

Outline

- Brief History
- Cermet sample testing during the NERVA/Rover era
 - Matrix/chart of samples tested & results
 - Comparison of approaches
- Important properties in context
 - Melting temperature
 - Vaporization rate
 - Chemical stability
- Engine performance
 - Location peak temperature
 - Heat deposition rate

History of Cermet Sample Testing

- 1949- NEPA investigated Mo-UO₂ and W-UO₂
- 1950's- Some further work
- 1961- Kennedy: "accelerate development of the Rover nuclear rocket"
- 1961- GE high-temperature materials program (HTMP & GE 710)
- 1962- Nuclear Propulsion Conference
 - LANL, LeRC, (GE) reported extensive testing results
 - UO₂ vaporization significantly reduced by thin tungsten cladding
 - UO_{2-x} reduction issue, uranium hydride formation, and sample cracking
- 1960's- DOE's ANL, Pacific Northwest labs
- 1968- ANL 200/2000 engine design, 2500°C, <1% fuel loss, 10h, 25X
- 1968- Tighter budgets, terminal cermet fuel reports
- 1970~ Space race won: cancelled Apollo 18-20, manned Mars plans
- 1972- Rover/NERVA program cancelled
- Other cermet summaries: Haertling & Hanrahan, Lundberg & Hobbins

Performance of Historical Cermet Samples

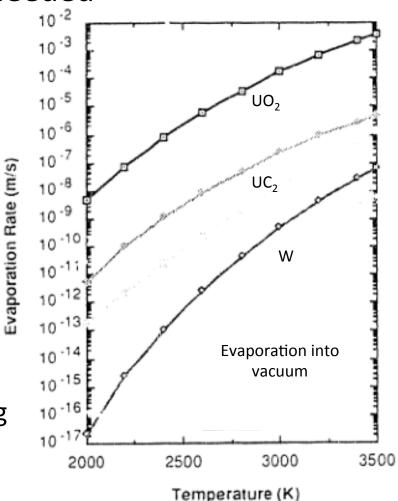
A Broad Brush Painting of W-UO₂ Results

			Cracl	Unstable: Cracks or Forms Powder Stable: Mass Loss > 5 %								: Mass < 5 %			
	Sample Group	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	UO ₂ Only	V						~							
	W-UO ₂		V	/	V	~	~		V	~	V	V	~	~	V
Partial Cla	ad (Not Edges)								V	~	~	~	~	~	
Coated	Full Clad Coated Fuel Particles			~									~		
	Stabilizers (Various)						~	~	V	V		~	V	~	~
	Temperature														
(C)	(K)														
2000	2273														
2300	2573														
2350	2623														
2500	2773														
2600	2873														
2650	2923														
2700	2973														
2800	3073														
Cycle	Cycles Tested								25	>25				<30	<10
Fuel Sam	ples Tested		29+14	46	19	2		25+	~30	~20	6	2	1	2	2
Refe	erence	[17]	[11]	[11]	[11]	[18]	[18]	[17]	[13]	[13]	[9]	[18]	[18]	[18]	[18]

- Considerable amount of cermet materials research in the early 1960's
- Over 200 W-UO₂ samples from five different labs: ANL, GE, LANL, LeRC, PNWL.
- Successes: full cladding, chemical stabilizers, coated particles
- Process improvement was done

Melting Points & Vaporization Rates of NTP Reactor Fuels/Materials

Material/ Element	Melting Temperature (K)	Surface Vaporization Rate at 2800°K (mil/hr)					
Tungsten	3680	< 0.01					
Rhenium, Re	3453	0.1					
Graphite	3915 (sublimes)	10					
ZrC	3805	>>10					
Tantalum Carbide, TaC	4150	0.1					
Uranium Dioxide, UO ₂	3075	6×10 ³					
Uranium Nitrides	Chemically Unstable						
Uranium Carbide, UC ₂	2835	10					
UC-40 ZrC NERVA Composite	3050	2					



Fuel Vaporization and Reactions

Coating/Cladding Needed

- Fuel vaporization is very high above 2000 K
- Cladding/particle coating needed
- At 1962 Nuclear Propulsion Conference
 - LANL (Lenz & Mundinger [9]): thin tungsten coatings reduce vaporization
 - LeRC (Saunders et al[13], McDonald[12]: fuel vaporization reduced 10X by cladding
- Face cladding is insufficient
 - Gluyas et al [13] demonstrated the need for full cladding

Evaporation rates of nuclear fuels and materials normalized to surface regression rates.

