

INFORMATION MEASURES

FOR STATISTICAL ORBIT

DETERMINATION USING

NONUMERRY SIMONIA

Presenter: Dr. Alinda Mashiku

Collaborators:Prof. James Garrison Dr. Russell Carpenter

FILTERS UMD Seminar Presentation April 29th ²⁰¹³

OUTLINE

- Introduction and Motivation
- Literature Review
- Approach
- Research Contributions
- Statistical Orbit Determination
- PDF Compression
- Simulations and Results
- Conclusions and Future Work
- Acknowledgements

OUTLINE

- 1 Introduction and Motivation
	- \bullet **•** Research Significance
	- \bullet Statistical Orbit Determination
	- \bullet **• State Estimate Uncertainty Characterization**
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

1.INTRODUCTION AND MOTIVATION:

RESEARCH SIGNIFICANCE

PROBLEM

In 2009, the U.S Strategic Command space objects (assets and debris) tracking update:

- • \approx 19,000 space objects (diameter >10 cm) are being tracked
- •> 600,000 space objects (10cm >diameter>1 cm) are unobserved

Recent impacts have also added more objects (space debris) to track:

- •• Satellite Collision Russian Cosmos 2251 and the Iridium satellite in 2009
- •Destruction of Chinese satellite in 2007

REQUIREMENTS

Space objects require:

- •**•** Collision avoidance mitigations
- •Orbit maintenance/maneuvers (assets)
- •Cataloging and identification (debris)

Specifics for the requirements:

- •• Performed within required accuracies
- •*Cost effective*: Applicable to large numbers of space objects

STATISTICAL ORBIT DETERMINATION1INTRODUCTION AND MOTIVATION:

1.INTRODUCTION AND MOTIVATION:

UNCERTAINTY CHARACTERIZATION

CURRENT LIMITATIONS

State estimate's uncertainty

- •**•** Covariance Matrix is not enough
- •Gaussian representation ignores the information in the heavy tails

PROBLEM STATEMENT

1. Need **Full Probability Density Function (PDF) representation** for **low probability events present in the heavy tails (Non-Gaussian)**

Uncertainty

Region

- 2. Use a **nonlinear filter** that is capable of **full nonͲGaussian PDF state estimation**
- 3. Need a **compressed representation** of this **PDF distribution** for real case scenario applications

Covariance

Matrix

OUTLINE

- Introduction and Motivation
- Literature Review
	- OD Current Estimation Methods (EKF and UKF)
	- PDF approximation (GMM and PCE)
	- Particle Filter
- Approach
- Research Contributions
- Statistical Orbit Determination
- PDF Compression
- Simulations and Results
- Conclusions and Future Work
- Acknowledgements

OD CURRENT ESTIMATION METHODS

- • *Extended Kalman Filter* (EKF) (Tapley, Shutz and Born 2004)
	- –Nonlinear models assuming Gaussian uncertainties
	- Linearization about ^a current mean (computes Jacobian)
- • *Unscented Kalman Filter* (UKF) (Julier and Uhlmann 1997 et al)
	- Uses ^a series of weighted sample points to approximate the mean and covariance

http://ars.els-cdn.com/content/image/1-s2.0-S0021999108000132-gr4.jpg

- • *Batch Weighted Least Squares* (Gauss 1809)
	- – $-$ Estimates the state x by minimizing the performance index $\,\,J(x)$ $\!=$ $\!\!\!\!\!\!\int\!\!\! 2^{T}W\mathscr{E}$ $\qquad\qquad$ 8

$$
\mathbf{8}
$$

- **PDF APPROXIMATIONMETHOD**
- •*Gaussian Mixtures Model* (GMM) (DeMars et al 2011)

 $p(x) = \sum w_i p_g(x; \mu_i, P_i)$ *i=*1 \sum^L

where \overline{p}_g is a Gaussian PDF

- NonlinearPropagation Detects Nonlinearities Ͳ *It splits Covariance P*Figure Ref: J.T. Hartwood et al. Gaussian Sum filters for Space Surveillance: Theory and Simulations. *JGCD*, Vol. 34. No. 6. Nov-Dec 2011
- -Differential entropy d/dt[H(x)] is used as ^a measure of nonlinear detection
- -- Uses UKF as a filter for each p_g

