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PROBLEM
In 2009, the U.S Strategic Command space objects (assets and debris) tracking update:

• 19,000 space objects (diameter >10 cm) are being tracked
• > 600,000 space objects (10cm >diameter>1 cm ) are unobserved

Recent impacts have also added more objects (space debris) to track:
• Satellite Collision Russian Cosmos 2251 and the Iridium satellite in 2009
• Destruction of Chinese satellite in 2007

REQUIREMENTS
Space objects require:

• Collision avoidance mitigations
• Orbit maintenance/maneuvers (assets)
• Cataloging and identification (debris)

Specifics for the requirements:
• Performed within required accuracies
• Cost effective: Applicable to large numbers of space objects

RESEARCH SIGNIFICANCE
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Artist rendering of space object collision, courtesy CNES

1. INTRODUCTION AND MOTIVATION:



CURRENTLY
Statistical Orbit Determination approach
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STATISTICAL ORBIT DETERMINATION
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1 INTRODUCTION AND MOTIVATION:



CURRENT LIMITATIONS
State estimate’s uncertainty
• Covariance Matrix is not enough
• Gaussian representation ignores the information in the heavy tails

PROBLEM STATEMENT
1. Need Full Probability Density Function (PDF) representation for low probability

events present in the heavy tails (Non Gaussian)
2. Use a nonlinear filter that is capable of full non Gaussian PDF state estimation
3. Need a compressed representation of this PDF distribution for real case scenario

applications
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• Extended Kalman Filter (EKF) (Tapley, Shutz and Born 2004)
– Nonlinear models assuming Gaussian uncertainties
– Linearization about a current mean (computes Jacobian)

• Unscented Kalman Filter (UKF) (Julier and Uhlmann 1997 et al)
– Uses a series of weighted sample points to approximate the mean and covariance

• Batch Weighted Least Squares (Gauss 1809)
– Estimates the state x by minimizing the performance index 8

OD CURRENT ESTIMATION METHODS

http://ars.els cdn.com/content/image/1 s2.0 S0021999108000132 gr4.jpg
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• Gaussian Mixtures Model (GMM) (DeMars et al 2011)

- Differential entropy d/dt[H(x)] is used as a measure of nonlinear detection
- Uses UKF as a filter for each pg

• Polynomial Chaos Expansion (PCE) (Jones et al 2012)
- Solution of the Stochastic Differential Equations as linear expansions of multivariate

polynomials
- PCE estimates the coefficients c of the expansion

My approach:
Propose using the Particle Filter

• Fully captures PDF (Probability Density Function) distribution
• Uses a large number of samples to approach the optimal estimate

PDF APPROXIMATION METHOD

p(x) wi pg(x; i, Pi )
i 1

L

where pgis a Gaussian PDF
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Nonlinear
Propagation

Detects Nonlinearities
It splits

Covariance P

Figure Ref: J.T. Hartwood et al. Gaussian Sum filters for Space Surveillance: Theory and
Simulations. JGCD, Vol. 34. No. 6. Nov Dec 2011
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x

actual state value
measured state value
state particle value
state pdf (belief)

actual state trajectory
estimated state trajectory
particle propagation
particle weight

The Particle Filter (PF) is a sequential nonlinear estimator that
• Uses random independent particles to represent the random state x as a PDF
• As N increases, we reach the optimal PDF representation

PARTICLE FILTER

Figure Ref: Bhaskar Saha, Introduction to Particle Filter. Ames Research Center. April 16, 2008
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GENERIC PARTICLE FILTER ALGORITHM
2 LITERATURE REVIEW:



MAJOR DRAWBACK:
Sample Degeneracy when data outliers occur or when measurement noise is small

CIRCUMVENTION:
• Resampling of particles (Neffective samples < Nthreshold)
• Adaptive PF: Soto (2005), Gang and Xiao Jun (2008), Hwang and Speyer (2011).
• Other PF Methods studied: Auxiliary Particle Filter, Regularized Particle Filter, Rao

Blackwell/Marginalized Particle Filter

Our Approach for PF in Statistical Orbit Determination:
Used Generic Particle Filter

• Effective: sporadic measurements
• “Jitter” resampled particles by adding noise

Measurement Yk=Xk + wkPrior samples
X’k5
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1 D example

PARTICLE FILTER
2 LITERATURE REVIEW:
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Inverse

FastICA
+..NFA

Discrete

Sampling

Inverse Transforms WT/FFT

WT/FFT + Compressions

NFA +..