Lundberg, Hobbins EGG-M—92067

Fuel Vaporization Above 2000K

- Sample at 1900K for 30 minutes without significant mass loss
- At 2500K, sample experienced fuel evaporation

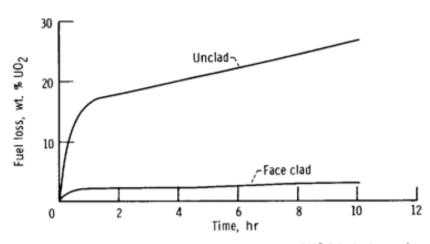
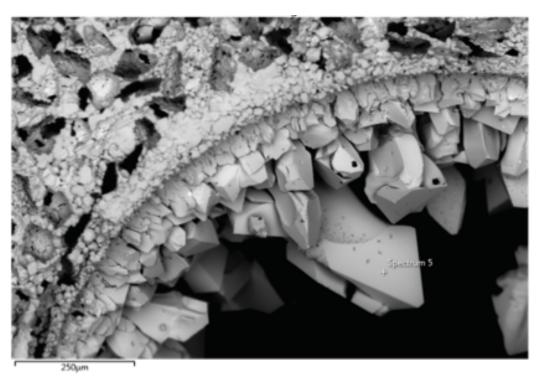
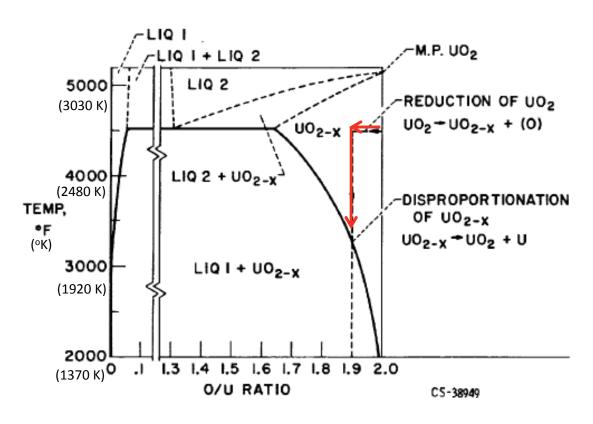



Figure 30. - Fuel loss as function of time at 2500° C in hydrogen for unclad and partially clad W - 20-volume-percent-UO₂ composites.


Performance of Historical Cermet Samples

W-UO₂ Results

			Cracks or					e: Mass > 5 %				e: Mass < 5 %			
	Sample Group	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	UO ₂ Only	V						~							
D 11 1 01	W-UO ₂		~	V	V	V	V		<i>V</i>	V	V	V	~	V	V
Partial Cla	d (Not Edges)								~	~	~	~	~	V	~
Full Clad Coated Fuel Particles				~									~		
Stabilizers (Various)							~	~	~	~		~	~	~	V
Temp	erature														
(C)	(K)														
2000	2273														
2300	2573														
2350	2623														
2500	2773														
2600	2873														
2650	2923														
2700	2973														
2800	3073														
Cycles	s Tested								25	>25				< 30	<10
Fuel Sam	ples Tested		29+14	46	19	2		25+	~30	~20	6	2	1	2	2
Reference		[17]	[11]	[11]	[11]	[18]	[18]	[17]	[13]	[13]	[9]	[18]	[18]	[18]	[18]
Beals et al Baker et al							Bec	0/s et =	Sluyas,	Gen Gen	Mun	[18]			

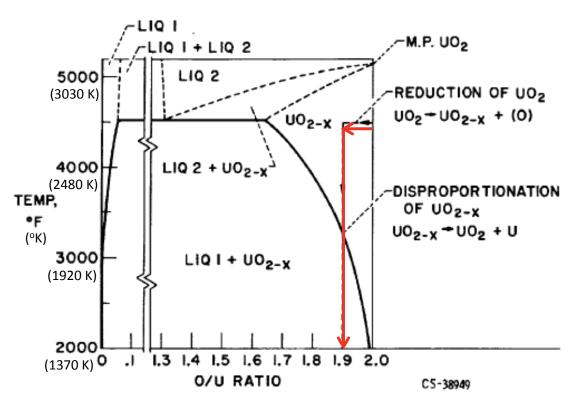
High Temperature Behavior of UO₂

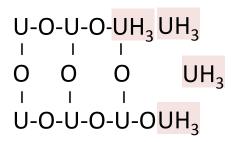
UO₂ structure Idealized

At temperatures above 2000°K, UO₂ becomes deficient in oxygen.

