gain and
phase variations can be summarized as follows. The detailed derivation can be found in®.

Figure 4. Schematic of General Approach
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The nominal closed-loop system is assumed to be stable. Therefore:

det(l + KG(jw))=0 or ol +KG(jw))>0 ®3)
Stability of the perturbed system is guaranteed if:
o(l +LKG)>0 4)
The matrix L is separated from G by the following identity:
I +LKG =L =11 +KG) ™  +1 [1 +KG)L (5)
L and I+KG are nonsingular, therefore 1+LKG is nonsingular if and only if (L’l - |X| +KG)*+1 isnonsingular. It
can be shown after applying a few singular value properties®’ that the stability of the perturbed system is guaranteed
if:
oLt -1)<o(1 +Ka) 6)

where:

G(Ll—l)j/(l‘Kl]Z*rf(1_C°S(p”)

n n

As a result, the nominal closed-loop system is stable if:

al +KG)2\/(1—K1] +Ki(1—008¢n) (7

n n

The minimum singular value of a square matrix is a measure of the distance to singularity. If g of the return
difference matrix approaches zero, the closed-loop system is near a stability boundary. The inequality constraint in
Eq. (7) holds for all o, except at wo (frequency where o occurs) . Equality in the expression is satisfied at wo. The
system under this perturbation will have a pair of closed-loop poles at +/- joo. Whether the system goes from stable
to unstable or vice versa requires further examination of the MIMO Nyquist plot. In this study the nominal closed-
loop system is assumed to be stable. Figures 5 and 6 illustrate the solutions to Eq. (7). It is important to note that
for a given o there are many combinations of K, and ¢, that satisfy Eq. (7) but fail to destabilize the system. which
highlights the conservatism behind this approach.

5
American Institute of Aeronautics and Astronautics



157

Singular Yalue

2
Gain Margin, K_

16

1.4

12

Singular value
o o
m o —_

=
.

0z

Gain Margin, Kn

Figure 6. Line Plot Relating @n and Kn to ¢

IVV. Application to Simple Dynamics Model

In this section, the method described in Section Il is applied to a simple dynamics model of a launch vehicle. The
intention to provide additional insight into the approach before applying it to a more complicated system. The model
consists of unstable pitch and yaw rotational modes, two 3™ order actuator dynamics models, and a 2" order
structural dynamics model that exhibits non-planar bending characteristics. Separate PD controllers are designed to
stabilize the rigid body in pitch and yaw, which amounts to a conditionally stable 2x2 MIMO system. Rigid body
cross-axis coupling is represented by the aerodynamic terms Cmg and Cn,. Figure 7 shows the Nichols plot of the
nominal system without any rigid body coupling. The worst-case SISO aerodynamic gain margin, Kn siso,aero 0CCUIS
in the pitch channel (1,1 term) with a value of -19 dB. Equation 7 was used to obtain an equivalent MIMO
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aerodynamic gain margin, Knmimo.aero. AS expected, Knmimo,aero and Knsiso.aero have the same value due to the lack
of coupling at low frequency. As a check, Knmimo.aero and Knsiso.aero Were separately substituted into the matrix L
shown in Eq. (2). In both cases, one of the pitch rigid body closed-loop poles became neutrally stable.
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Figure 7. Nichols Chart of Simple Dynamics Model

As the next step, the level of rigid body coupling was augmented by significantly increasing the Cmg and Cn,.
This caused Ky mimo,aero t0 decrease to -16.8 dB. Substitution of Ky sisoaero into the matrix L caused one of the rigid
body poles to move well into the right-hand s-plane (RHP). In contrast, Knmimo.aero €nsured that pole was kept
stable. This illustrates the well-known fact that SISO margins are not adequate in capturing the stability of a MIMO
system when there are significant coupling dynamics present. The MIMO margin provides a more conservative
result.