FastICA

APPROACH
Multivariate Density
p(X,Y, Z,VX,VY ,VZ )

Predicted State
L x N

(statesEC x particles)

Uncorrelated (UC)
L x N

(statesUC x particles)

Probability Mass Fcn
(PMF)

L x #bins X 2
(statesUC x probabilities)

Coefficients for PMF
L x C

(statesUC x coefficients)

Compressed PMF
L x #bins + 3L

(statesUC x probabilities
x abscissa values)

Reconstructed
State
L x N

(statesECrec x particles)

Compressed &
Uncorrelated (UC)

L x N
(statesUC x particles)

A

B
Particle Filter:
• Meas. Updates and Predictions to B
• Large number of particles compression

(A)

(B) Binning

As Lossless
as possible

Information
Measures
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Demonstrated the use of the PF as a statistical OD method for non linear
state estimation and uncertainty predictions as a full state PDF

Used nonlinear multivariate decorrelation methods to decorrelate the
multivariate state PDF

Performed univariate uncorrelated state PDF compressions for data
allocation and transmission cost reductions

Demonstrated the potential for cost effective ephemeris storage for the
cataloging of space objects and debris

RESEARCH CONTRIBUTIONS
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MMS ORBIT AND THE VBN FRAME

19

Velocity

Normal

Binormal

The Magnetospheric Multi scale mission (MMS) Phase I

The VBN frame is the reference path orbital velocity, binormal and normal directions.
• Rotating frame
• Easy to visualize propagations

5 STATISTICAL ORBIT DETERMINATION:

Orbital elements

a 42095

e 0.8182

i 28.5°

357.857°

298.225°

M0 180°



SKEWNESS AND EXCESS KURTOSIS
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Illustrating the non Gaussian content of the PDF propagations of the MMS orbit for 1 period
• Apogee as the initial condition
• Perigee at true anomaly = 0o

Skewness: a measure of asymmetry
(3rd order moment)

Excess Kurtosis: a measure of peak intensity
(4th order moment)

Skewness E{(X )3}
[E{(X )2}]3 2

Excess Kurtosis E{(X )4}
[E{(X )2}]2 3

5 STATISTICAL ORBIT DETERMINATION:



SCENARIO A
Epoch: 04 Nov 2011 16:00:00
Period: 24 hrs

TDRS 1 and TDRS 3
05 Nov 2011
05:00:00 – 05:15:00
06:00:00 – 06:15:00

DSN: Madrid, Spain
05 Nov 2011
00:00:00 – 01:15:00

DSN: Canberra, Australia
04 Nov 2011
16:00:00 – 17:15:00

Estimation of state vector X: using the Extended Kalman Filter(EKF).
using the Particle Filter for 1000 particles .

CASE 1: Over 1 orbital period with 4 measurements
CASE 2: CASE 1 AND an additional 4 orbital periods without measurements

PF code was developed for the Orbit Determination Toolbox (ODTBX) that uses some of its plotting
capabilities. 21

Direction

5 STATISTICAL ORBIT DETERMINATION:



CASE 1 : MEASUREMENT UPDATES
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3.025 m

6.386 m3.545 m

3.790 m

EKF PF

Transformed Position States from XYZECI to VNB

• NOTE: Resampling
threshold Nthr = 0.25 N

• EKF outperforms PF
based on mean errors

• PF has larger
uncertainty bounds vs
EKF

Meas. update errors
Ensemble mean error

+ 2 from P formal (EKF)
+ 2 from P empirical (PF)
| Ensemble errors
| 1 3 of ensbl. errors