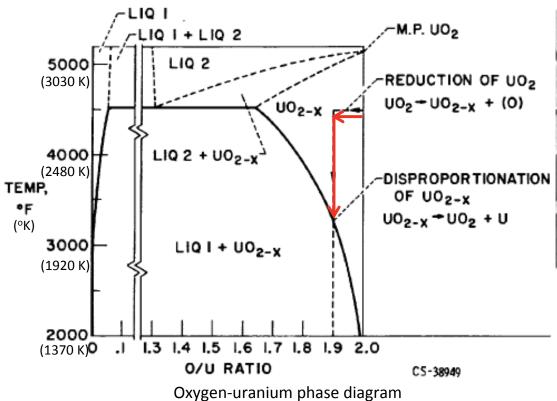
With cooling, free uranium forms.

Stabilizers (Gd₂O₃, Y₂O₃) interfere with this reduction.

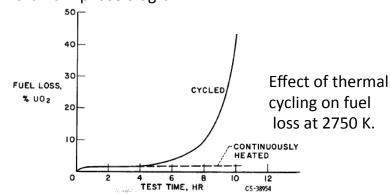

Stability of UO₂, and Chemical Stabilizers


- 1960 Anderson: UO₂ reduces to UO_{2-x}
- 1962 LeRC, LANL, GE: UO_{2-x}, free uranium & UH₃ forms, sample cracking
- 1965 Beals, et al: Hydride, UH₃, formation is accompanied by a disruptive volume change that destroys the integrity of the specimen
 - UO₂ was "heated to 2300 C in flowing dry hydrogen for 10 min. When cooled in hydrogen to below 500 C, the pellet disintegrated with sufficient force to shatter the (foil) crucible. The residue was a very fine black powder."
 - "crumbling or powdering of the specimen"
 - UH₃ forms between 370 K and 620 K; can cool in non-hydrogen environment
- Addition of rare-earth oxides improves stability, particularly gadolinium Gd₂O₃, also Y₂O₃
 - UO₂ at 2570 K crumbles
 - UO₂ 10 mol% Gd₂O₃ heated to 2770K had 6-12 % weight loss
 - At 2920 K, needed 5 mol% GdO_{1.5} + 5 mol% FeO_{1.5} for stability

High Temperature Behavior of UO₂


With cooling below 2000°K, free uranium forms.

Below 770°K, free uranium combines with hydrogen to form uranium hydride, UH_{3.} This is hydrogen embrittlement


Chemical Stability of UO₂ with Thermal Cycling

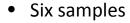
UO₂ Dispersoid

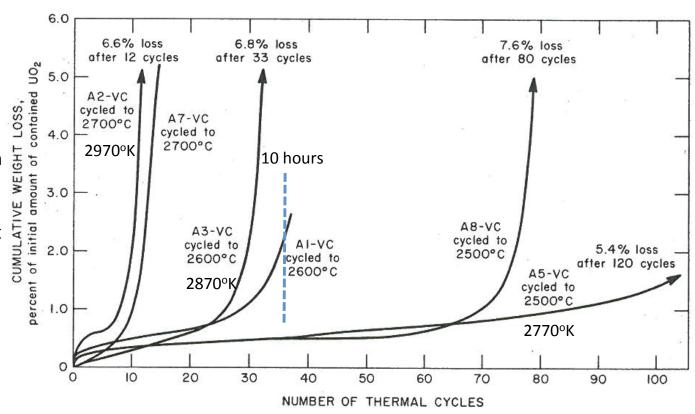
Uranium-Rich
Phase
Tungsten
Matrix

Micrograph of thermally cycled W-20 vol% UO_2 cermet showing free U at grain boundaries. The specimen was heat treated for five 1-h intervals at 2770 K in H_2 with cooling to room temperature between cycles.

