

INFORMATION MEASURES FOR STATISTICAL ORBIT DETERMINATION USING NONLINEAR FILTERS Presenter: Dr. Alinda Mashiku

Collaborators: Prof. James Garrison Dr. Russell Carpenter

> UMD Seminar Presentation April 29th 2013

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

OUTLINE

1 Introduction and Motivation

- Research Significance
- Statistical Orbit Determination
- State Estimate Uncertainty Characterization
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

1. INTRODUCTION AND MOTIVATION:

RESEARCH SIGNIFICANCE

PROBLEM

In 2009, the U.S Strategic Command space objects (assets and debris) tracking update:

- ≈ 19,000 space objects (diameter >10 cm) are being tracked
- > 600,000 space objects (10cm >diameter>1 cm) are unobserved

Recent impacts have also added more objects (space debris) to track:

- Satellite Collision Russian Cosmos 2251 and the Iridium satellite in 2009
- Destruction of Chinese satellite in 2007

REQUIREMENTS

Space objects require:

- Collision avoidance mitigations
- Orbit maintenance/maneuvers (assets)
- Cataloging and identification (debris)

Specifics for the requirements:

- Performed within required accuracies
- Cost effective: Applicable to large numbers of space objects

INTRODUCTION AND MOTIVATION: STATISTICAL ORBIT DETERMINATION

1. INTRODUCTION AND MOTIVATION:

UNCERTAINTY CHARACTERIZATION

CURRENT LIMITATIONS

State estimate's uncertainty

- Covariance Matrix is not enough
- Gaussian representation ignores the information in the heavy tails

PROBLEM STATEMENT

1. Need **Full Probability Density Function (PDF) representation** for **low probability** events present in the **heavy tails** (Non-Gaussian)

Uncertainty

Region

- 2. Use a nonlinear filter that is capable of full non-Gaussian PDF state estimation
- 3. Need a **compressed representation** of this **PDF distribution** for real case scenario applications

Covariance

Matrix

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
 - OD Current Estimation Methods (EKF and UKF)
 - PDF approximation (GMM and PCE)
 - Particle Filter
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

OD CURRENT ESTIMATION METHODS

- Extended Kalman Filter (EKF) (Tapley, Shutz and Born 2004)
 - Nonlinear models assuming Gaussian uncertainties
 - Linearization about a current mean (computes Jacobian)
- Unscented Kalman Filter (UKF) (Julier and Uhlmann 1997 et al)
 - Uses a series of weighted sample points to approximate the mean and covariance

http://ars.els-cdn.com/content/image/1-s2.0-S0021999108000132-gr4.jpg

- Batch Weighted Least Squares (Gauss 1809)
 - Estimates the state x by minimizing the performance index $J(x) = \frac{1}{2} \varepsilon^T W \varepsilon$

PDF APPROXIMATION METHOD

• Gaussian Mixtures Model (GMM) (DeMars et al 2011)

 $p(x) = \sum_{i=1}^{L} w_i p_g(x; \mu_i, P_i)$

where p_{g} is a Gaussian PDF

- Differential entropy d/dt[H(x)] is used as a measure of nonlinear detection
- Uses UKF as a filter for each p_g

Entropy
$$H(x) = \frac{1}{2} \log |2\pi eP|$$

- Polynomial Chaos Expansion (PCE) (Jones et al 2012)
 - Solution of the Stochastic Differential Equations as linear expansions of multivariate polynomials
 - PCE estimates the coefficients c_{α} of the expansion

$$\widehat{X}(t,\xi) = \sum_{\alpha \in \Lambda_{p,d}} c_{\alpha}(t) \psi_{\alpha}(\xi)$$

My approach:

Propose using the Particle Filter

- Fully captures **PDF (Probability Density Function)** distribution
- Uses a large number of samples to approach the **optimal estimate**

PARTICLE FILTER

The Particle Filter (PF) is a sequential nonlinear estimator that

- Uses random independent particles to represent the random state **x** as a PDF
- As N increases, we reach the optimal PDF representation

Figure Ref: Bhaskar Saha, Introduction to Particle Filter. Ames Research Center. April 16, 2008

GENERIC PARTICLE FILTER ALGORITHM

PARTICLE FILTER

MAJOR DRAWBACK:

Sample Degeneracy when data outliers occur or when measurement noise is small

CIRCUMVENTION:

- Resampling of particles (N_{effective samples} < N_{threshold})
- Adaptive PF: Soto (2005), Gang and Xiao-Jun (2008), Hwang and Speyer (2011).
- Other PF Methods studied: Auxiliary Particle Filter, Regularized Particle Filter, Rao-Blackwell/Marginalized Particle Filter

Our Approach for PF in Statistical Orbit Determination:

Used Generic Particle Filter

- Effective: sporadic measurements
- "Jitter" resampled particles by adding noise

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

RESEARCH CONTRIBUTIONS

Demonstrated the use of the PF as a statistical OD method for non-linear state estimation and uncertainty predictions as a full state PDF

Used **nonlinear multivariate decorrelation** methods to decorrelate the multivariate state PDF

Performed **univariate uncorrelated state PDF compressions** for data allocation and transmission **cost reductions**

Demonstrated the **potential** for **cost effective ephemeris storage** for the **cataloging of space objects and debris**

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

The VBN frame is the reference path orbital velocity, binormal and normal directions.

- Rotating frame
- Easy to visualize propagations

SKEWNESS AND EXCESS-KURTOSIS

Illustrating the non-Gaussian content of the PDF propagations of the MMS orbit for 1 period

- Apogee as the initial condition
- Perigee at true anomaly = 0°

Skewness: a measure of asymmetry (3rd order moment)

Skewness =
$$\frac{E\{(X-\mu)^3\}}{[E\{(X-\mu)^2\}]^{3/2}}$$

Excess-Kurtosis: a measure of peak intensity

(4th order moment)

$$Excess - Kurtosis = \frac{E\{(X-\mu)^4\}}{[E\{(X-\mu)^2\}]^2} - 3 \qquad 20$$

SCENARIO A

Estimation of state vector **X**: using the Extended Kalman Filter(EKF). using the Particle Filter for 1000 particles.

CASE 1: Over 1 orbital period with 4 measurements

CASE 2: CASE 1 **AND** an additional 4 orbital periods without measurements

PF code was developed for the Orbit Determination Toolbox (ODTBX) that uses some of its plotting capabilities. 21

CASE 1 : MEASUREMENT UPDATES

Transformed Position States from XYZ_{ECI} to VNB

CASE 1 : MEASUREMENT UPDATES

Transformed Position States from XYZ_{FCI} to VNB

CASE 2 : PREDICTIONS

CASE 2 : PREDICTIONS

Particle Filter for 1000 particles vs. GMM using UKF

Scenario: Over 1 orbital period with 15 min measurement update at end of 1 period

View the State PDF at the Measurement Update instance: A) As planar contour plots B) As 3-D PDF plots

MEASUREMENT UPDATED STATE PDF

z-Position

MEASUREMENT UPDATED STATE PDF

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
 - Decorrelation Background (PCA and ICA)
 - Dimensional Reduction Example and Simulations
 - Nonlinear Factor Analysis
 - Compression Methods (FFT and WT)
 - Reconstruction Approach
 - Compression Rates
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

PCA finds the **principal components** in a new transformed coordinate system with the **greatest variance** as the **first component** and the subsequent ones follow.

DIMENSIONAL REDUCTION EXAMPLE

Orbit parameters: eccentricity = 0.2, $P_0 \rightarrow \sigma^2_{x,y,z}$ = (1000m)² and $\sigma^2_{vx,vy,vz}$ = (1m/s)² 1 rev of propagation, Epoch of interest at perigee, Period = 18hrs

- Initial state dimension L = 6 <u>ICA or PCA</u> 4 components
 - Choice of 4 : Out-of-plane motion is decoupled from in-plane motion
 - Fundamental nonlinearity comes from Kepler's equation
 - Demonstrate potential for augmented states not necessarily required for accurate state prediction (Station location errors, Range biases etc)
- The reconstructed distributions are measured using:
 - The Kolmogorov-Smirnov (K-S) test
 - Quantifies the max. distance D between the two Cumulative Distribution Functions (CDF)

$$D_{ab} = \sup_{X} \left| F_a(X) - G_b(X) \right|$$

- The state particles are scaled to canonical units
- KS graph KS=0.476
- Ensures equal weightings for velocity components (affects eigenvalues)
- Distance : (1DU) = 6378.145km, Velocity : (1DU/TU) = 7.90536828km/s