5 STATISTICAL ORBIT DETERMINATION:



CASE 1 : MEASUREMENT UPDATES
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3.025 m

0.6517 m3.545 m

0.4185 m

EKF PF

Transformed Position States from XYZECI to VNB

Meas. update errors
Ensemble mean error

+ 2 from P formal (EKF)
+ 2 from P empirical (PF)
| Ensemble errors
| 1 3 of ensbl. errors

• NOTE: Resampling
threshold Nthr = 0.75 N

• PF outperforms EKF
based on mean errors

• PF has larger
uncertainty bounds vs
EKF

5 STATISTICAL ORBIT DETERMINATION:



CASE 2 : PREDICTIONS
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EKF PF

State EKF PF

V(m) 283 109

B(m) 18.1 2.99

Max. Prediction errors

Transformed Position States from XYZECI to VNB

• Post updates 0.25Nthr

• PF uncertainty
bounds are tighter
than EKF

• Bi normal component
has good accuracies
at both apogee and
perigee for the PF vs
EKF.

Ensemble mean error
+ 2 from P formal (EKF)
+ 2 from P empirical (PF)
| Ensemble errors
| 1 3 of ensbl. errors

5 STATISTICAL ORBIT DETERMINATION:



CASE 2 : PREDICTIONS
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EKF PF

State EKF PF

V(m) 283 148.5

B(m) 18.1 4.65

Max. Prediction errors

Transformed Position States from XYZECI to VNB

• Post updates 0.75Nthr

• PF uncertainty
bounds are tighter
than EKF

• Bi normal component
has good accuracies
at both apogee and
perigee for the PF vs
EKF.

Ensemble mean error
+ 2 from P formal (EKF)
+ 2 from P empirical (PF)
| Ensemble errors
| 1 3 of ensbl. errors

5 STATISTICAL ORBIT DETERMINATION:



SCENARIO B
Epoch: 04 Nov 2011 16:00:00
Period: 24 hrs

DSN: Canberra, Australia
05 Nov 2011
16:45:00 – 17:00:00

Particle Filter for 1000 particles vs. GMM using UKF

Scenario: Over 1 orbital period with 15 min measurement update at end of 1 period

View the State PDF at the Measurement Update instance: A) As planar contour plots
B) As 3 D PDF plots
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Direction

5 STATISTICAL ORBIT DETERMINATION:



GMM + UKF PF
MEASUREMENT UPDATED STATE PDF
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5 STATISTICAL ORBIT DETERMINATION:
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GMM + UKF PF
MEASUREMENT UPDATED STATE PDF

5 STATISTICAL ORBIT DETERMINATION:
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PRINCIPAL COMPONENT ANALYSIS (PCA)
x : zero mean data
s : principal components

PCA finds the principal components in a new transformed coordinate system with the greatest variance as
the first component and the subsequent ones follow.

INDEPENDENT COMPONENT ANALYSIS (ICA)
x : whitened data
s : independent states

ICA finds the linear combinations of the unit
sphered observations x (wTx) that are in the
direction w of the max or min Kurtosis (4th order cumulant) B = {w1 w2}.

FastICA: uses a fixed point iteration scheme (MUCH FASTER).

x W W T

s W T x

DECORRELATION BACKGROUND

30

6 PDF COMPRESSION:

x Bs
s BT x 

Kurtosis(si ) E{si
4} 3(E{si

2})2  where si wT x
w(i 1) E{x(w(i)T x)3} 3w(i) iterated |w(i 1)T w(i)| 1



DIMENSIONAL REDUCTION EXAMPLE
Orbit parameters: eccentricity = 0.2, P0 2

x,y,z= (1000m)2 and 2
vx,vy,vz= (1m/s)2

1 rev of propagation, Epoch of interest at perigee, Period = 18hrs

• Initial state dimension L = 6 4 components
• Choice of 4 : Out of plane motion is decoupled from in plane motion

– Fundamental nonlinearity comes from Kepler’s equation
• Demonstrate potential for augmented states not necessarily required for accurate state

prediction (Station location errors, Range biases etc)