NASA X66 51413 NASA TM-X-1421

Performance of Historical Cermet Samples


			Unsta Cracl Forms F	ks or				e: Mass > 5 %				e: Mass < 5 %			
	Sample Group	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	UO ₂ Only	~	1	4		4	4	/	4	4	4	4	4	4	
Partial Cla	W-UO ₂ ad (Not Edges)		~	V	V	~	V		V	V	~	V	~	V	V
Partial Cla	Full Clad									~	~		~	V	~
Coated	Coated Fuel Particles			~									~		
Stabili	Stabilizers (Various)						~	V	V	V		V	V	V	~
Temp	Temperature														
(C)	(K)														
2000	2273														
2300	2573														
2350	2623														
2500	2773														
2600	2873														
2650	2923														
2700	2973														
2800	3073														
Cycle	Cycles Tested								25	>25				< 30	<10
Fuel Sam	Fuel Samples Tested		29+14	46	19	2		25+	~30	~20	6	2	1	2	2
Reference		[17]	[11]	[11]	[11]	[18]	[18]	[17]	[13]	[13]	[9]	[18]	[18]	[18]	[18]
		Beal	ls et al					[17] B _{C_Q}	set al	Pluyas	$G_{e_{\alpha}}$			ANI	



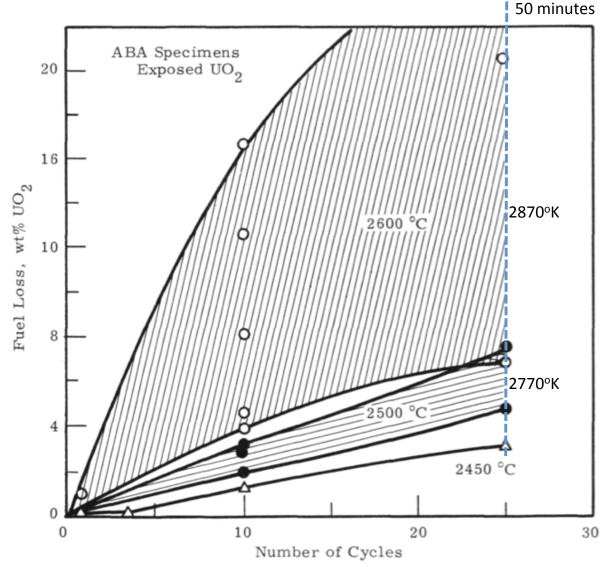
Pattern of Performance in Cermet Fuel Samples

Thermally cycled in furnace—not rocket/reactor conditions

- Low-pressure hydrogen,
- ANL-7150 suggests the hydrogen is static, or nearly so.
- Testing with flowing hydrogen at engine pressures would reduce performance.
- Comparable results found at 2500°C in reference 13, Y₂O₃, 20-35v% UO₂, flowing hydrogen
- Each 100°C increase in temperature significantly decreases lifetime

Fuel loss behaviors of tungsten-clad W-66 v/o (10m/o GdO1.5-stabilized UO_2) cermet samples (not fuel elements) thermally cycled to 2770 K, 2870 K, and to 2970 K.

ANL-7150


Pattern of Performance in Cermet Fuel Samples

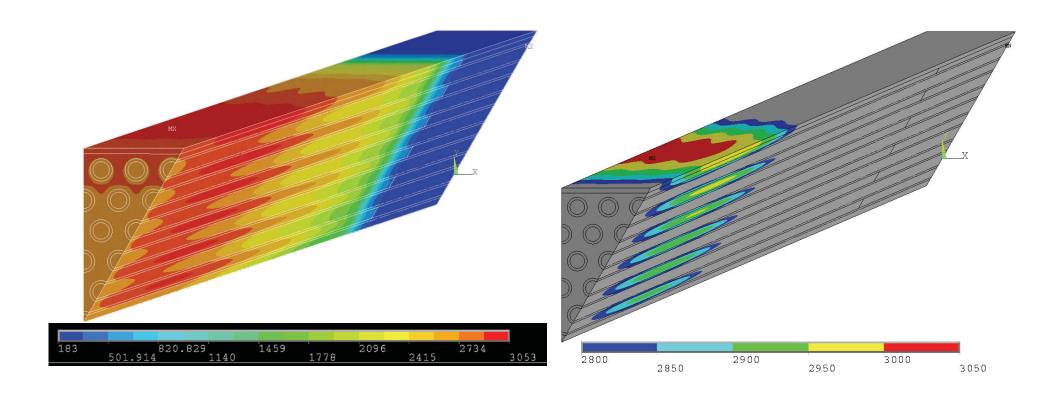
Thermally cycled in furnace—not reactor conditions