31

DIMENSIONAL REDUCTION SIMULATION

Reconstructed Data		
Excess Kurtosis	ΡϹΑ	ICA
1 st	1.30	24.39
2 nd	22.66	2.55
3 rd	0.46	0.02
4 th	-0.08	-0.4

Original Data

Shortcomings of PCA/ICA:

 For high non-Gaussian behavior the components were not fully decorrelated

<u>Solution</u>

Use Nonlinear Factor
 Analysis
 32

NONLINEAR FACTOR ANALYSIS

The Nonlinear Factor Analysis (NFA) is a nonlinear mapping of the sources **s** to the observations **x** modeled by a multilayer perceptron (MLP) network model.

$$x = f(s,\theta) + n$$

= $\mathcal{B}\phi(\mathcal{A}s + a) + b + n$
= $\mathcal{B} \tanh(\mathcal{A}s + a) + b + n$

Our goal is to estimate the sources **s** and the unknown variables $\theta = (\mathcal{A}, \mathcal{B}, \mathbf{a}, \mathbf{b})$

 $\mathcal{A} \in \mathfrak{R}^{H_n \times L}$, $\mathcal{B} \in \mathfrak{R}^{L \times H_n}$, $\mathbf{a} \in \mathfrak{R}^{H_n}$ and $\mathbf{b} \in \mathfrak{R}^L$ based on minimizing the cost function between the posterior p and the approximate q given by the Kullback-Leibler Divergence metric D

$$D(q(\Theta \mid \xi) \parallel p(\Theta \mid x, \mathcal{H})) = \int q(\Theta \mid \xi) \ln \frac{q(\Theta \mid \xi)}{p(\Theta \mid x, \mathcal{H})} d\Theta$$

where $\Theta = \{\overline{\theta}, \widetilde{\theta}, \overline{s}, \widetilde{s}\}$ are random variables

ξ and \mathcal{P} are some prior assumptions.

Ref: Theory and MATLAB code developed by Dr. Annti Honkela at Helsinki University of Technology, Finland

NONLINEAR FACTOR ANALYSIS

The prior assumptions ξ and \mathcal{P} are given as follows:

$$x = \mathscr{E} \tanh(\mathscr{A}s + a) + b + n$$

$$x \sim N(f(s, \theta), diag(e^{2V_n}))$$

$$s \sim N(0, diag(e^{2V_s}))$$
Parameters
$$A, B, a, b \sim N(m_{\theta}, diag(e^{2V_{\theta}}))$$

 $\overline{\Theta} = \{\overline{A}, \overline{B}, \overline{a}, \overline{b}, \overline{s}\} \text{ and}$ $\widetilde{\Theta} = \{\widetilde{A}, \widetilde{B}, \widetilde{a}, \widetilde{b}, \widetilde{s}\}$

are the solve-for parameters.

Known: x and priors for $\overline{\Theta}$ and $\widetilde{\Theta}$ and

Hyperparameters:

$$v_n, v_s, v_{B_i} \sim N(m_v, diag(e^{2V_v}))$$

 $(m_a, v_a, m_b, v_b, m_{v_n}, v_{v_n}, m_{v_{B_i}}, v_{v_{B_i}}) \sim N(0, 100^2)$ uninformative priors

The variance is parameterized to v = log σ

$$D = \int q(\Theta \mid \xi) \ln \frac{q(\Theta \mid \xi)}{p(\Theta \mid x, \mathcal{H})} d\Theta$$

$$= \int q(\Theta \mid \xi) \ln \frac{q(\Theta \mid \xi)}{p(\Theta, x \mid \mathcal{H})} d\Theta + \ln p(x \mid \mathcal{H})$$

$$C = \int q(\Theta \mid \xi) \ln \frac{q(\Theta \mid \xi)}{p(\Theta, x \mid \mathcal{H})} d\Theta$$

$$C = E[\ln q(\Theta \mid \xi)] + E[-\ln p(\Theta, x \mid \mathcal{H})]$$

$$\min C = C_q + C_p = E[\ln q(\Theta \mid \xi)] + E[-\ln p(\Theta, x \mid \mathcal{H})]$$

$$w.r.t. \overline{\Theta} \text{ and } \widetilde{\Theta}$$

$$\frac{\partial C}{\partial \overline{\Theta}} = \frac{\partial C_q}{\partial \overline{\Theta}} + \frac{\partial C_p}{\partial \overline{\Theta}} = 0 \quad and \quad \frac{\partial C}{\partial \overline{\Theta}} = \frac{\partial C_q}{\partial \overline{\Theta}} + \frac{\partial C_p}{\partial \overline{\Theta}} = 0$$

where $\bar{\Theta}$ and $\tilde{\Theta}$ are the mean and variance respectively

NONLINEAR FACTOR ANALYSIS

The obtained mean and variance terms for **s** and θ :