Entropy
$$
H(x) = \frac{1}{2} \log |2\pi eP|
$$

- • *Polynomial Chaos Expansion* (PCE) (Jones et al 2012)
	- -- Solution of the Stochastic Differential Equations as linear expansions of multivariate polynomials ˆ
	- -- PCE estimates the coefficients c_α of the expansion

$$
\hat{X}(t,\xi) = \sum_{\alpha \in \Lambda_{p,d}} c_{\alpha}(t) \psi_{\alpha}(\xi)
$$

My approach:

Propose using the **Particle Filter**

- •Fully captures **PDF (Probability Density Function)** distribution
- •Uses a large number of samples to approach the **optimal estimate**

PARTICLE FILTER

The Particle Filter (PF) is ^a sequential nonlinear estimator that

- •Uses random independent particles to represent the random state **^x** as ^a PDF
- •As N increases, we reach the optimal PDF representation

Figure Ref: Bhaskar Saha, Introduction to Particle Filter. Ames Research Center. April 16, 2008

GENERIC PARTICLE FILTER ALGORITHM

PARTICLE FILTER

MAJOR DRAWBACK:

Sample Degeneracy when data outliers occur or when measurement noise is small

CIRCUMVENTION:

- •**• Resampling of particles** (N_{effective samples < N_{threshold})}
- •**Adaptive PF:** Soto (2005), Gang and Xiao-Jun (2008), Hwang and Speyer (2011).
- •**Other PF Methods studied:** Auxiliary Particle Filter, Regularized Particle Filter, Rao-Blackwell/Marginalized Particle Filter

Our Approach for PF in Statistical Orbit Determination:

Used Generic Particle Filter

- •Effective: sporadic measurements
- •**•** "Jitter" resampled particles by adding noise

OUTLINE

- Introduction and Motivation
- Literature Review
- Approach
- Research Contributions
- Statistical Orbit Determination
- PDF Compression
- Simulations and Results
- Conclusions and Future Work
- Acknowledgements

OUTLINE

- Introduction and Motivation
- Literature Review
- Approach
- Research Contributions
- Statistical Orbit Determination
- PDF Compression
- Simulations and Results
- Conclusions and Future Work
- Acknowledgements

Demonstrated the use of the **PF** as ^a **statistical OD method** for **nonͲlinear state estimation** and **uncertainty predictions** as ^a **full state PDF**

RESEARCH CONTRIBUTIONS

Used **nonlinear multivariate decorrelation** methods to decorrelate the multivariate state PDF

Performed **univariate uncorrelated state PDF compressions** for data allocation and transmission **cost reductions**

Demonstrated the **potential** for **cost effective ephemeris storage** for the **cataloging of space objects and debris**

OUTLINE

- Introduction and Motivation
- Literature Review
- Approach
- Research Contributions
- Statistical Orbit Determination
- PDF Compression
- Simulations and Results
- Conclusions and Future Work
- Acknowledgements

A and **B**

OUTLINE

- Introduction and Motivation
- Literature Review
- Approach
- Research Contributions
- Statistical Orbit Determination
- PDF Compression
- Simulations and Results
- Conclusions and Future Work
- Acknowledgements

The VBN frame is the reference path orbital velocity, binormal and normal directions.

- •Rotating frame
- \bullet Easy to visualize propagations

SKEWNESS AND EXCESSͲKURTOSIS 5STATISTICAL ORBIT DETERMINATION:

Illustrating the non-Gaussian content of the PDF propagations of the MMS orbit for 1 period

- •Apogee as the initial condition
- •Perigee at true anomaly = 0°

Skewness: a measure of asymmetry (3rd order moment) $Skewness = \frac{E\{(X - \mu)^3\}}{E\{N \}}$ $[E\{(X-\mu)^2\}]^{3/2}$

Excess-Kurtosis: a measure of peak intensity

$$
(4th order moment)
$$

$$
Excess-Kurtosis = \frac{E\{(X-\mu)^4\}}{[E\{(X-\mu)^2\}]^2} - 3
$$

5STATISTICAL ORBIT DETERMINATION:

Estimation of state vector **X**: using the Extended Kalman Filter(EKF). using the Particle Filter for **1000** particles .