Fuel particles coated with W, no cladding

• High-pressure, static hydrogen,

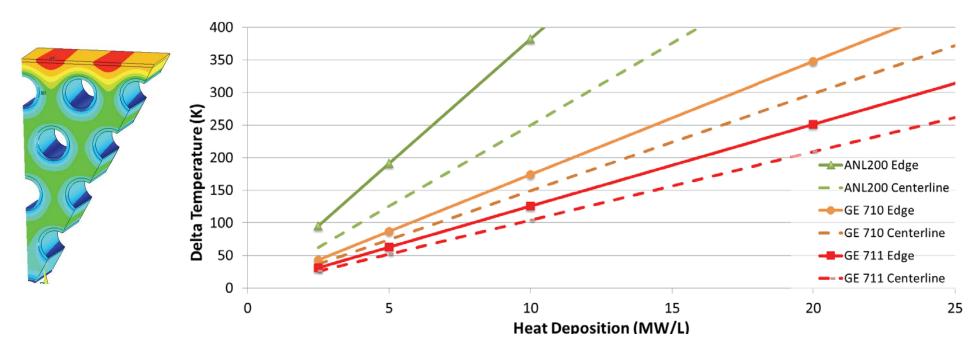
Thermal Cycling Behavior of Tungsten-Coated UO_2 -W (13.3 vol% UO_2) Cermets Under Accelerated Test Conditions in 68 atm Static Hydrogen.

NASA CR-54840, p. 48


What Does a Fuel Element Designer Do with Material Performance Data?

- Engine/Fuel designer must:
 - Highest possible propellant outflow temperature
 - Minimum peak fuel temperature
 - Nuclear criticality & control
 - Engine system performance (turbopump, nozzle)
 - Acceptable fuel loss, maintain fuel integrity
- High fidelity simulations help understanding
 - Neutronics simulations predict criticality
 - High-Fidelity fluid / thermal / structural simulations
 - Can simulate materials and performance

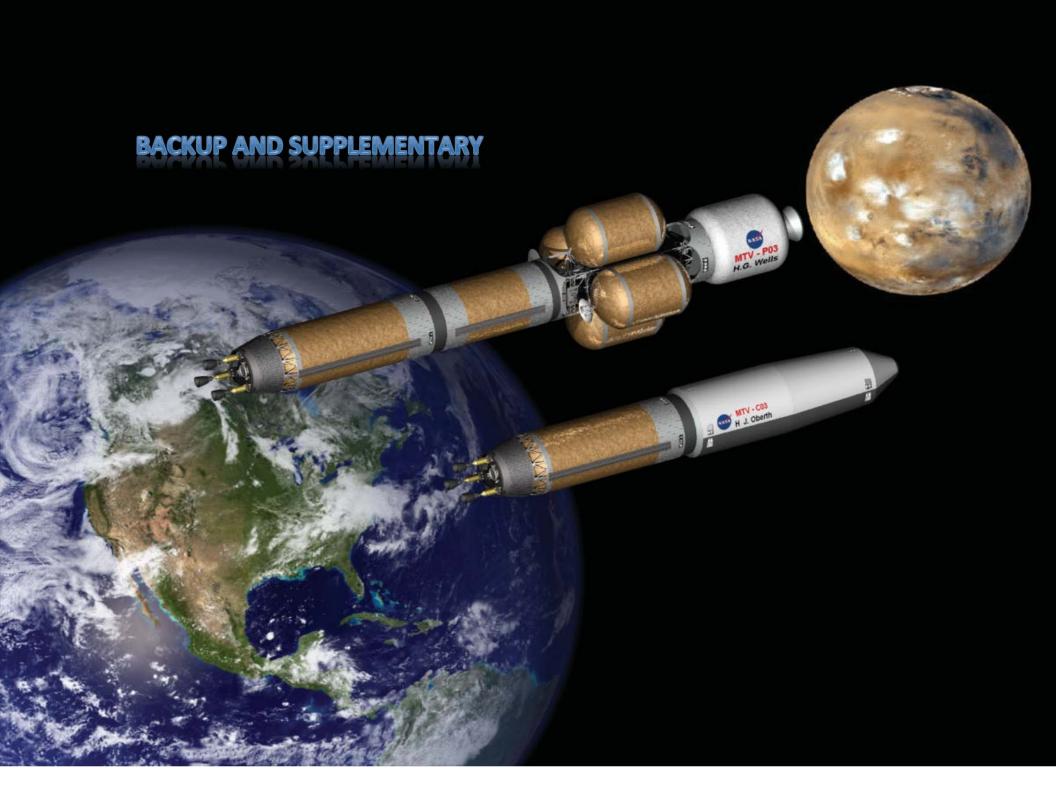
Where is the Hottest Cermet Fuel?