V. Simulation Results

In this section, the evaluation method is applied to the high-fidelity dynamic model of the SLS vehicle. The
Space Transportation Analysis Research Simulation (STARS)?, developed at NASA Langley Research Center, was
used to generate the nominal OLTFM at various times in the trajectory. Numerical linearization of the nonlinear
Simulink model was used to create the linear state space models. The loop was broken at the output of the flight
control system to obtain the 3x3 OLTFM. An example of the return difference matrix 1+KG singular values is
shown in Fig. 8. The objective is to determine MIMO gain margins (Knmimors and Knmimo,aero) and simultaneous
MIMO gain and phase margins (Knmimo,simu & @nmimosimut) USING the minimum singular value curve at various
critical frequencies through Eq. (7).
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Figure 8. MIMO Return Difference Singular Value Plot

Figure 9 is a comparison of the worst-case SISO rigid body gain margin, Kysisors to the MIMO rigid body gain
margin, Knmimore. Knsisors is the channel (roll, pitch, or yaw) with the smallest gain margin at the second -180°
phase crossing, wsisore. Knmimo,re is determined by obtaining ¢ of the nominal return difference matrix at wsiso,re
and solving Eq. (7) for K, with ¢, set to the nominal value of zero.
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Figure 9. MIMO vs. Worst Case SISO Rigid Body Gain Margin

As a check, Knmimore and Kisisore Were separately substituted into the matrix L shown in Eq. (2). The pole-zero
map of the perturbed system is shown in Fig. 10. The frequency of the complex pole in close proximity to the
imaginary axis corresponds to wsisors. Depending on the dynamics of the linearized system, Kqsisore at times
causes that pole to shift slightly over to the RHP, whereas Knmimore ensures that the pole never crosses the
imaginary axis. It is apparent from Fig. 9 that K mimore IS always more conservative compared to Knsisors. Figure
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11 is a similar plot comparing the worst-case SISO aerodynamic gain margin, Kn siso,aero to the MIMO aerodynamic
gain margin, Knymimozero. Once again, the MIMO margins are more conservative.
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Figure 10. Closed-Loop Pole-Zero Map (magnified) of the Perturbed System
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Figure 11. MIMO vs. Worst Case SISO Aerodynamic Gain Margin

Figure 12 illustrates SISO and MIMO simultaneous gain and phase margins. Knsisosimu and @nsiso.simul are
obtained by the taking the loop with the closest approach on the Nyquist diagram and determining how much gain
and phase variations would cause the curve to impinge on the critical point (-1,0). The closest approach on a SISO
Nyquist diagram is consistent with the frequency at which g occurs on the SISO return difference plot shown in Fig.
13. The closest approach occurs in the pitch channel at approximately 0.48 Hz.
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Figure 12. Simultaneous Gain and Phase Margins at Various Trajectory Times
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Figure 13. SISO Return Difference Singular Value Plot

Kn,mimosimu @nd @nmimosimul @re computed by obtaining o of the MIMO return difference matrix shown in Fig. 8
and computing K, and ¢, which satisfies Eq. (7) and causes the closed-loop pole at wwmivo simu to be closest to the
imaginary axis. Results from Fig. 12 are consistent with the gain-only results from Figs. 9 and 11. It shows that the
MIMO margins are slightly more conservative compared to the SISO margins when applied to all 3 channels
simultaneously. As a check, the MIMO and SISO gain and phase margins were once again substituted into the
matrix L and the locations of the closed-loop poles were examined on the pole-zero map. The SISO margins caused
the pole at the critical frequency to move slightly into the RHP, whereas the MIMO margins ensured that pole never
crossed the imaginary axis.

Despite the slight differences, the overall magnitude and trend based on the MIMO analysis are very similar to the
classical SISO results. For instance, both methods indicated that at T = 56 seconds the phase margin is the smallest
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due to a combination of maximum aerodynamic instability and control-structure interaction constraints. Similarity
between the two methods is expected due to the very small coupling associated with the SLS rigid-body dynamics.
The MIMO results provide additional confidence that the classical margins are adequate in capturing the stability
robustness of the SLS vehicle.

V1. Conclusion

In this paper, a multi-loop stability margin evaluation method was applied to the SLS vehicle. This technique
offers a simple way to assess the stability of the MIMO system with results that could be directly related back to
classical stability margins. Hence it serves as an excellent compliment to the classical methods. The MIMO
margins were shown to be similar but slightly conservative compared to the SISO results due to the lack of cross
coupling associated with the rigid-body dynamics. The similarity between the MIMO and SISO margins suggests
that the classical stability evaluation method is adequate to capture the robustness of the control design for SLS.
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