• The reconstructed distributions are measured using:
• The Kolmogorov Smirnov (K S) test

– Quantifies the max. distance D between
the two Cumulative Distribution Functions (CDF)

• The state particles are scaled to canonical units
• Ensures equal weightings for velocity components (affects eigenvalues)
• Distance : (1DU) = 6378.145km, Velocity : (1DU/ TU) = 7.90536828km/s 31

ICA or PCA

Dab sup
X

Fa (X) Gb(X)

Dab

a

b

http://www.statsoft.com/Portals/0/Support/ks%20graph.JPG

6 PDF COMPRESSION:
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Original Data
Reconstructed Data

DIMENSIONAL REDUCTION SIMULATION

K S Statistic PCA ICA

X 0.0740 0.0080

Y 0.0100 0.0020

Z 0.0030 0.0150

Shortcomings of PCA/ICA:
• For high non Gaussian

behavior the components
were not fully
decorrelated

Solution
• Use Nonlinear Factor

Analysis

Excess
Kurtosis

PCA ICA

1st 1.30 24.39

2nd 22.66 2.55

3rd 0.46 0.02

4th 0.08 0.4

PCA ICA

6 PDF COMPRESSION:



The Nonlinear Factor Analysis (NFA) is a nonlinear mapping of the sources s to the
observations xmodeled by a multilayer perceptron (MLP) network model.

Our goal is to estimate the sources s and the unknown variables =(A,B,a,b)
A            , B            , a and b based on minimizing the cost function
between the posterior p and the approximate q given by the Kullback Leibler Divergence
metric D

 and H are some prior assumptions.
Ref: Theory and MATLAB code developed by Dr. Annti Honkela at Helsinki University of Technology, Finland

NONLINEAR FACTOR ANALYSIS

33

x f (s, ) n
B (As a) b n

B tanh(As a) b n

Hn L L Hn Hn L

D(q( | ) || p( | x, H )) q( | ) ln q( | )
p( | x, H )

d

6 PDF COMPRESSION:

where { , , s , s} 
are random variables



The prior assumptions and H are given as follows:

NONLINEAR FACTOR ANALYSIS
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D q( | )ln q( | )
p( | x, H )

d

q( | ) ln q( | )
p( , x | H)

d ln p(x | H)

C q( | ) ln q( | )
p( , x | H)

d

C E[lnq( | )] E[ ln p( , x | H )]

minC Cq Cp E[lnq( | )] E[ ln p( , x | H )]

w.r.t.  and  

C Cq Cp 0   and  C Cq Cp 0

where  and  are the mean and variance respectively

x ~ N( f (s, ), diag(e2Vn ))
s ~ N (0, diag(e2Vs ))
Parameters

A, B, a,b ~ N(m , diag(e2V ))

{A, B, a, b, s} and

 {A, B, a, b, s}
are the solve for parameters.

Known: x and  priors for  and 
and
Hyperparameters:

vn, vs, vBj
~ N(mv, diag(e2Vv ))

(ma, va, mb, vb, mvn
, vvn

, mvBj
,vvBj

) ~ N(0,1002 )uninformative priors

The variance is parameterized to v = log

f( )

6 PDF COMPRESSION:

x B tanh(As a) b n

p



NONLINEAR FACTOR ANALYSIS
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6 PDF COMPRESSION:

The obtained mean and variance terms for s and :
• mean s: L x N
• variance s: L x N
• mean : A(Hn x L), B(L x Hn), a(Hn x 1) and b(L x 1)
• variance : A(Hn x L), B(L x Hn), a(Hn x 1) and b(L x 1)

The variance terms for the sources s are assumed to be zero (and variances =0)

• FastICA produces uncorrelated sources s’

s1……………sN s1……………sN

Non Gaussian and
correlated

s’1……………s’N

Non Gaussian and
uncorrelated

variance s(i) = 0

L : state dimension
N: No. particles
Hn :No. Neurons



NONLINEAR FACTOR ANALYSIS
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6 PDF COMPRESSION:

The obtained mean and variance terms for s and :
• mean s: L x N
• variance s: L x N
• mean : A(Hn x L), B(L x Hn), a(Hn x 1) and b(L x 1)
• variance : A(Hn x L), B(L x Hn), a(Hn x 1) and b(L x 1)

The variance terms for the sources s are assumed to be zero (and variances =0)

• FastICA produces uncorrelated sources s’

s1……………sN s1……………sN

Non Gaussian and
correlated

s’1……………s’N

Non Gaussian and
uncorrelated

variance s(i) = 0

L : state dimension
N: No. particles
Hn :No. Neurons



COMPRESSION METHODS
The uncorrelated sources s’, are binned into a 27 histogram then transformed into a
normalized discrete probability density function (PMF) p for compression.
FAST FOURIER TRANSFORM
• The FFT calculates the coefficients of the discrete PDF as follows:

WAVELET TRANSFORM
• Use a wavelet filter (Daubechies 2) to extract terms that represent the PMF p as a

function of approximate and detail coefficients

37

c(k) p( j)e
2 i
n

( j 1)(k 1)

j 1

n

where (k 1,� n) p(j) is the discrete probability value
normalized from the histogram

p(k) (( j0[n] h[2n k])
n

( j[n] g[2n k]))

j0 is the first level of decomposition
j  are the subsequent levels of decomposition

g[k
]

g[k]

h[k]

2

2

Detail
coefficients

Approximate
coefficients

p(k)

6 PDF COMPRESSION:

j0[n] p[k] h[2n k]
k

j[n] p[k] g[2n k]
k



x is the reconstructed state in
canonical units

RECONSTRUCTION APPROACH
The uncorrelated compressed PMF representations are reconstructed by taking the
inverse transforms of the FFT and the WT.

38

IFFT:   p̂( j) c(k)e
2 i
n

( j 1)(k 1)

k 1

m

where ( j 1,� n) and (m n)

IWT:  p̂(k) (( j0[n] h[ k 2n])
n F

F

( j[n] g[ k 2n])) where (k 1,� n)

• Filters (WT)
• Abscissa values
• Coefficients

• Discrete sampling
• Uniform weights

• Mixing matrix A
• Mean vector

• The mean
variables
= (A, B, a, b)

• Mean sources s

Reconstructed
PMF

Inverse Fast ICA
s=As’+

N particles for
state s’

MLP feed forward
x=B tanh(As+a)+b

6 PDF COMPRESSION:
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HIGHLY NON GAUSSIAN STATE
A planar eccentric orbit:
• P0 variances (1 km)2 for position and (0.001 km/s)2 for velocity
• Ephemeris at true anomaly = 0o after 1 period
• N = 2000 particles
• Period 18.1013 hrs.
Initial Condition X0:
[28000 km, 0 km, 0 km/s, 4.1331 km/s]

40

7 SIMULATIONS AND RESULTS

Orbital
Elements

Numerical
Value

a 42,000 km

e 0.2

i 0 rad

0 rad

0 rad

Me 0

Period 18.1013 hrs

Position

Velocity



DECORRELATION

The rank correlation matrix:
P = I ,implies decorrelation

41

Canonical states
(DU and DU/TU)

Uncorrelated
components s’

NFA + FastICA
(20 neurons)

Discrete PMF from a
27 binned Histogram

Component 4

Component 1

Component 3

Component 2

p(s’)

p(s’)p(s’)

p(s’)

s’

s’

s’

s’

P ,NFA

1.00 0.62 0.21 0.02
0.62 1.00 0.21 0.06
0.21 0.21 1.00 0.06

0.02 0.06 0.06 1.00

P ,NFA FastICA

1 0.0 0.0 0.0
0.0 1 0.0 0.0
0.0 0.0 1 0.0
0.0 0.0 0.0 1

7 SIMULATIONS AND RESULTS



COMPRESSION
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Component PDF compression
and reconstruction:

FFT and WT to
obtain

coefficients

Inverse FFT and
WT to

reconstruct
PMF

Compression
rate of 50%

FFT

WT

Legend
Original

+ Compressed

Component FFT DKL (o||c) WT DKL (o||c)