Predicted temperature distribution through a GE 711 cermet fuel element (left) and detail of the hottest 250K region of the fuel element (right).

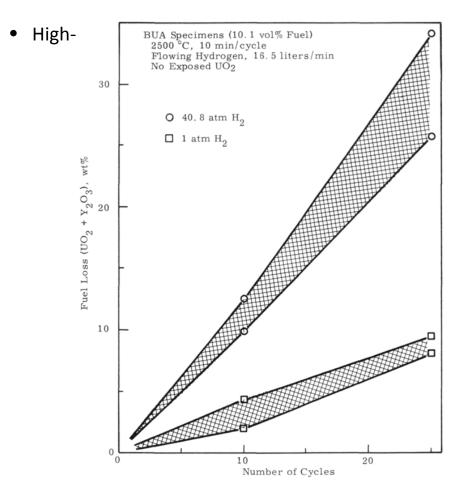
Fuel Temperature Differences Versus Heat Deposition Rate

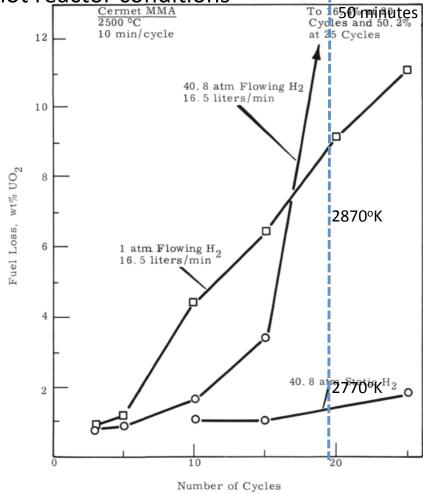
Predicted temperature difference, fuel peak at edge to coolant channel (solid) and fuel centerline to coolant channel (dashed) for several cermet fuel geometries.



Summary and Conclusions

- To better understand Cermet engine performance, examined historical material development reports
- Two issues:
 - High vaporization rate of UO₂
 - High temperature chemical stability of UO₂
- Cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance
- Some long duration, low mass-loss, samples at 2770°K
- Few samples were tested above 2770°K
- Contemporary testing may clarify performance

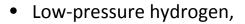




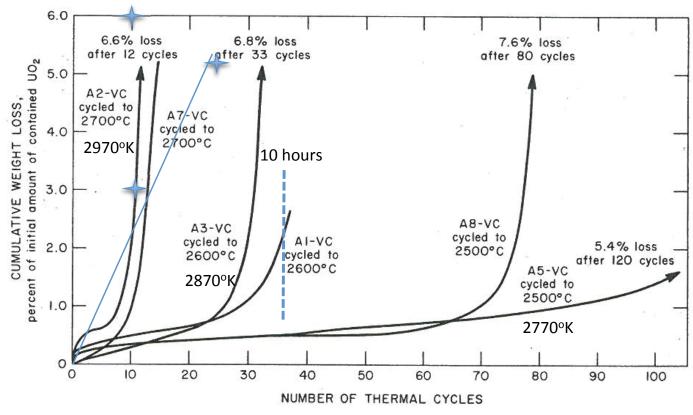
Pattern of Performance in Cermet Fuel Samples

Thermally cycled in furnace—not reactor conditions

Thermal Cycling Behavior of W-UO $_2$ Coated Particle Cermets Containing 10 Mole% $\rm Y_2O_3$ in UO $_2$ Solid Solution.