CASE 1: Over 1 orbital period with 4 measurements

CASE 2: CASE 1 **AND** an additional 4 orbital periods without measurements

PF code was developed for the Orbit Determination Toolbox (ODTBX) that uses some of its plotting capabilities. 21

5STATISTICAL ORBIT DETERMINATION:

CASE14/17 **: MEASUREMENT UPDATES**

Transformed Position States from XYZ $_{\epsilon \textit{C}\textit{I}}$ *to VNB*

5STATISTICAL ORBIT DETERMINATION:

CASE14/17 **: MEASUREMENT UPDATES**

Transformed Position States from XYZ $_{\epsilon \textit{C}\textit{I}}$ *to VNB*

5STATISTICAL ORBIT DETERMINATION:

CASE 2: PREDICTIONS

5STATISTICAL ORBIT DETERMINATION:

CASE 2: PREDICTIONS

SCENARIO B

Particle Filter for **1000 particles** vs. **GMM** using **UKF**

Scenario: Over 1 orbital period with 15 min measurement update at end of 1 period

View the State PDF at the Measurement Update instance: A) As planar contour plots B) As 3-D PDF plots

5STATISTICAL ORBIT DETERMINATION:

MEASUREMENT UPDATEDSTATE PDF

5STATISTICAL ORBIT DETERMINATION:

MEASUREMENT UPDATEDSTATE PDF

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
	- \bullet Decorrelation Background (PCA and ICA)
	- \bullet Dimensional Reduction Example and Simulations
	- \bullet Nonlinear Factor Analysis
	- \bullet Compression Methods (FFT and WT)
	- \bullet **•** Reconstruction Approach
	- \bullet Compression Rates
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

PCA finds the **principal components** in ^a new transformed coordinate system with the **greatest variance** as the **first component** and the subsequent ones follow. x,

Orbit parameters: eccentricity = 0.2, P₀ \rightarrow $\sigma^2_{x,y,z}$ = (1000m)² and $\sigma^2_{vx,vy, vz}$ = (1m/s)² 1 rev of propagation, Epoch of interest at perigee**,** Period ⁼ 18hrs

- •• Initial state dimension L = 6 *ICA or PCA* 4 components
	- •**•** Choice of 4 : Out-of-plane motion is decoupled from in-plane motion
		- Fundamental nonlinearity comes from Kepler's equation

DIMENSIONAL REDUCTION

- • *Demonstrate potential for augmented states not necessarily required for accurate state prediction* (Station location errors, Range biases etc)
- • The reconstructed distributions are measured using:
	- \bullet • The Kolmogorov-Smirnov (K-S) test

6

PDF COMPRESSION:

– Quantifies the max. distance D between the two Cumulative Distribution Functions (CDF)

$$
D_{ab} = \sup_X |F_a(X) - G_b(X)|
$$

- •The state particles are scaled to **canonical units**
- 80% a60% D_{ab} 40% b20% 417 446 461 473 486 498 510 522 534 547 560 572 585 ScoreCard 1 (12 2 09) Scoring Cumulative percentages of good Cumulative percentages of bad

EXAMPLE

- •Ensures equal weightings for velocity components (affects eigenvalues)
- •Distance : (1DU) ⁼ 6378.145km, Velocity : (1DU/ TU) ⁼ 7.90536828km/s 31

http://www.statsoft.com/Portals/0/Support/ks%20graph.JPG

DIMENSIONAL ∂Z **SIMULATION**

Original Data П Reconstructed Data

Shortcomings of PCA/ICA:

• **For high nonͲGaussian behavior the components were not fully decorrelated**

Solution

• **Use Nonlinear Factor Analysis**

The Nonlinear Factor Analysis (NFA) is ^a nonlinear mapping of the sources **^s** to the observations **x** modeled by ^a multilayer perceptron (MLP) network model.