- mean **s:** L x N
- variance **s:** L x N
- mean θ : $\mathcal{A}(H_n \times L)$, $\mathcal{B}(L \times H_n)$, $\mathbf{a}(H_n \times 1)$ and $\mathbf{b}(L \times 1)$
- variance θ : $\mathcal{A}(H_n \times L)$, $\mathcal{E}(L \times H_n)$, $\mathbf{a}(H_n \times 1)$ and $\mathbf{b}(L \times 1)$

L : state dimension N: No. particles H_n :No. Neurons

The variance terms for the sources **s** are assumed to be zero (and variances θ =0)

NONLINEAR FACTOR ANALYSIS

The obtained mean and variance terms for **s** and θ :

- mean **s:** L x N
- variance **s:** L x N
- mean θ : $\mathcal{A}(H_n \times L)$, $\mathcal{B}(L \times H_n)$, $\mathbf{a}(H_n \times 1)$ and $\mathbf{b}(L \times 1)$
- variance θ : $\mathcal{A}(H_n \times L)$, $\mathcal{E}(L \times H_n)$, $\mathbf{a}(H_n \times 1)$ and $\mathbf{b}(L \times 1)$

L : state dimension N: No. particles H_n :No. Neurons

The variance terms for the sources **s** are assumed to be zero (and variances $\theta=0$)

COMPRESSION METHODS

The uncorrelated sources **s'**, are binned into a 2⁷ histogram then transformed into a normalized discrete probability density function (PMF) p for compression.

FAST-FOURIER TRANSFORM

• The FFT calculates the coefficients of the discrete PDF as follows:

$$c(k) = \sum_{j=1}^{n} p(j) e^{\frac{-2\pi i}{n}(j-1)(k-1)}$$
 where $(k = 1, n)$ p(j) is the discrete probability value normalized from the histogram

WAVELET TRANSFORM

Use a wavelet filter (Daubechies 2) to extract terms that represent the PMF p as a function of approximate and detail coefficients

icients

$$\alpha_{j0}[n] = \sum_{k} p[k] * h[2n-k]$$

$$\gamma_{j}[n] = \sum_{k} p[k] * g[2n-k]$$

$$p(k) = \sum_{n=-\infty}^{\infty} ((\alpha_{j0}[n] * h[2n-k]) + (\gamma_{j}[n] * g[2n-k]))$$

$$j0 \text{ is the first level of decomposition}$$

$$j \text{ are the subsequent levels of decomposition}$$

$$37$$

RECONSTRUCTION APPROACH

The uncorrelated compressed PMF representations are reconstructed by taking the inverse transforms of the FFT and the WT.

IFFT:
$$\hat{p}(j) = \sum_{k=1}^{m} c(k) e^{\frac{2\pi i}{n}(j-1)(k-1)}$$
 where $(j = 1, n)$ and $(m < n)$
IWT: $\hat{p}(k) = \sum_{n=-F}^{F} ((\alpha_{j0}[n] * h[-k+2n]) + (\gamma_j[n] * g[-k+2n]))$ where $(k = 1, n)$

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
 - Highly non-Gaussian state
 - Decorrelation
 - Compression
 - Information Measures
 - Reconstructions
- 8 Conclusions and Future Work
- 9 Acknowledgements

HIGHLY NON-GAUSSIAN STATE

A planar eccentric orbit:

- P_0 variances (1 km)² for position and (0.001 km/s)² for velocity
- Ephemeris at true anomaly $\theta = 0^{\circ}$ after 1 period
- *N* = 2000 particles
- Period 18.1013 hrs.