Effect of Pressure and Flow Rate on the Thermal Cycling Behavior of a Tungsten-Coated UO₂-W Cermet Containing 13.3

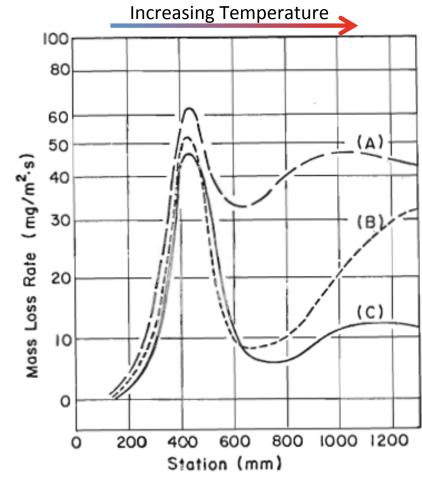
vol% UO NASA CR-34840, p. 48



Pattern of Performance in Cermet Fuel Samples

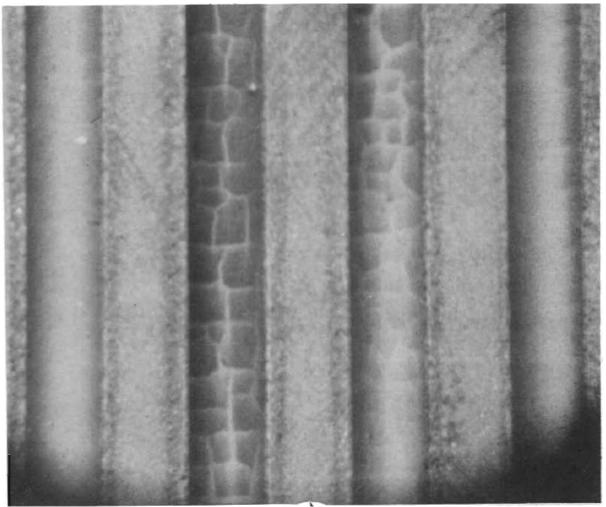
Thermally cycled in furnace—not rocket/reactor conditions

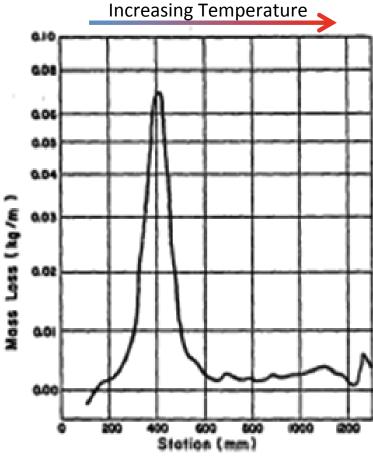
- ANL-7150 suggests the hydrogen is static, or nearly so.
- Testing with flowing hydrogen at engine pressures would reduce performance.


Fuel loss behaviors of tungsten-clad W-66 v/o (10m/o GdO1.5-stabilized UO_2) cermet samples (not fuel elements) thermally cycled to 2770 K, 2870 K, and to 2970 K.

Mid-Band Erosion in NERVA Composite Fuel Elements

- High CTE composite fuel elements were crack-free as fabricated
- Hot end fuel loss agreed with predictions
- Midrange losses were unexpected, 2/3 of total
- Cold end coating cracks caused midrange loss, H₂ + C -> CH₃ & C₂H₂

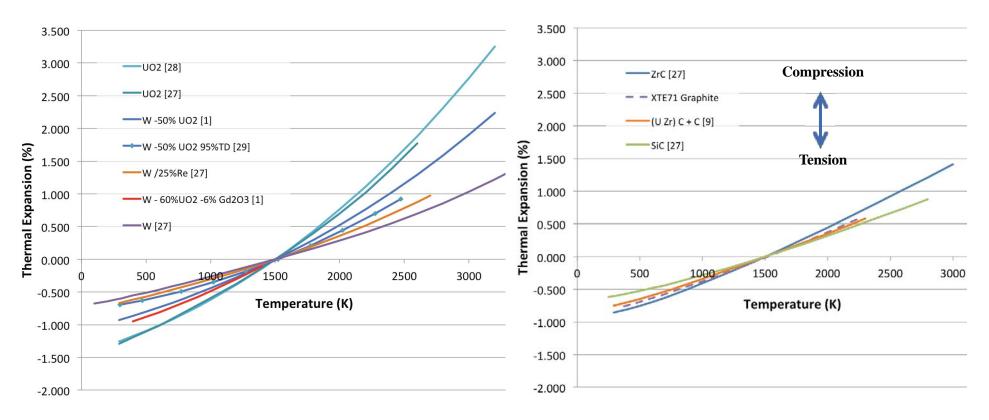

Mass loss rates per unit surface area of coolant channel versus station for graphite and composite elements. (A) average for 102 Pewee-1 graphite fuel elements coated with NbC, (B) average for 12 Pewee-1 graphite fuel elements coated with ZrC, (C) average for 23 NF-1 high-CTE composite fuel elements coated with ZrC, adjusted to the Pewee-1 test temperature.