1 0.1759 0.0010

2 0.1003 0.0188

3 0.0686 0.1001

4 0.1121 0.1568

Component 1

Component 4

Component 2

Component 3

Component 4

Component 3

Component 2Component 1

7 SIMULATIONS AND RESULTS



INFORMATION MEASURES
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TERMS # TERMSWT # TERMS FFT

Coefficients c 273 260

Wavelet Filters 8 N/A

Abscissa PDF 12 12

Mixing Matrix A 16 16

Mean(s) = 4 4

A 80 80

a 20 20

B 80 80

b 4 4

vA 80 80

va 20 20

vB 80 80

vb 4 4

TOTAL TERMS 681 660

Method # Terms Cost
(Method/PF)

PF Predictions 8000 1

WT Compressions 681 0.0851

FFT Compressions 660 0.0825

Cost of storing number of terms

However: need to quantify accuracies based
on the state particle reconstructions

100

8.51 8.25

PF WT FFT

Pe
rc
en

ta
ge

of
PF

te
rm

s PF
WT
FFT

7 SIMULATIONS AND RESULTS



INFORMATION MEASURES
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TERMS # TERMSWT # TERMS FFT

Coefficients c 273 260

Wavelet Filters 8 N/A

Abscissa PDF 12 12

Mixing Matrix A 16 16

Mean(s) = 4 4

A 80 80

a 20 20

B 80 80

b 4 4

TOTAL TERMS 497 476

Method # Terms Cost
(Method/PF)

PF Predictions 8000 1

WT Compressions 497 0.0621

FFT Compressions 476 0.0595

Cost of storing number of terms

However: need to quantify accuracies based
on the state particle reconstructions

7 SIMULATIONS AND RESULTS

100

6.21 5.95

PF WT FFT

Pe
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PF
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s PF
WT
FFT



RECONSTRUCTIONS
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FFT

WT

Legend
o Original
o Reconstructed

K S FFT WT

X 0.0680 0.0510

Y 0.0480 0.0435

VX 0.0440 0.0425

VY 0.0405 0.0570

Kolmogorov Smirnov

DOR sup
X

FO(X) GR (X)

O: Original CDF F
R: Reconstructed CDF G

7 SIMULATIONS AND RESULTS



COMPRESSION RATES

46

• The WT coefficients has a strong bias between the approximate and detail coefficients
• WT performs better at lower compression rates compared to the FFT

KLD distance is calculated at different compression rates: [0.1 0.3 0.5 0.7 0.9]

Component 1

Component 4

Component 2

Component 3

7 SIMULATIONS AND RESULTS
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CONCLUSIONS AND FUTURE WORK
1. Demonstrated the use of the Particle Filter:

a) A nonlinear estimator
b) Capable of incorporating non Gaussian uncertainties during predictions

2. Demonstrated the use of the Independent Component Analysis (ICA) and Principal component
analysis for dimensional reduction

3. Demonstrated the use of Nonlinear Factor Analysis (NFA) followed by FastICA to achieve
uncorrelated states for PDF compression

4. The Wavelet Transform and the Fast Fourier Transform demonstrated as effective methods for the
compression and reconstruction of univariate PDFs.

POTENTIAL FUTURE WORK
1. Use other smooth functions to represent the PMF of the components versus WT and FFT for

compression
2. Determine the limitations of NFA with respect to the number of particles (apart from

computational cost)
3. Other nonlinear decorrelation methods could be implemented ex. The Nonlinear

Independent Factor Analysis (NIFA) that uses Gaussian mixtures for sources
48
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QUESTIONS

Thank you.