NONLINEAR FACTOR ANALYSIS

6

PDF COMPRESSION:

$$
x = f(s, \theta) + n
$$

= $\mathcal{B}\phi(\mathcal{A}s + a) + b + n$
= $\mathcal{B}\tanh(\mathcal{A}s + a) + b + n$

Our goal is to estimate the sources **s** and the unknown variables $\theta = (A, B, \mathbf{a}, \mathbf{b})$

 $\mathcal{A} \in \mathfrak{R}^{H_n\times L}, \ \mathcal{B} \in \mathfrak{R}^{L\times H_n}$, $\mathsf{a} \in \mathfrak{R}^{H_n}$ and $\mathsf{b} \in \mathfrak{R}^L$ based on minimizing the cost function between the posterior p and the approximate q given by the Kullback-Leibler Divergenc ϵ metric *D*

$$
D(q(\Theta \mid \xi) \parallel p(\Theta \mid x, \mathcal{H})) = \int q(\Theta \mid \xi) \ln \frac{q(\Theta \mid \xi)}{p(\Theta \mid x, \mathcal{H})} d\Theta
$$

where Θ = { $\overline{\theta}$, $\widetilde{\theta}$ $\{\theta, \overline{s}, \tilde{s}\}$

are random variables

ξ and $\mathcal Z$ are some prior assumptions.

Ref: Theory and MATLAB code developed by Dr. Annti Honkela at Helsinki University of Technology, Finland

NONLINEAR FACTOR ANALYSIS

The prior assumptions ξ and $\boldsymbol{\mathcal{H}}$ are given as follows:

$$
x = \mathcal{E} \tanh(\mathcal{A} s + a) + b + n
$$

\n
$$
x \sim N(f(s, \theta), diag(e^{2V_n}))
$$

\n
$$
s \sim N(0, diag(e^{2V_s}))
$$

\nParameters
\n
$$
A, B, a, b \sim N(m_\theta, diag(e^{2V_\theta}))
$$

 $\overline{\Theta} = {\overline{A}, \overline{B}, \overline{a}, \overline{b}, \overline{s}}$ and $\tilde{\Theta}$: $\widetilde{\Theta} = \{ \widetilde{A}$ \tilde{A},\tilde{B} , *a* \mathcal{W} 9 $\tilde{}$ *b*,*s*}

are the solve-for parameters.

<u>Known</u>: x and priors for $\bar{\Theta}$ and $\tilde{\Theta}$ and

Hyperparameters:

$$
v_n, v_s, v_{B_j} \sim N(m_v, diag(e^{2V_v}))
$$

 $(m_a, \nu_a, m_b, \nu_b, m_{\nu_n}, \nu_{\nu_n}, m_{\nu_{B_i}}, \nu_{\nu_{B_i}}) \thicksim N(0,100^2)$ uninformative priors

The variance is parameterized to v = log σ

$$
D = \int q(\Theta | \xi) \ln \frac{q(\Theta | \xi)}{p(\Theta | x, \mathcal{H})} d\Theta
$$

\n
$$
= \int q(\Theta | \xi) \ln \frac{q(\Theta | \xi)}{p(\Theta, x | \mathcal{H})} d\Theta + \ln p(\mathcal{K} | \mathcal{H})
$$

\n
$$
C = \int q(\Theta | \xi) \ln \frac{q(\Theta | \xi)}{p(\Theta, x | \mathcal{H})} d\Theta
$$

\n
$$
C = E[\ln q(\Theta | \xi)] + E[-\ln p(\Theta, x | \mathcal{H})]
$$

\n
$$
\min C = C_q + C_p = E[\ln q(\Theta | \xi)] + E[-\ln p(\Theta, x | \mathcal{H})]
$$

\n
$$
w.r.t. \overline{\Theta} \text{ and } \tilde{\Theta}
$$

 ∂C $\partial\Theta$ $=\frac{\partial C_q}{\partial q}$ $\partial\Theta$ $+\frac{\partial C_{p}}{-}$ $\partial\Theta$ $=0$ and $\frac{\partial C}{\partial z}$ $\partial \tilde{\Theta}$ $=\frac{\partial C_q}{\partial x}$ $\frac{q}{\partial \tilde{\Theta}}+$ $\partial C_{_{p}}$ $\partial \tilde{\Theta}$ $= 0$ where Θ and Θ $\tilde{}$ are the mean and variance respectively

NONLINEAR FACTOR ANALYSIS

The obtained mean and variance terms for **s** and θ:

- \bullet mean **s:** L x N
- •variance **s:** L x N
- \bullet • mean θ : A(H_n x L), T(L x H_n), a (H_n x 1) and b (L x 1)
- •• variance θ : $\mathscr{A}(\mathsf{H}_{\mathsf{n}} \times \mathsf{L}),$ $\mathscr{B}(\mathsf{L} \times \mathsf{H}_{\mathsf{n}}),$ $\mathbf{a}(\mathsf{H}_{\mathsf{n}} \times \mathsf{1})$ and $\mathbf{b}(\mathsf{L} \times \mathsf{1})$

L : state dimensionN: No. particles H_n :No. Neurons

The variance terms for the sources **s** are assumed to be zero (and variances θ=0)

NONLINEAR FACTOR ANALYSIS

The obtained mean and variance terms for **s** and θ:

- \bullet mean **s:** L x N
- •variance **s:** L x N
- \bullet • mean θ : A(H_n x L), T(L x H_n), a (H_n x 1) and b (L x 1)
- •• variance θ : $\mathscr{A}(\mathsf{H}_{\mathsf{n}} \times \mathsf{L}),$ $\mathscr{B}(\mathsf{L} \times \mathsf{H}_{\mathsf{n}}),$ $\mathbf{a}(\mathsf{H}_{\mathsf{n}} \times \mathsf{1})$ and $\mathbf{b}(\mathsf{L} \times \mathsf{1})$

L : state dimensionN: No. particles H_n :No. Neurons

The variance terms for the sources **s** are assumed to be zero (and variances θ=0)

COMPRESSION METHODS

The uncorrelated sources **^s',** are binned into ^a 2⁷ histogram then transformed into ^a normalized discrete probability density function (PMF) p for compression.

FASTͲFOURIER TRANSFORM

•The FFT calculates the coefficients of the discrete PDF as follows:

 $c(k) = \sum p(j)e$ $-2\pi i$ *n* $\sum_{k=0}^{n} p(j)e^{\frac{-2\pi i}{n}(j-1)(k-1)}$ where $(k=1, n)$ p(j) is the discrete probability value $j=1$ normalized from the histogram

WAVELET TRANSFORM

• Use ^a wavelet filter (Daubechies 2) to extract terms that represent the PMF p as ^a function of approximate and detail coefficients

$$
\text{icients} \qquad \alpha_{j0}[n] = \sum_{k} p[k] * h[2n - k]
$$
\n
$$
\gamma_{j}[n] = \sum_{k} p[k] * g[2n - k]
$$
\n
$$
p(k) = \sum_{n = -\infty}^{\infty} ((\alpha_{j0}[n] * h[2n - k]) + (\gamma_{j}[n] * g[2n - k]))
$$
\n
$$
j0 \text{ is the first level of decomposition}
$$
\n
$$
j \text{ are the subsequent levels of decomposition}
$$
\n
$$
37
$$

RECONSTRUCTION APPROACH

The uncorrelated compressed PMF representations are reconstructed by taking the inverse transforms of the FFT and the WT.

\nIFFT: \n
$$
\hat{p}(j) = \sum_{k=1}^{m} c(k) e^{\frac{2\pi i}{n}(j-1)(k-1)}
$$
\nwhere \n $(j = 1, \, n)$ \nand \n $(m < n)$ \n

\n\nIVT: \n $\hat{p}(k) = \sum_{n=-F}^{F} \left(\left(\alpha_{j0}[n] * h[-k+2n] \right) + \left(\gamma_{j}[n] * g[-k+2n] \right) \right)$ \nwhere \n $(k = 1, \, n)$ \n

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
	- \bullet Highly non-Gaussian state
	- \bullet **•** Decorrelation
	- Compression
	- \bullet **•** Information Measures
	- \bullet Reconstructions
- 8 Conclusions and Future Work
- 9 Acknowledgements

7SIMULATIONS AND RESULTS

HIGHLYNONͲGAUSSIAN STATE

A planar eccentric orbit:

- \bullet *P0 variances (1 km)2 for position and (0.001 km/s)2 for velocity*
- •*Ephemeris at true anomalyફ⁼ 0o after 1 period*
- \bullet *N ⁼ 2000 particles*
- \bullet *Period 18.1013 hrs.*