LA-5398-MS

Pattern of Cracking / Erosion in NERVA Fuel

Mass loss versus length for (U,Zr)C-graphite fuel element in NF-1 test. CTE > 6.5 μ m/mK.

NERVA fuel element interior coolant channels experienced coating cracks in the NF-1 test, while edge channels retained their coatings. Mid-passage erosion region.

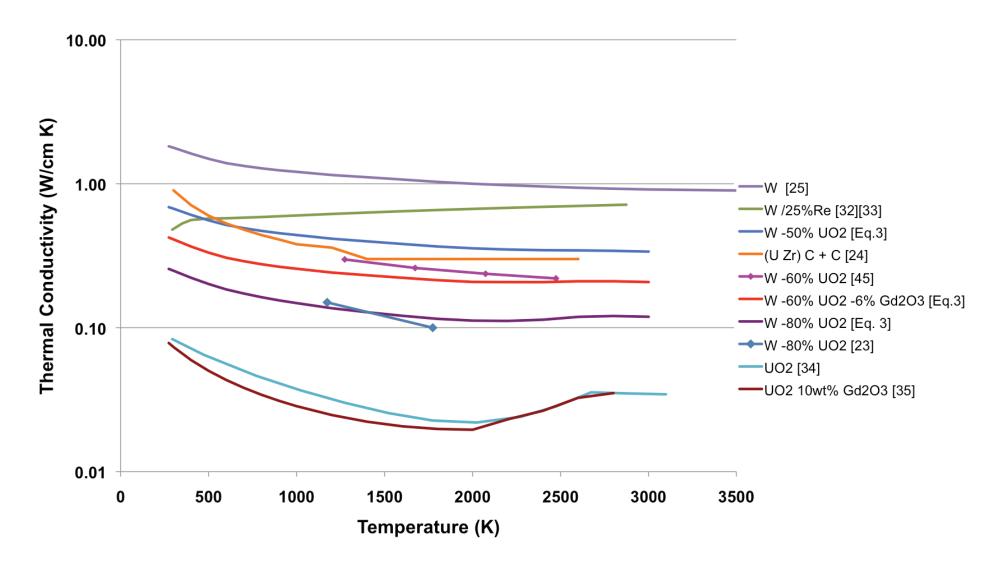

LA-5398-MS.

Stress Sources: Differential Thermal Expansion

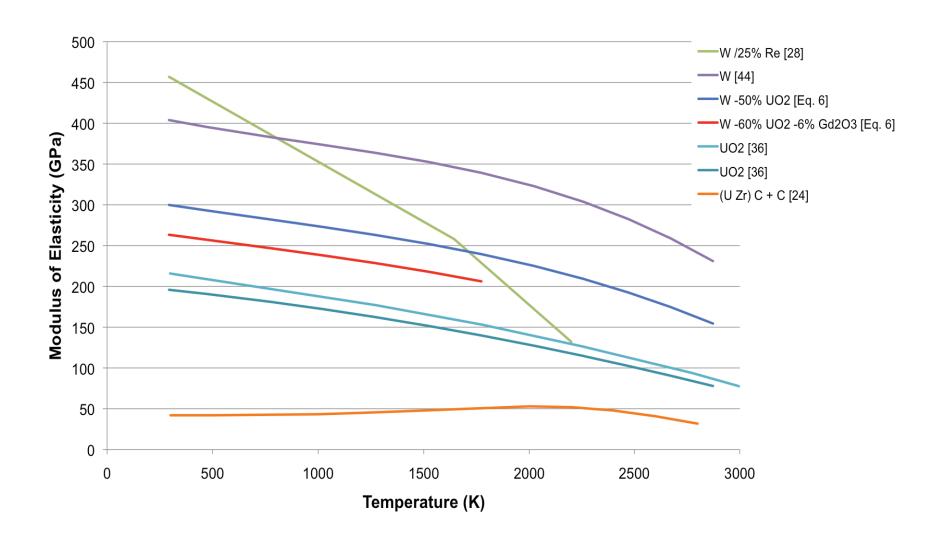
Cermet and Graphite-Based Fuels

Cermet Fuels

Coatings in *compression* on cool down


Graphite-Based Fuels

Coatings in *tension* on cool down


NTP Fuel Elements: Thermal Conductivity

NTP Fuel Elements: Modulus of Elasticity