Extended Kalman Filter (LaViola 2003 et al)
• Nonlinear models assuming Gaussian uncertainties
• Linearization about a current mean (computes Jacobian)

ISSUE

CLASSICAL ESTIMATION METHODS

State at time 0 State at time k

52

Xk fk Xk 1, wk 1

Yk hk Xk, vk

Ak
f
x

|x xk

Hk
h
x

|x xk

vk ~ N 0, R

wk 1 ~ N 0,Q

GaussianGaussian Non GaussianNon Gaussian
Nonlinear propagation

Measurement Update
1) Kk Pk H T (HPk H T R) 1

2) X̂k X̂k Kk (Yk hk (X̂k ,vk ))
3) Pk (I KkHk )Pk

Measurements Yk and Covariance R

Initial estimates Xk 1
and Covariance Pk 1

Time Update (Predict)

1) Integrate fk  to get X̂k

2) Integrate (k,k 1) Ak (k,k 1) 
to get (k, k 1)
3) Pk (k,k 1)Pk 1

T (k, k 1)



CLASSICAL ESTIMATION METHODS (CONT.)

Unscented Kalman Filter (Julier and Uhlmann 2004 et al)
• Uses a series of weighted sample points to approximate the mean and covariance

53GaussianGaussian Non GaussianNon Gaussian
Nonlinear propagation

ISSUE State at time t0 State at time tk

X 0
k xk

X i
k xk ( (L )Pk )i , i 1,...L

X i
k xk ( (L )Pk )i , i L 1,...2L

W0
m

(L )

W0
c

(L ) (1 2 )

W m
i Wi

c 1
(2(L ))   for i = 1,....2L, 

where L is the dimension of the state and k is time

http://www.cslu.ogi.edu/nsel/ukf/node6.html

2L+1 Sigma points

Time i sigma points
and weights



PARTICLE FILTER

Based on Bayes Theory

Estimate the Posterior Density:
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p(X |Y ) p(Y | X)p(X)
p(Y )

Posterior Density

Likelihood Prior Density

Normalizing Constant/
(Importance Sampling)
Proposal Distribution

p̂(Xk |Yk ) Wk
i

i 1

Np

(Xk Xk
i )

Weights

Particles

Random Variable
x

W

where,   W i 1
i 1

Np



EKF
3 Monte Carlo

Particle Filter
3 particles



FASTICA
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kurt(wT x) E{(wT x)4} 3[E{(wT x)2}]2 E{(wT x)4} 3 || w ||4

J(w) E{(wT x)4} 3 || w ||4 F(|| w ||2 )
F is a penalty term due to the constraint on w. The online learning algorithm has the form

w(t 1) w(t) (t)[x(t)(w(t)T x(t))3 3 || w(t) ||2 w(t) f (|| w(t) ||2 )w(t)]
 is the learning rate sequence, f is the derivative of F/2

The first two terms in the brackets are the gradient of kurt(wTx) and the third term is the

gradient of F(|| w ||2 ).
The fixed points w of the learning rule takes the expectation of the learning rule and equating
the change in weight to zero

E{x(wT x)3} 3 || w ||2 w f (|| w ||2 )w 0
w scalar (E{x(wT x)3} 3 || w ||2 w)
FastICA
w(k) E{x(w(k 1)T x)3} 3w(k 1)
Divide w(k) by its norm (scalar  w)

| w(k)T w(k 1) | 1,  let k = k+1



The prior assumptions and H are given as follows:

NONLINEAR FACTOR ANALYSIS
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D q( | )ln q( | )
p( | x, H )

d

q( | ) ln q( | )
p( , x | H)

d ln p(x | H)

C q( | ) ln q( | )
p( , x | H)

d

C E[lnq( | )] E[ ln p( , x | H )]

minC Cq Cp E[lnq( | )] E[ ln p( , x | H )]

w.r.t.  and  

C Cq Cp 0   and  C Cq Cp 0

where  and  are the mean and variance respectively

x ~ N( f (s, ), diag(e2Vn ))
s ~ N (0, diag(e2Vs ))
Parameters
A ~ N (0, I )

Bj ~ N(0, diag(e2VBj ))

a ~ N(ma, diag(e2Va ))
b ~ N(mb, diag(e2Vb ))
Hyperparameters:

vn ~ N (mvn
, diag(e2Vvn ))

vs ~ N (mvx
, diag(e2Vvs ))

vBj
~ N (mvBj

, diag(e
2VvBj ))