Initial Condition **X₀:**

[28000 km, 0 km, 0 km/s, 4.1331 km/s]

41

7SIMULATIONS AND RESULTS

COMPRESSION

7SIMULATIONS AND RESULTS

INFORMATIONMEASURES

Cost of storing number of terms

However: need to quantify accuracies based on the state particle reconstructions

7IMULATIONS AND RES

INFORMATIONMEASURES

Cost of storing number of terms

However: need to quantify accuracies based on the state particle reconstructions

7SIMULATIONS AND RESULTS

RECONSTRUCTIO

7SIMULATIONS AND RESULTS

COMPRESSIONRATES

KLD distance is calculated at different compression rates: [0.1 0.3 0.5 0.7 0.9]

- \bullet The WT coefficients has ^a strong bias between the approximate and detail coefficients
- \bullet WT performs better at lower compression rates compared to the FFT

OUTLINE

- Introduction and Motivation
- Literature Review
- Approach
- Research Contributions
- Statistical Orbit Determination
- PDF Compression
- Simulations and Results
- Conclusions and Future Work
- Acknowledgements

CONCLUSIONS AND FUTURE WORK 1. Demonstrated the use of the Particle Filter:

- a) A nonlinear estimator
- b) Capable of incorporating non-Gaussian uncertainties during predictions
- 2. Demonstrated the use of the Independent Component Analysis (ICA) and Principal component analysis for dimensional reduction
- 3. Demonstrated the use of Nonlinear Factor Analysis (NFA) followed by FastICA to achieve uncorrelated states for PDF compression
- 4. The Wavelet Transform and the Fast-Fourier Transform demonstrated as effective methods for the compression and reconstruction of univariate PDFs.

POTENTIAL FUTURE WORK

- 1. Use other smooth functions to represent the PMF of the components versus WT and FFT for compression
- 2. Determine the limitations of NFA with respect to the number of particles (apart from computational cost)
- 3. Other nonlinear decorrelation methods could be implemented ex. The Nonlinear Independent Factor Analysis (NIFA) that uses Gaussian mixtures for sources

OUTLINE

- Introduction and Motivation
- Literature Review
- Approach
- Research Contributions
- Statistical Orbit Determination
- PDF Compression
- Simulations and Results
- Conclusions and Future Work
- Acknowledgements

ACKNOWLEDGEMENTS

- \bullet Faculty advisor Prof. J.L. Garrison
- \bullet NASA GSRP fellowship Technical Advisor Dr. J. Russell Carpenter
- \bullet Faculty committee members: Prof. Frazho and Prof. Howell
- \bullet NASA Goddard Space Flight Center and the Navigation and the Mission Design Branch (NMDB: Code 595) for the GSRP fellowship (2010-2013) Grant No. NNX10AL88H

Thank you.

CLASSICAL ESTIMATION METHODS

Extended Kalman Filter (LaViola 2003 et al)

- •Nonlinear models assuming Gaussian uncertainties
- •Linearization about ^a current mean (computes Jacobian)

CLASSICAL ESTIMATION METHODS (CONT.)

Unscented Kalman Filter (Julier and Uhlmann 2004 et al)

•Uses a series of weighted sample points to approximate the mean and covariance

$$
kurt(w^T x) = E\{(w^T x)^4\} - 3[E\{(w^T x)^2\}]^2 = E\{(w^T x)^4\} - 3||w||^4
$$

$$
J(w) = E\{(w^T x)^4\} - 3||w||^4 + F(||w||^2)
$$

F is a penalty term due to the constraint on w. The online learning algorithm has the form

FASTICA

$$
w(t+1) = w(t) \pm \mu(t) [x(t) (w(t)^T x(t))^3 - 3 ||w(t)||^2 w(t) + f(||w(t)||^2)w(t)]
$$

 μ is the learning rate sequence, f is the derivative of F/2

The first two terms in the brackets are the gradient of kurt(w*^T* x) and the third term is the gradient of $F(||w||^2)$.

The fixed points ^w of the learning rule takes the expectation of the learning rule and equating the change in weight to zero

 $E\{x(w^T x)^3\} - 3 ||w||^2 w + f(||w||^2)w = 0$ $w = scalar \times (E\{x(w^T x)^3\} - 3 ||w||^2 w)$

FastICA

 $w(k) = E\{x(w(k-1)^T x)^3\} - 3w(k-1)$

Divide w(k) by its norm (scalar \times w)

 $|w(k)^{T} w(k-1)| \rightarrow 1$, let k = k+1

NONLINEAR FACTOR ANALYSIS

The prior assumptions ξ and $\boldsymbol{\mathcal{H}}$ are given as follows:

The variance is parameterized to v = log σ

 $x \sim N(f(s, \theta), diag(e^{2V_n}))$ $s \sim N(0, diag(e^{2V_s}))$ Parameters $A \sim N(0,I)$ $B_i \sim N(0, diag(e^{2V_{B_j}}))$ $a \sim N(m_a, diag(e^{2V_a}))$ $b \sim N(m_b, diag(e^{2V_b}))$ Hyperparameters: $v_n \sim N(m_{v_n}, diag(e^{2V_{v_n}}))$ $v_s \sim N(m_{v_x}, diag(e^{2V_{v_s}}))$ $v_{B_j} \sim N(m_{v_{B_j}}, diag(e^{2V_{v_{B_j}}}))$

 $D = \int q(\Theta | \xi) \ln \frac{q(\Theta | \xi)}{p(\Theta | x, \mathcal{H})} d\Theta$ $= \int q(\Theta|\xi) \ln \frac{q(\Theta|\xi)}{q(\Theta|\xi)}$ $p(\Theta, x \,|\, \mathcal{H})$ $\int q(\Theta|\xi) \ln \frac{q(\Theta|\xi)}{(\Theta|\xi)^d} d\Theta + \ln p(x|\xi)$ $C = \int q(\Theta | \xi) \ln \frac{q(\Theta | \xi)}{p(\Theta, x | \mathcal{H})} d\Theta$ $C = E[\ln q(\Theta | \xi)] + E[-\ln p(\Theta, x | \mathcal{H})]$ $\min C = C_q + C_p = E[\ln q(\Theta | \xi)] + E[-\ln p(\Theta, x | \mathcal{H})]$ w.r.t. $\bar{\Theta}$ and $\tilde{\Theta}$ ∂C $\partial\Theta$ $=\frac{\partial C_q}{\partial q}$ $\partial\Theta$ $+\frac{\partial C_{p}}{-}$ $\partial\Theta$ $=0$ and $\frac{\partial C}{\partial z}$ $\partial \tilde{\Theta}$ $=\frac{\partial C_q}{\partial x}$ $\frac{q}{\partial \tilde{\Theta}}+$ $\partial C_{_{p}}$ $\partial \tilde{\Theta}$ $= 0$ where Θ and Θ $\tilde{}$ are the mean and variance respectively

 $(m_a, \nu_a, m_b, \nu_b, m_{\nu_n}, \nu_{\nu_n}, m_{\nu_{B_j}}, \nu_{\nu_{B_j}}) \thicksim N(0,100^2)$ uninformative priors

$$
C = C_q + C_p = E[\ln q(s, \theta | \xi)] + E[-\ln p(s, \theta, x | H)]
$$

\n
$$
C_q : \sum_{i,N} E[\ln q(s_i(N))] + \sum_j E[\ln q(\theta_j)] = \sum_{all_terms} -\frac{1}{2} - \frac{1}{2} \ln(2\pi\tilde{\Theta}_j)
$$

\n
$$
q(s_i(N)) = N(s_i(N); \overline{s}_i(N), \tilde{s}_i(N)), \qquad q(\theta_j) = N(\theta_j; \overline{\theta_j}, \tilde{\theta_j})
$$

\n
$$
p(s) = N(s; 0, diag(\exp(2v_s))
$$

\n
$$
C_p : E[-\ln p(s, \theta, x | H)] = E[-\ln p(x | s, \theta, H)] + E[-\ln p(s | \theta, H)] + E[-\ln p(\theta | H)]
$$

\n
$$
\theta \sim N(m, \exp(2v));
$$

\n
$$
E[-\ln p(\theta | m, v, H)] = \iint -\ln N(\theta; m, \exp(2v)) q(m) q(v) dm dv
$$

\n
$$
= \frac{1}{2} \ln(2\pi) + \overline{v}_{\theta} + [(\overline{\theta} - \overline{m}_{\theta})^2 + \tilde{\theta} + \tilde{m}_{\theta}] \exp(2\tilde{v}_{\theta} - 2\overline{v}_{\theta})
$$

\nwhere
\n
$$
\ln p(\theta | m, v, H) = \ln \left[\frac{1}{\sqrt{2\pi \exp(2v_{\theta})}} \exp \left(-\frac{(\theta - m_{\theta})^2}{2 \exp(2v_{\theta})} \right) \right]
$$

$$
-58
$$

The uncorrelated sources **^s',** are binned into ^a 2⁷ histogram then transformed into ^a normalized discrete PMF p for compression.

COMPRESSION METHODS

FASTͲFOURIER TRANSFORM

•The FFT calculates the coefficients of the discrete PMF as follows:

 $c(k) = \sum p(j)e$ $-2\pi i$ *n* $(j-1)(k-1)$ *j*=1 $\sum_{k=0}^{n} p(j)e^{\frac{-2\pi i}{n}(j-1)(k-1)}$ where $(k=1, n)$ p(j) is the discrete probability value normalized from the histogram

WAVELET TRANSFORM

• Use ^a wavelet filter (Daubechies 2) to extract terms that represent the function p as a function of approximate and detail coefficients

$$
p(k) \longrightarrow B[k] \longrightarrow Q
$$
 Details
coefficients

$$
p(k) = \sum_{n=-\infty}^{\infty} ((\alpha_{j0}[n] \cdot h[2n-k]) + (\gamma_j[n] \cdot g[2n-k]))
$$

j0 is the first level of decomposition

j are the subsequent levels of decomposition

59 $c[k] = (p * f)[k] = \sum p[n] * f[2k - n]$ *n*=−∞ $\sum_{n=1}^{\infty} p[n] * f[2k - n],$ $\textsf{where}\, f = \ \{h, g\},\ c[k]\!=\!\{\alpha_{j0}[k], \gamma_{j}[k]\}$ $\alpha_{j0}[k] = \sum p[n] * h[2k - n]$ *n* \sum $\gamma_j[k] = \sum p[n] * g[2k - n]$ *n*

WAVELETCOMPRESSION

60

8CONCLUSIONS AND FUTURE WORK:

CONCLUSIONS

- 1. Demonstrated the use of the Particle Filter:
	- 1. A nonlinear estimator
	- 2. Capable of incorporating non-Gaussian uncertainties during predictions
- 2. Demonstrated the use of the Independent Component Analysis (ICA) and Principal component analysis for dimensional reduction
- 3. Demonstrated the use of Nonlinear Factor Analysis (NFA) followed by FastICA to achieve uncorrelated states for PDF compression
- 4. The Wavelet Transform demonstrated better compression results over lower compression rates compared to the Fast-Fourier Transform
- 5. The Kullback-Leibler divergence and the Kolomogorov-Smirnov tests were used as Information measures to quantify the reconstructions
- 6. Ephemeris compression and reconstruction were able to achieve great results for compression rates
- 7. The reduced number of terms can be potentially used for cataloging accurate non-Gaussian distributed ephemeris 61

8CONCLUSIONS AND FUTURE WORK:

FUTURE WORK

- 1. Implementation of the Particle Filter using adaptive number of samples for numeric efficiency and redundancy elimination.
- 2. Include ^a higher fidelity force model to incorporate additional relevant perturbations such as atmospheric drag, solar radiation pressure, third body perturbations (Sun and moon), J2 effects etc.
- 3. Develop ^a systematic way of determining the number of hidden neurons to use as well as the number of iterations during the training phase (possibly optimize based on constraints)
- 4. Other decorrelation methods that do not assume Gaussian initial conditions as the NFAdoes, could be implemented ex. The Nonlinear Independent Factor Analysis (NIFA) (nonlinear counterpart of the ICA)
- 5. Optimize the value n in the determination of the number of bins $2ⁿ$ for the histogram generator
- 6. Use other smooth functions to represent the PDF of the components versus ^a PMF before compression
- 7. Determine the limitations of NFA, NIFA with the number of particles (apart from computational cost)