Initial Condition X₀:

[28000 km, 0 km, 0 km/s, 4.1331 km/s]

Orbital Elements	Numerical Value
а	42,000 km
е	0.2
i	0 rad
Ω	0 rad
ω	0 rad
M _e	0
Period	18.1013 hrs

COMPRESSION

INFORMATION MEASURES

TERMS	# TERMS WT	# TERMS FFT
Coefficients c	273	260
Wavelet Filters	8	N/A
Abscissa PDF	12	12
Mixing Matrix A	16	16
Mean(s) = τ	4	4
A	80	80
а	20	20
8	80	80
b	4	4
V _A	80	80
V _a	20	20
٧ ₈	80	80
V _b	4	4
TOTAL TERMS	681	660

Cost of storing number of terms

Method	# Terms	Cost (Method/PF)
PF Predictions	8000	1
WT Compressions	681	0.0851
FFT Compressions	660	0.0825

<u>However</u>: need to quantify accuracies based on the state particle reconstructions

INFORMATION MEASURES

TERMS	# TERMS WT	# TERMS FFT
Coefficients c	273	260
Wavelet Filters	8	N/A
Abscissa PDF	12	12
Mixing Matrix A	16	16
Mean(s) = τ	4	4
A	80	80
а	20	20
В	80	80
b	4	4
TOTAL TERMS	497	476

Cost of storing number of terms

Method	# Terms	Cost (Method/PF)
PF Predictions	8000	1
WT Compressions	497	0.0621
FFT Compressions	476	0.0595

<u>However</u>: need to quantify accuracies based on the state particle reconstructions

RECONSTRUCTIONS

COMPRESSION RATES

KLD distance is calculated at different compression rates: [0.1 0.3 0.5 0.7 0.9]

• The WT coefficients has a strong bias between the approximate and detail coefficients

• WT performs better at lower compression rates compared to the FFT

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

CONCLUSIONS AND FUTURE WORK

- 1. Demonstrated the use of the Particle Filter:
 - a) A nonlinear estimator
 - b) Capable of incorporating non-Gaussian uncertainties during predictions
- 2. Demonstrated the use of the Independent Component Analysis (ICA) and Principal component analysis for dimensional reduction
- 3. Demonstrated the use of Nonlinear Factor Analysis (NFA) followed by FastICA to achieve uncorrelated states for PDF compression
- 4. The Wavelet Transform and the Fast-Fourier Transform demonstrated as effective methods for the compression and reconstruction of univariate PDFs.

POTENTIAL FUTURE WORK

- 1. Use other smooth functions to represent the PMF of the components versus WT and FFT for compression
- 2. Determine the limitations of NFA with respect to the number of particles (apart from computational cost)
- 3. Other nonlinear decorrelation methods could be implemented ex. The Nonlinear Independent Factor Analysis (NIFA) that uses Gaussian mixtures for sources

OUTLINE

- 1 Introduction and Motivation
- 2 Literature Review
- 3 Approach
- 4 Research Contributions
- 5 Statistical Orbit Determination
- 6 PDF Compression
- 7 Simulations and Results
- 8 Conclusions and Future Work
- 9 Acknowledgements

ACKNOWLEDGEMENTS

- Faculty advisor Prof. J.L. Garrison
- NASA GSRP fellowship Technical Advisor Dr. J. Russell Carpenter
- Faculty committee members: Prof. Frazho and Prof. Howell
- NASA Goddard Space Flight Center and the Navigation and the Mission Design Branch (NMDB: Code 595) for the GSRP fellowship (2010-2013) Grant No. NNX10AL88H

QUESTIONS

Thank you.

CLASSICAL ESTIMATION METHODS

Extended Kalman Filter (LaViola 2003 et al)

- Nonlinear models assuming Gaussian uncertainties
- Linearization about a current mean (computes Jacobian)

CLASSICAL ESTIMATION METHODS (CONT.)

Unscented Kalman Filter (Julier and Uhlmann 2004 et al)

• Uses a series of weighted sample points to approximate the mean and covariance

FASTICA

$$kurt(w^{T}x) = E\{(w^{T}x)^{4}\} - 3[E\{(w^{T}x)^{2}\}]^{2} = E\{(w^{T}x)^{4}\} - 3||w||^{4}$$

 $J(w) = E\{(w^{T}x)^{4}\} - 3 ||w||^{4} + F(||w||^{2})$

F is a penalty term due to the constraint on w. The online learning algorithm has the form

$$w(t+1) = w(t) \pm \mu(t) [x(t)(w(t)^{T} x(t))^{3} - 3 || w(t) ||^{2} w(t) + f(|| w(t) ||^{2}) w(t)]$$

 μ is the learning rate sequence, f is the derivative of F/2

The first two terms in the brackets are the gradient of kurt($w^T x$) and the third term is the gradient of $F(||w||^2)$.

The fixed points w of the learning rule takes the expectation of the learning rule and equating the change in weight to zero

 $E\{x(w^{T}x)^{3}\} - 3 ||w||^{2} w + f(||w||^{2})w = 0$ w = scalar × (E{x(w^{T}x)^{3}} - 3 ||w||^{2} w)

FastICA

$$w(k) = E\{x(w(k-1)^T x)^3\} - 3w(k-1)$$

Divide w(k) by its norm (scalar × w)

 $|w(k)^T w(k-1)| \rightarrow 1$, let k = k+1

NONLINEAR FACTOR ANALYSIS

The prior assumptions ξ and \mathcal{P} are given as follows:

The variance is parameterized to $v = \log \sigma$

 $x \sim N(f(s,\theta), diag(e^{2V_n}))$ $s \sim N(0, diag(e^{2V_s}))$ **Parameters** $A \sim N(0, I)$ $B_i \sim N(0, diag(e^{2V_{B_j}}))$ $a \sim N(m_a, diag(e^{2V_a}))$ $b \sim N(m_b, diag(e^{2V_b}))$ Hyperparameters: $v_n \sim N(m_{v_n}, diag(e^{2V_{v_n}}))$ $v_s \sim N(m_{v_s}, diag(e^{2V_{v_s}}))$ $v_{B_i} \sim N(m_{v_{R_i}}, diag(e^{2v_{v_{B_j}}}))$

 $D = \int q(\Theta \mid \xi) \ln \frac{q(\Theta \mid \xi)}{p(\Theta \mid x, \mathcal{H})} d\Theta$ $= \int q(\Theta \mid \xi) \ln \frac{q(\Theta \mid \xi)}{p(\Theta, x \mid \mathcal{H})} d\Theta + \ln p(x \mid \mathcal{H})$ $C = \int q(\Theta \,|\, \xi) \ln \frac{q(\Theta \,|\, \xi)}{p(\Theta, x \,|\, \mathcal{H})} d\Theta$ $C = E[\ln q(\Theta | \xi)] + E[-\ln p(\Theta, x | \mathcal{H})]$ $\min C = C_q + C_p = E[\ln q(\Theta \mid \xi)] + E[-\ln p(\Theta, x \mid \mathcal{H})]$ w.r.t. $\overline{\Theta}$ and $\widetilde{\Theta}$ $\frac{\partial C}{\partial \overline{\Theta}} = \frac{\partial C_q}{\partial \overline{\Theta}} + \frac{\partial C_p}{\partial \overline{\Theta}} = 0 \quad and \quad \frac{\partial C}{\partial \overline{\Theta}} = \frac{\partial C_q}{\partial \overline{\Theta}} + \frac{\partial C_p}{\partial \overline{\Theta}} = 0$ where Θ and Θ are the mean and variance respectively

 $(m_a, v_a, m_b, v_b, m_{v_n}, v_{v_n}, m_{v_{B_i}}, v_{v_{B_i}}) \sim N(0, 100^2)$ uninformative priors

$$\begin{split} C &= C_q + C_p = E[\ln q(s, \theta \mid \xi)] + E[-\ln p(s, \theta, x \mid \mathsf{H})] \\ C_q &: \sum_{i,N} E[\ln q(s_i(N))] + \sum_j E[\ln q(\theta_j)] = \sum_{all_terms} -\frac{1}{2} - \frac{1}{2} \ln(2\pi \tilde{\Theta}_j) \\ q(s_i(N)) &= N(s_i(N); \overline{s}_i(N), \tilde{s}_i(N)), \qquad q(\theta_j) = N(\theta_j; \overline{\theta}_j, \tilde{\theta}_j) \\ p(s) &= N(s; 0, diag(\exp(2v_s))) \\ C_p &: E[-\ln p(s, \theta, x \mid \mathsf{H})] = E[-\ln p(x \mid s, \theta, \mathsf{H})] + E[-\ln p(s \mid \theta, \mathsf{H})] + E[-\ln p(\theta \mid \mathsf{H})] \\ \theta \sim N(m, \exp(2v)); \\ E[-\ln p(\theta \mid m, v, \mathsf{H})] &= \iint -\ln N(\theta; m, \exp(2v))q(m)q(v)dmdv \\ &= \frac{1}{2} \ln(2\pi) + \overline{v}_{\theta} + [(\overline{\theta} - \overline{m}_{\theta})^2 + \widetilde{\theta} + \widetilde{m}_{\theta}] \exp(2\widetilde{v}_{\theta} - 2\overline{v}_{\theta}) \end{split}$$

where

$$\ln p(\theta \mid m, v, \mathsf{H}) = \ln \left[\frac{1}{\sqrt{2\pi \exp(2v_{\theta})}} \exp \left(-\frac{(\theta - m_{\theta})^2}{2\exp(2v_{\theta})} \right) \right]$$

COMPRESSION METHODS

The uncorrelated sources s', are binned into a 2⁷ histogram then transformed into a normalized discrete PMF p for compression.

FAST-FOURIER TRANSFORM

The FFT calculates the coefficients of the discrete PMF as follows:

 $c(k) = \sum_{i=1}^{n} p(j)e^{\frac{-2\pi i}{n}(j-1)(k-1)}$ where (k = 1, n) p(j) is the discrete probability value normalized from the histogram

WAVELET TRANSFORM

j0

Use a wavelet filter (Daubechies 2) to extract terms that represent the function p as a function of approximate and detail coefficients

$$p(k) = \sum_{n=-\infty}^{\infty} ((\alpha_{j0}[n] \cdot h[2n-k]) + (\gamma_j[n] \cdot g[2n-k]))$$

$$j0 \text{ is the first level of decomposition}$$

i are the subsequent levels of decomposition

 $c[k] = (p * f)[k] = \sum_{n=-\infty}^{\infty} p[n] * f[2k-n],$ where $f = \{h, g\}, c[k] = \{\alpha_{i0}[k], \gamma_i[k]\}$ $\alpha_{j0}[k] = \sum p[n] * h[2k-n]$ $\gamma_j[k] = \sum^n p[n] * g[2k-n]$ 59

WAVELET COMPRESSION

60

8 CONCLUSIONS AND FUTURE WORK:

CONCLUSIONS

- 1. Demonstrated the use of the Particle Filter:
 - 1. A nonlinear estimator
 - 2. Capable of incorporating non-Gaussian uncertainties during predictions
- 2. Demonstrated the use of the Independent Component Analysis (ICA) and Principal component analysis for dimensional reduction
- 3. Demonstrated the use of Nonlinear Factor Analysis (NFA) followed by FastICA to achieve uncorrelated states for PDF compression
- 4. The Wavelet Transform demonstrated better compression results over lower compression rates compared to the Fast-Fourier Transform
- 5. The Kullback-Leibler divergence and the Kolomogorov-Smirnov tests were used as Information measures to quantify the reconstructions
- 6. Ephemeris compression and reconstruction were able to achieve great results for compression rates
- The reduced number of terms can be potentially used for cataloging accurate non-Gaussian distributed ephemeris

8 CONCLUSIONS AND FUTURE WORK:

FUTURE WORK

- 1. Implementation of the Particle Filter using adaptive number of samples for numeric efficiency and redundancy elimination.
- 2. Include a higher fidelity force model to incorporate additional relevant perturbations such as atmospheric drag, solar radiation pressure, third body perturbations (Sun and moon), J2 effects etc.
- 3. Develop a systematic way of determining the number of hidden neurons to use as well as the number of iterations during the training phase (possibly optimize based on constraints)
- Other decorrelation methods that do not assume Gaussian initial conditions as the NFA does, could be implemented ex. The Nonlinear Independent Factor Analysis (NIFA) (nonlinear counterpart of the ICA)
- 5. Optimize the value n in the determination of the number of bins 2ⁿ for the histogram generator
- 6. Use other smooth functions to represent the PDF of the components versus a PMF before compression
- 7. Determine the limitations of NFA, NIFA with the number of particles (apart from computational cost)