(ma,va, mb,vb, mvn
,vvn

, mvBj
,vvBj

) ~ N(0,1002 )uninformative priors

The variance is parameterized to v = log

f( )

6 PDF COMPRESSION:



NONLINEAR FACTOR ANALYSIS
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C Cq Cp E[lnq(s, | )] E[ ln p(s, , x |H)]

Cq : E[lnq(si (N ))]
i,N

E[lnq( j )]
j

1
2

1
2 ln(2 j )

all _ terms

q(si (N )) N(si (N ); si (N ), si (N )), q( j ) N( j; j, j )

p(s) N(s;0, diag(exp(2vs ))
Cp : E[ ln p(s, , x |H)] E[ ln p(x | s, ,H)] E[ ln p(s | ,H)] E[ ln p( |H)]

~ N(m, exp(2v));

E[ ln p( | m,v,H)] ln N( ;m, exp(2v))q(m)q(v)dmdv

1
2

ln(2 ) v [( m )2 m ]exp(2v 2v )

where

ln p( | m,v,H) ln 1
2 exp(2v )

exp ( m )2

2exp(2v )



COMPRESSION METHODS
The uncorrelated sources s’, are binned into a 27 histogram then transformed into a
normalized discrete PMF p for compression.
FAST FOURIER TRANSFORM
• The FFT calculates the coefficients of the discrete PMF as follows:

WAVELET TRANSFORM
• Use a wavelet filter (Daubechies 2) to extract terms that represent the function p

as a function of approximate and detail coefficients
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c(k) p( j)e
2 i
n

( j 1)(k 1)

j 1

n

where (k 1,� n) p(j) is the discrete probability value
normalized from the histogram

c[k] (p f )[k] p[n] f [2k n]
n

,  

where f  {h, g},  c[k] { j0[k], j[k]}

j0[k] p[n] h[2k n]
n

j[k] p[n] g[2k n]
n

p(k) (( j0[n] h[2n k])
n

( j[n] g[2n k]))

j0 is the first level of decomposition
j  are the subsequent levels of decomposition

g[k
]

g[k]

h[k]

2

2

Detail
coefficients

Approximate
coefficients

p(k)
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WAVELET COMPRESSION



CONCLUSIONS
1. Demonstrated the use of the Particle Filter:

1. A nonlinear estimator
2. Capable of incorporating non Gaussian uncertainties during predictions

2. Demonstrated the use of the Independent Component Analysis (ICA) and Principal component
analysis for dimensional reduction

3. Demonstrated the use of Nonlinear Factor Analysis (NFA) followed by FastICA to achieve
uncorrelated states for PDF compression

4. The Wavelet Transform demonstrated better compression results over lower compression rates
compared to the Fast Fourier Transform

5. The Kullback Leibler divergence and the Kolomogorov Smirnov tests were used as Information
measures to quantify the reconstructions

6. Ephemeris compression and reconstruction were able to achieve great results for compression
rates

7. The reduced number of terms can be potentially used for cataloging accurate non Gaussian
distributed ephemeris 61

8 CONCLUSIONS AND FUTURE WORK:



FUTURE WORK
1. Implementation of the Particle Filter using adaptive number of samples for numeric

efficiency and redundancy elimination.
2. Include a higher fidelity force model to incorporate additional relevant perturbations

such as atmospheric drag, solar radiation pressure, third body perturbations (Sun and
moon), J2 effects etc.

3. Develop a systematic way of determining the number of hidden neurons to use as well
as the number of iterations during the training phase (possibly optimize based on
constraints)

4. Other decorrelation methods that do not assume Gaussian initial conditions as the NFA
does, could be implemented ex. The Nonlinear Independent Factor Analysis (NIFA)
(nonlinear counterpart of the ICA)

5. Optimize the value n in the determination of the number of bins 2n for the histogram
generator

6. Use other smooth functions to represent the PDF of the components versus a PMF
before compression

7. Determine the limitations of NFA, NIFA with the number of particles (apart from
computational cost)

62

8 CONCLUSIONS AND FUTURE WORK:


