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PROBLEM
In 2009, the U.S Strategic Command space objects (assets and debris) tracking update:

e =19,000 space objects (diameter >10 cm) are being tracked
e > 600,000 space objects (10cm >diameter>1 cm ) are unobserved

Recent impacts have also added more objects (space debris) to track:
e Satellite Collision Russian Cosmos 2251 and the Iridium satellite in 2009
e Destruction of Chinese satellite in 2007

REQUIREMENTS

Space objects require:
e Collision avoidance mitigations
e Orbit maintenance/maneuvers (assets)
e (Cataloging and identification (debris)

Specifics for the requirements:
e Performed within required accuracies
e Cost effective: Applicable to large numbers of space objects 4



CURRENTLY

Statistical Orbit Determination approach

Dynamic model v(t)

X = —ﬁST + perturty{a'ccelerations /

uncertainty

- Apriori Gaussian

= « = Estimated trajectory
= ==« Reference trajectory
True trajectory

Non-Gaussian\
uncertainty

Prediction Period

v

r — pa—
X vV,
Y v,
=V +Vv(t) = X )F +Vv(t)
Vy —uY /r?
B Vz i —/JZ/r3

Measurement model
p=+/(F—R)e(r —R) +w(t)

p=[(T-R)e(F—R))/p+w(t)

State Update

Ground Station
2R 5




Covariance
CURRENT LIMITATIONS Matrix

State estimate’s uncertainty
e Covariance Matrix is not enough
e Gaussian representation ignores the information in the heavy tails

Uncertainty
Region

—

PROBLEM STATEMENT

1. Need Full Probability Density Function (PDF) representation for low probability
events present in the heavy tails (Non-Gaussian)

Use a nonlinear filter that is capable of full non-Gaussian PDF state estimation

Need a compressed representation of this PDF distribution for real case scenario
applications
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Extended Kalman Filter (EKF) (Tapley, Shutz and Born 2004)
— Nonlinear models assuming Gaussian uncertainties

— Linearization about a current mean (computes Jacobian)

Unscented Kalman Filter (UKF) (Julier and Uhlmann 1997 et al)

— Uses a series of weighted sample points to approximate the mean and covariance
Actual (Sampling) Linearized (EKF) I;I*____.-—ﬂgnn points

0 &

mean

covariance

df )
p
d 5
rue mean UT mean
[rue covariance — /
S
UT covariance
EKF mean trammrmed
EKF covariance sigma points

http://ars.els-cdn.com/content/image/1-s2.0-S0021999108000132-gr4.jpg

Batch Weighted Least Squares (Gauss 1809)
— Estimates the state x by minimizing the performance index J(X) = %gTWg



* Gaussian Mixtures Moel (MM) (DeMars et al 201)

L Covariance P

_ . Detects Nonlinearities e w
_ i ¥y 5 onlinear
=1 Propagation

Where p iS a Gaussian PDF Figure Ref: J.T. Hartwood et al. Gaussian Sum filters for Space Surveillance: Theory and
9 Simulations. JGCD, Vol. 34. No. 6. Nov-Dec 2011

- Differential entropy d/dt[H(x)] is used as a measure of nonlinear detection

- Uses UKF as a filter for each p, Entropy H(x):élog |2 77eP |
2

e Polynomial Chaos Expansion (PCE) (Jones et al 2012)
- Solution of the Stochastic Differential Equations as linear expansions of multivariate

polynomials _
- PCE estimates the coefficients c, of the expansion X(t, )= Z ¢, (), (S)
aeApyd
My approach:

Propose using the Particle Filter
e Fully captures PDF (Probability Density Function) distribution
e Uses a large number of samples to approach the optimal estimate 9



The Particle Filter (PF) is a sequential nonlinear estimator that

p(x)

L

As N increases, we reach the optimal PDF representation

v

actual state value
measured state value
state particle value
state pdf (belief)

actual state trajectory
estimated state trajectory
particle propagation

particle weight

Figure Ref: Bhaskar Saha, Introduction to Particle Filter. Ames Research Center. April 16, 2008

Uses random independent particles to represent the random state x as a PDF

10



generate N samples/particles { —ur
Initialization Xo _ *Ap
Wo = P[:Xr:{}
v
Time Update —= Xi— = (X; ., ¥ )
¥ —— Estimation
Wi =W =p(¥ixi,) Measurements

Measurement Update : wyl
W, = N ; Y, + Noise
2l'=1 WJ-:

X, = ZL, (XE- - W)
J, __ L&
1

g

T T

Effective # of Samples

Resampli
Sampling Degeneracy 2 | ROSRENE

ﬁe " < Nthreshald

Yes

Resample ‘{ Resample: {X,E., Wi = [lfﬁ, I/N 1[;,;]} ]“




MAJOR DRAWBACK:

Sample Degeneracy when data outliers occur or when measurement noise is small

Prior samples
’ 5
Xk

1-D example

Measurement Y, =X, + w,

CIRCUMVENTION:

y Resampling of partides (Neffective samples < Nthreshold)
e Adaptive PF: Soto (2005), Gang and Xiao-Jun (2008), Hwang and Speyer (2011).

e Other PF Methods studied: Auxiliary Particle Filter, Regularized Particle Filter, Rao-
Blackwell/Marginalized Particle Filter

Our Approach for PF in Statistical Orbit Determination:

Used Generic Particle Filter

e Effective:

sporadic measurements

e “Jitter” resampled particles by adding noise 12



O 00 N OO 1 » W N B

Introduction and Motivation

Literature Review

Approach

Research Contributions
Statistical Orbit Determination
PDF Compression

Simulations and Results
Conclusions and Future Work
Acknowledgements

13



......... /"MultivariateDensity (A) Particle Filter:

) - P(X, Y, Z,V,, V., V) e Meas. Updates and Predictions to B
e Large number of particles - compression

Probability Mass Fcn
Predicted State NFA +..| Uncorrelated (UC) |Binnin (PI\};IF)
(B) Lx N LxN
(statesg. x particles) | FastiCA| (states, x particles) X Hbins X 2
ec X P ue (states; x probabllltles)

WT/FFT + Compressmns

A
Coefficients for PMF
Information | As Lossless L x C
Measures as possible (states,,. x coefficients)
v Inverse Transforms 1 WT/FFT
Reconstructed Compressed & 4 Compressed PMF A
State Inverse Uncorrelated (UC) | Discrete L x #bins + 3L
Lx N Lx N . (states. x probabilities
(statesgc e X particles) FastiCA L(statesUC X particles) SamplmgK x abscissa values) )

+..NFA
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Demonstrated the use of the PF as a statistical OD method for non-linear
state estimation and uncertainty predictions as a full state PDF

Used nonlinear multivariate decorrelation methods to decorrelate the
multivariate state PDF

Performed univariate uncorrelated state PDF compressions for data
allocation and transmission cost reductions

Demonstrated the potential for cost effective ephemeris storage for the
cataloging of space objects and debris

16
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Orbital elements

a

42095

0.8182

28.5°

Velocity

357.857°

298.225°

<€D

, | 180°

The Magnetospheric Multi-scale mission (MMS) Phase |

Normal
A

Binormal

The VBN frame is the reference path orbital velocity, binormal and normal directions.

Rotating frame
Easy to visualize propagations

19



lllustrating the non-Gaussian content of the PDF propagations of the MMS orbit for 1 period

e Apogee as the initial condition

e Perigee at true anomaly = 0°
Position States

sl Rl

Skewness

02 80 -135 -90 -45 0 45 90
True Anomaly

Skewness: a measure of asymmetry

(379 order moment)

E{(X-x)’}

Skewness =

[E{(X )" }]**

135

180

Excess Kurtosis

_E?BD -135 =90 -45 0 45 90 135 180

Position States

True Anomaly

Excess-Kurtosis: a measure of peak intensity

Excess — Kurtosis =

(4t order moment)
E(X-0)")
[E{(X-u)"}) 20




Epoch: 04-Nov-2011 16:00:00 TDRS-1 and TDRS-3
Period: 24 hrs 05-Nov-2011

05:00:00 — 05:15:00
6:00:00 - 06:15:00
DSN: Canberra, Australi
04-Nov-2011
16:00:00 - 17:15:00

DSN: Madrid, Spain i
05-Nov-2011 Direction
00:00:00 — 01:15:00

Estimation of state vector X: using the Extended Kalman Filter(EKF).
using the Particle Filter for 1000 particles .

CASE 1: Over 1 orbital period with 4 measurements
CASE 2: CASE 1 AND an additional 4 orbital periods without measurements

PF code was developed for the Orbit Determination Toolbox (ODTBX) that uses some of its plotting
capabilities. 21



300

EKF | PF

300 ; ! ‘ ; i Meas. update errors
| | | > Ensemble mean error
: 3.025 m | 3.790 m | ; + 20 from Pform_a-l (EKF)
; ; ; : Lk : + 20 from P empirical (PF)
| Ensemble errors

e ki g : ++11 ++++1~r++++++++

1' """H—xHH_u.a'-*q___ ,,,,,,,,,,,, ++1+1 1111 - Vim) 0‘%*‘** __________ o
* Amame TGRS T |

+Ftrees RbpeRT L, ] T i ; ABEED] +++++++++H++++++++

v (m) o

: - : * NOTE: Resampling

300 : : : : =% 02 04 06 03 1 threshold N, =0.25N

150 5 ;’ ! 150 ; ; 5 ? e EKF outperforms PF

based on mean errors

PF has larger
uncertainty bounds vs
EKF

0 02 04 0.6 0.3 1 0 0.2 04 0.6 0.3 1

Transformed Position States from XYZ,., to VNB 22



200 . : : ‘ 200
150} Z 1 150

100} - 100

“._ V) 04

ST

++++f++++{++++++++i

0 02 04 0.6 08 1 200

0.6

08

100 T ! T T 100

+

0 02 0.4 06 038 1 05

0.2

Transformed Position States from XYZ,., to VNB

04

0.6

08

o

¥

1

-+
-+
I

i = Meas. update errors

Ensemble mean error
20 from P formal (EKF)
20 from P empirical (PF)
Ensemble errors

NOTE: Resampling
threshold N,,, =0.75 N

PF outperforms EKF
based on mean errors

PF has larger

uncertainty bounds vs
EKF

23



EKF ) PF

5000 r . ; , 5000 ;
000 ] ST RS ST SIPISIE SO

FOO0 ossssasnmaaiinn .................. ................ 4

BOOO |-+ ovvvesoerosders s E b s
2000

Vim) 0

V (m) 0 : : : ;

-2000 g : : e 1 000 b+ e ee e b e

e 111 11 ] S —————————————————— —————————————————— ———————— P _4000_

-4000 i i i i -5000 : i i i
0 0

200 ; : ; T 200 1 ; . !

ok é ................. 5_‘“.”.H.“.“§ ................ S 150 U R ST S S
ol I T N N
Bim)o i:. B (m) 0] .

S0t sob.

100 F 100 ............... G S A s R ..............

250k ................. ................ ................. _150_

2200 i 200 i i L

Transformed Position States from X YZ,, to VNB'

Ensemble mean error

+ 20 from P formal (EKF)
+ 20 from P empirical (PF)

Ensemble errors

Max. Prediction errors

State EKF PF

V(m) 283 -109

B(m) | -18.1 | 2.99

* Post-updates 0.25N,,,

*  PF uncertainty
bounds are tighter
than EKF

e Bi-normal component
has good accuracies
at both apogee and
perigee for the PF vs
EKF.
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5000

4000

3000

2000

V (m) 0

-1000 m‘”‘“‘“.“.H.L.”‘”‘”‘“‘“.ﬁ.”.”.:.”.”.J.”.”jﬁ(._._.;._;

-2000 |

-3000

-4000
0

200

150

100
50+
B ) 0}
=50 F .

-100

-150

-200

3000

4000 m.”.”.”.”.”i”.”.”.”.”.”L”.”.”.”.”.i.”.”.”.”.”.é.”.”..”.”.”-
3000 ,.“._”._._.;.“._.”_”.“.L.”.“._.”.”é“._._._._._iu.“._”.“._
2000 S S S A

1000 TR S S SR DT S

Vim)0

2000 m“.“,”.“.“.L.“.“.”,”.“.L.”,“.“”.“.L.”,”.“.“.”,;.“.”.”.“.“
3000 _”.“._.”__§“._.”_“._.i_”._._.”_”.i.__”.“._.”_;.“._.”__._

-4000
0

200

150 ,_.”__."._.L.“._.”__._.L.”.“.”.”_”é“._.”_”._._;”.“._.”_”_

100

B(m) 0
_50 m.i.”.. “.“:”,”.“.”.”.“;“.”,.“.”,“5“.”..._.“.”é”.“ % | S

-100 __.”._."._.L.“._.”._.“.;.”.“.”.”.”f“._.”.”._._éu.“._.”_”_

-150

200

PF

T

50k B O ST U RSP UR

Transformed Position States from XYZ,,'to VNB

- Ensemble mean error

+ 20 from P formal (EKF)
+ 20 from P empirical (PF)
| Ensemble errors

Max. Prediction errors

State EKF PF

V(m) 283 148.5

B(m) | -18.1 | -4.65

* Post-updates 0.75N,,,

*  PF uncertainty
bounds are tighter
than EKF

e Bi-normal component
has good accuracies
at both apogee and
perigee for the PF vs
EKF.

25



Epoch: 04-Nov-2011 16:00:00
Period: 24 hrs

DSN: Canberra, Australi
05' N OV'ZO 1 1 -
16:45:00 - 17:00:00

Direction

Particle Filter for 1000 particles vs. GMM using UKF
Scenario: Over 1 orbital period with 15 min measurement update at end of 1 period

View the State PDF at the Measurement Update instance: A) As planar contour plots
B) As 3-D PDF plots

26




GMM+

UKF

71768.842 T
= 1000 MC data points
(S Probability Contours ioe e
71768840 L..... . GM 1 (0_2236) ................................ ...?. ...................... -
¢ GM2 (05367 . T I
71768838} - ® GM3(0.2397) i ..:;l.:.,... .................. .
- : "y
E M
—_ 71768.836 A
=
o
g 71768 834 I P
o
5\ -
71768832 o
71768830 e °. .......... ..
71768.8 i i i
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24420.700 T T L
. : : * 1000 MC data points
. (&> Probability Contours
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SAAD0BEO Lo T SO UTT OO SUUU USRS SOTR RO i
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2
g DAAPOBTO e IR _
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24420.660 S T . -
24420_650 b e T,
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: .oﬁ.
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x-Position

y-Position (km)

z-Position (km)

71768.840 T

FI1TBE835 - .............................

71768.830

71768.825

71768.850

71768.845

71768.840

71768.835

71768.830

71768.825

1000 Particles

l(@Probabilityr Contours||

6963.3 6963.35

6963.45

24420.700 T

24420690 - ..............................

24420.680

24420670

24420.660

24420650 - ..............................

24420640 ..............................

1000 Particles
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i
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GMM + UKF

x10

0.01

: ST - 4 GM 1 (0.2236)
o] T ............... a1 samples
| e T4 GM 2 (05367
—2 GM 2 samples
GM 3 (0.2397)
e { " GM3 samples

o e e o
o o o o
=1 o = =1
[ B -3 -3

Probability

05 oo O Ry 0
: K e =
: = : 71768.850

particle probability value

0-l
71768.850 i G s T
71768.840 , 71768.840

71768.830 L L
6963.45 69635 71768.830

71768820 59633 696335 69634

6963.45

y-Position (km) 69634

6963.5

x-Position (km) y-Position (km) 69633 6963.35

PF Probability Scale

x-Position (km)

p>0.008

0.01

x10

Q08 >=p>0.004

o
o
=1
3]

0.004 >=p>0.002

{ #em1 02298 | |

002%=p >0.0006

GM 1 samples|; 0.006.)

. p<20.0006

25| .| P GM2 (05367 | oo
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0 i .
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N 24420640 % | - R— .
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0.l
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PRINCIPAL COMPONENT ANALYSIS (PCA)

X : zero mean data

Y =WAW'
s=W"x

s : principal components

PCA finds the principal components in a new transformed coordinate system with the greatest variance as
the first component and the subsequent ones follow.

INDEPENDENT COMPONENT ANALYSIS (ICA)
X = Bs X : whitened data

. s : independent states
s=F X
ICA finds the linear combinations of the unit

sphered observations x (w'x) that are in the
direction w of the max or min Kurtosis (4" order cumulant) B = {w1 w2}.

FastICA: uses a fixed point iteration scheme (MUCH FASTER).
Kurtosis(s,) = E{s'}—3(E{s’})’ where s, =w'Xx
w(i+1) = E{x(w(i)" x)’}=3w(i) iterated |w(i+1)"w(i)| —1

30



= (1m/s)?

Orbit parameters: eccentricity = 0.2, P, =» o2

vy~ (1000m)* and o?
1 rev of propagation, Epoch of interest at perigee, Period = 18hrs

VX,VY,VZ

e I|nitial state dimension L =6 icaorprca R 4 components

e Choice of 4 : Out-of-plane motion is decoupled from in-plane motion
— Fundamental nonlinearity comes from Kepler’s equation

 Demonstrate potential for augmented states not necessarily required for accurate state
prediction (Station location errors, Range biases etc)

e The reconstructed distributions are measured using: Ksgun
e The Kolmogorov-Smirnov (K-S) test m:
— Quantifies the max. distance D between = D I
the two Cumulative Distribution Functions (CDF) iy

417 446 461 473 486 498 510 522 534 547 560 572 585

Dab = Sl)"(p ‘ Fa (X) - Gb (X )‘ —cmuwpercenugefc;;oi:mmzjjgtﬁmm

— Cumulative percentages of bad
—KS

i : . http://www.statsoft.com/Portals/0/S t/ks%20graph.JPG
e The state particles are scaled to canonical units o omITOREBTIEIPROTTIEATIETER

* Ensures equal weightings for velocity components (affects eigenvalues)
« Distance : (1DU) = 6378.145km, Velocity : (1DU/ TU) = 7.90536828km/s 31



4.395

PCA POSITION: X-Y plane (DU) POSITION: X-Y plane (DU)

0.4 - - - - . .
e %
0.2} . 0.2 )
> 0 > 0
0.2} -0.2 o
™ []
L] .
. i 1 i _0 . L L L
4575 438 4.385 4.39 4305 4375 4.38 4.:;,(35 4.39
X
<10~ POSITION: Y-Z plane (DU) <107 POSITION: Y-Z plane (DU)

X 0.0740 0.0080
Y 0.0100 0.0020
Z 0.0030 0.0150

[] Original Data
e Reconstructed Data

Excess PCA ICA
Kurtosis
1st 1.30 | 24.39
2nd 22.66 | 2.55
gye 0.46 0.02
4th -0.08 -0.4

Shortcomings of PCA/ICA:

* For high non-Gaussian
behavior the components
were not fully
decorrelated

Solution

e Use Nonlinear Factor
Analysis 37



The Nonlinear Factor Analysis (NFA) is a nonlinear mapping of the sources s to the
observations x modeled by a multilayer perceptron (MLP) network model.

Sources s(t)

X - f(s,8)+n
= B¢(A+a)+b+n
= g@tanh(4+a)+b+n

Hidden
Neurons

Observations x(t)

Our goal is to estimate the sources s and the unknown variables 6 =(#4.%,a,b)

A c RIS B Ry a 2 Rnand b ¢ REbased on minimizing the cost function
between the posterior p and the approximate q given by the Kullback-Leibler Divergence
metric D

9018) 4o ~ where®={0,0,5,5}

D(a@[8) || p(@]x,%#))= ] a(®]&)In
I p(O©]x,#) are random variables

¢ and # are some prior assumptions.
Ref: Theory and MATLAB code developed by Dr. Annti Honkela at Helsinki University of Technology, Finland

33



The prior assumptions & and # are given as follows:
= @tanh(4+a)+b+n

x ~ N(f(s,8),diag(e’*"))
s~ N (0, diag(e**))
Parameters

A, B,a b~ N(m,, diag(e*"))

®={A B,a,b,5}and
®={AB,4b,s5}
are the solve-for parameters.

Known: x and priors for © and @
and

Hyperparameters:

Vy, Vs, Vg ~ N(m,, diag(e™))

(m,, V,, My, v, m, v, ,m, v, )~ N(0,100°)uninformative priors

The variance is parameterized tov =log o

(©]¢&)
[a@]&)In (®|x,¢z)d®

# f(0)

_ (©]¢)
= [q@]&)n (@led@ﬂn

(©]<&)
[ @] (QXWd@

= E[lnq(®@|5)]+E[-Inp(®,x|#)]
minC=C, +C_ =E[Inq(®|&)]+E[-Inp(®, x| #)]
w.rt. © and O

C oC, dC, C oC, dC,

— = — 4+ —= — = — + — =
0® 00 00 0® 00 00
where® and © are the mean and variance respectively

34



The obtained mean and variance terms for s and 6:

* means:LxN L : state dimension
] N: No. particles
e variances:LxN H, :No. Neurons

e mean8:4H xL), BLxH,), a(H, x1)andb(Lx 1)
e variance 0: 4(H, x L), &L xH,), a(H, x 1) and b(L x 1)

The variance terms for the sources s are assumed to be zero (and variances 6=0)

A . . * @ ®® @ Non-Gaussian and
variance s(i) =0
correlated
- Non-Gaussian and
uncorrelated
31 IS sN ST sN \ 4 |®
e FastICA produces uncorrelated sources s’ >
ST, s'N



The obtained mean and variance terms for s and 6:

* means:LxN L : state dimension
] N: No. particles
e variances:LxN H, :No. Neurons

e mean8:4H xL), BLxH,), a(H, x1)andb(Lx 1)
e variance 0: 4(H, x L), &L xH,), a(H, x 1) and b(L x 1)

The variance terms for the sources s are assumed to be zero (and variances 6=0)

A . . * @ ®® @ Non-Gaussian and
variance s(i) =0
correlated
- Non-Gaussian and
uncorrelated
31 IS sN ST sN \ 4 |®
e FastICA produces uncorrelated sources s’ >
ST, s'N



The uncorrelated sources s’, are binned into a 27 histogram then transformed into a
normalized discrete probability density function (PMF) p for compression.
FAST-FOURIER TRANSFORM

e The FFT calculates the coefficients of the discrete PDF as follows:

k)= pCie

k-1
: )Where (k=10 n) p(j)is the discrete probability value

normalized from the histogram

WAVELET TRANSFORM

e Use a wavelet filter (Daubechies 2) to extract terms that represent the PMF p as a
function of approximate and detail coefficients
ajo[n]=2 pk]*h[2n—K]
k

P (Jors, Oe y;[n]=2_plk]*g[2n—K]
Blk] coeffic?;nts Y J k

: p(k)= i ((ajo[n]*h[2n—K]) +(y;[n]* g[2n —K]))
ol ——> ] [—>(J2)— TR @

JO is the first level of decomposition

J are the subsequent levels of decomposition

37



The uncorrelated compressed PMF representations are reconstructed by taking the

inverse transforms of the FFT and the WT.

. v Ly :
IFFT: p(j)=D c(k)e " where (j =1 n)and (m<n)
k=1
F
T o) Z ((ajo[n] *h[—K +2n]) +()/j [n]*g[-k+2n])) where (k=1 n)
n=—~F
econstructed N particles for nverse Fast ICA MLP feed-forward
PMF state s’ S=As’+T x=8 tanh(#+a)+b
e Filters (WT) e Discrete sampling ixing matrix A * The mean
e Abscissa values e Uniform weights . ean vector T variables
» Coefficients = (4 B, a,b)

X is the reconstructed state in
: : e Mean sources s
canonical units 38
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A planar eccentric orbit:

* P, variances (1 km)? for position and (0.001 km/s)? for velocity

 Ephemeris at true anomaly 6 = 0° after 1 period

e N =2000 particles

e Period 18.1013 hrs.

Initial Condition X,:

[28000 km, O km, 0 km/s, 4.1331 km/s]

Orbital Numerical
Elements Value
a 42,000 km
e 0.2
[ 0 rad
Q 0 rad
w 0 rad
M, 0
Period 18.1013 hrs

0.3

0.2

0.1}

=04

Position

4.375

0.523

4.38

4.39

0.5228

0.5226 -

0.5224

>

0.5222

0.522F

0.5218

0.5216

X

40

4.395
%
¢
'.
£ Velocity '
:‘
%
]
-0.03 —0.62 —0.b1 6 0.61 0.62 0.b3

0.04



Canonical states NFA + FastICA Uncorrelated Discrete PMF from a

(DU and DU/TU) (20 neurons) components s’ 27 binned Histogram
Component 1 Component 2
0.08 T 041 T -
The rank correlation matrix: ) =
p(s
P, = I ,implies decorrelation G
0.021
1.00 -0.62 -0.21 0.02
o | 062 100 021 -0.06 s w2 0 5 5 10
NFA
| 002 -006 006 100 | °
0.02
p(S')u.ms-
~ ~ 0.01f
1 00 -00 -00 0.005
o | 00 1 00 00 9
p,NFA+FastICA _00 00 1 00 S’ S’
00 00 00 1
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Component PDF compression

Legend
- Original

and reconstruction: + Compressed

FFT and WT to
obtain
coefficients

Compression
rate of 50%

Inverse FFT and
WT to
reconstruct
PMEF

Component FFTD, (o||c) WTD, (o]]c)
1 0.1759 0.0010
2 0.1003 0.0188
3 0.0686 0.1001
4 0.1121 0.1568

Component 1

| FFT oo

=10

Component 2

-2 -1 0 1 2

Component

0.06

0.04

0.02

a3 -2

-1 0 1 2 3

4

03

0.025

Component 2

0.02

0.015

0.01

0.005

-0.005,

Component 3

3

Component 4




Cost of storing number of terms

Coefficients c 273 260
Method # Terms Cost
Wavelet Filters 8 N/A (Method/PF)
Abscissa PDF 12 12 PF Predictions 8000 1
Mixing Matrix A 16 16 WT Compressions 681 0.0851
Mean(s) = T 4 4 FFT Compressions 660 0.0825
A 80 80
L 16 OZ
a 20 20 o — :
©
g 80 80 % g w PE
4 4 ‘qs':; g mWT
v, 80 80 g . W FFT
e — - .
v, 20 20
PF WT FFT
Vg 80 80
A A However: need to quantify accuracies based
Vb

on the state particle reconstructions

I N 13



Cost of storing number of terms
TERMS # TERMS WT # TERMS FFT

Method # Terms Cost
Coefficients ¢ (Method/PF)
Wavelet Filters 8 M PF Predictions 8000 1
Abscissa PDF 12 12 WT Compressions 497 0.0621
Mixing Matrix A 16 16 FFT Compressions 476 0.0595
Mean(s) =t 4 4 1A
100
A 80 80 o
©
d 20 20 % E w PF
4 80 80 £ g mWT
]
4 4 = W FFT
a

b
owrews e w0 = =
PF WT  FFT

However: need to quantify accuracies based
on the state particle reconstructions
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Legend
o Original
o Reconstructed
Kolmogorov-Smirnov
X | 0.0680 | 0.0510
Y | 0.0480  0.0435
V, | 0.0440 | 0.0425
V, | 0.0405 | 0.0570
Dor :Sl;'(p|Fo(X)_GR(X)|
O: Original CDF F
R: Reconstructed CDF G

Position X-Y plane

Velocity X-Y plane

0.4 0.5235
0.3F o
0.2¢ 0.523
5225
ol 0.5225 |
> :
=01 o ©
0.2 o°
-03 0 © & 0.5215} :
o ©
-0.4r Oq
'offa? 4375  4.38 4..';!(85 439  4.395 a4 0'5-201.04 -0.02 0 0.02 0.04 0.06
X
Position X-Y plane WT Velocity X-Y plane
0.4 . 0.5235 ; l
0-3 [ L B
0.5225
0 |
> o
]
-0.3} 0.5215}
-0.4] °
-05 L I L | I 0_5 1 1 1 1 1
437 4375 438  4.385 439 4395 4.4 —20-04 -0.02 0 « 0.02 0.04 0.0
X
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KLD distance is calculated at different compression rates: [0.1 0.3 0.5 0.7 0.9]

Component 1

1 .
’
0.8F RETE
g ;o
goep S
3 S
gosp SRR B o
,,,,,,,,,,,,,,,,
0.2 | . B/
et
G - Lot - - s - -
0 01 0.3 0.5 0.7 0.9
-e=WT Compression rates
* FFT
Component 3
| 0t
oF T 4
] : : ;o
(= : : U :
] : ' :
s Co o R o
a : : ’ :
- . ’ .
X . : ’ :
o IR . -
: 0 :
: : : v :
G - i M- J
0 o1 0.3 0.5 0.7 0.9

Compression rates

 The WT coefficients has a strong bias between the approximate and detail coefficients
e WT performs better at lower compression rates compared to the FFT

Component 2

1 .
08F oo
L
3 ’d
§ 06F A S
] : ’ :
k-] Y K
QO4F SRR AR
X : Lo
. 4
S A
0.2 : “l
‘ BRI SUDT LN
) S — - -
0 0.1 0.3 0.5 0.7 09 1
Compression rates
Component 4
2.5 : : H
4
7 R L o
: .
[] . ’ .
e 3 ’ 3
8 1.5 R A R o
s | o
g 1 S o -
4 : BN :
: e :
O5F & B
G -. 2 —"""H“: —————— : “““““““ :
0 0.1 0.3 0.5 0.7 09 1

Compression rates
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Demonstrated the use of the Particle Filter:
a) A nonlinear estimator
b) Capable of incorporating non-Gaussian uncertainties during predictions

2. Demonstrated the use of the Independent Component Analysis (ICA) and Principal component
analysis for dimensional reduction

3. Demonstrated the use of Nonlinear Factor Analysis (NFA) followed by FastICA to achieve
uncorrelated states for PDF compression

4. The Wavelet Transform and the Fast-Fourier Transform demonstrated as effective methods for the
compression and reconstruction of univariate PDFs.

POTENTIAL FUTURE WORK

1. Use other smooth functions to represent the PMF of the components versus WT and FFT for
compression

2. Determine the limitations of NFA with respect to the number of particles (apart from
computational cost)

3. Other nonlinear decorrelation methods could be implemented ex. The Nonlinear

Independent Factor Analysis (NIFA) that uses Gaussian mixtures for sources
48
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Extended Kalman Filter (LaViola 2003 et al)

* Nonlinear models assuming Gaussian uncertainties

e Linearization about a current mean (computes Jacobian)

Xy = fk (Xk—l’Wk—l)
Y, = hk(xk’vk)

of
Ak - 8_X |x=xk
oh
H =—
k 8X |x=xk
Vv, ~ N (O, R)
Wk—l ~N (O! Q)
ISSUE

/ Time Update (Predict)

1) Integrate f, to get )A(;
2) Integrate d(k, k —1)= A d(k, k1)
to get d(k,k—1)

\ IR =(k-1) P_®" (k k-1) )

—

Initial estimates X, ,
and Covariance P, ,

Nonlinear propagation
I

Measurements Y, and Covariance R

0N |
N (-

Measurement Update

3P =(-KH,)P,

1)K, = P,(_HT(HPK_HT . R)_l
2) >’<\k - >’<\I<_+Kk(Yk _hk()zk_’vk))

J

N

State at time k




Unscented Kalman Filter (Julier and Uhlmann 2004 et al)
e Uses a series of weighted sample points to approximate the mean and covariance

X, =X, ) uT
X, =| X +(J(L+2)R), }i=1...L >2L+1 Sigma points  sma pims
XL: Yk_(wf(L'l'ﬂv)Pk)i ,I:L-I—:LZL . \v.
L — L]

m_A
WOC :%L +/1)+(1_a2 +,B) >-T|me iSigma pOintS w@]gnrﬁ-d s:an]Ellllemean
W fris1 ol and weights WT =

"= W _%2(L+/1)) ori=1..2L, o TEtamed
where L is the dimension of the state and k is time P V

http://www.cslu.ogi.edu/nsel/ukf/node6.html
ISSU E  stateattime t, State at time t,

Nonlinear propagation T e,
~ NonGeyssian >

N C EIG DI 7] 7
INOTI-agg55idil :




Based on Bayes Theory Likelihood Prior Density

« 1yy~ PO 1X)P(X)
pOx V)=

Normalizing Constant/

Estimate the Posterior Density: (Importance Sampling)
Proposal Distribution

BOG 1Y) = D W X S(X, ~ X)) where >wWi=1
=1

I=1

Weights

~Random Variable
X

Particles
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Particle Filter
3 particles

EKF
3 Monte Carlo



kurt(w'x) = E{(w'x)*}=3[E{(W'x)"}]" = E{(w' x)*} -3 w]*
J(w)=E{(w' %)} =3l w[* +F(w][)
F is a penalty term due to the constraint on w. The online learning algorithm has the form

W(t+1) = w(t) £ () [x(t)(w(t)" x(1))* =3 [lw(t) P w(t)+ f (| w(t) [F)w(t)]
U is the learning rate sequence, f is the derivative of F/2

The first two terms in the brackets are the gradient of kurt(w'x) and the third term is the

gradient of F(||w|[").

The fixed points w of the learning rule takes the expectation of the learning rule and equating
the change in weight to zero

E{x(W'x)"}=3[lw|* w+ f([w]*)w=0

w = scalar x (E{x(w"x)’}=3||w|f w)

FastICA

w(k) = E{x(w(k —1)" x)*}—3w(k —1)

Divide w(k) by its norm (scalar x w)

lWk) ' w(k=1)|—>1 let k = k+1
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The prior assumptions & and # are given as follows

The variance is parameterized tov = log o

- [qeon-98l) 4¢

x ~ N(f(s,8), diag(e®)) (O], #)

s ~ N (0, diag(e®*)) _ (©]S)
Parameters - JQ(@ [<JIn p(®, X | %) e p&

A~N(0,1)

.~ N(0,diag(e”™))
a~ N(m,_,diag(e’*?))
b ~ N(m,,diag(e**))

(©]<&)
[ @] p(@,xl'Zf)d@

= E[lnq(®|5)]+E[-Inp(©, x| #)]
minC=C, +C_ =E[Inq(®|&)]+E[-Inp(®, x| #)]

Hyperparameters: - )
v, ~ N(mvn’ diag(eZVV )) w.r.t. ® and O
aC, 8C oC, 8C
v, ~N(m, , diag(e"") = —0 ant _
‘ y 00 8@ 8@ 06 8@ 8@
vg, ~ N (mvBJ ,diag(e ™)) where® and @ are the mean and variance respectively
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C=C,+C, E[Inq(50|§)]+E[ In p(sé’x|H)]
C, ZE[Inq(s(N))]+ZE[Inq(6’)]_ >, Y- @26,

all _terms

a(s,(N))=N(s(N);5(N),§(N),  a(6)=N(6;;6,6,)

p(s) = N(s;0, diag(exp(2v,))
C, 'E[-Inp(s, & x|H)]=E[-Inp(x]|s, &,H)]+E[-In p(s|6,H)]+ E[-Inp(@|H)]
6@~ N(m,exp(2v));

E[-Inp(@|m,v,H)] = ” —In N (@; m,exp(2v))g(m)q(v)dmdv

— % IN(27)+V, + [(0 - rﬁ@)2 +O+ m,lexp(2v, —2v,)

where

_ 1 _(0-m,)’
np@imv.H)= In{\/znexp(ng) exp[ 2 eXp(ZVe)ﬂ

58



The uncorrelated sources s’, are blnned into a 27 hlstogram then transformed into a
normalized discrete PMF p for compression.

FAST-FOURIER TRANSFORM

e The FFT calculates the coefficients of the discrete PMF as follows:

0 PGk L | "
c(k)= Z p(jle " where (k=1 n) p(j)is the discrete probability value
- normalized from the histogram
WAVELET TRANSFORM

e Use a wavelet filter (Daubechies 2) to extract terms that represent the function p
as a function of approximate and detail coefficients

o = e k1= (p* DIKI= 3 pln] f(2kn]

| Approximate where f = {h, g}, c[K]={e;,[K], 7. [K]}
Plk) ———1 hik] % coefficients Z . J
5 [K1= Y. pn]+h[2k —n]

p(k)= i ((ajo[n]-h[2n=Kk])+(y;[n]-g[2n—k]))
e y,[K1=2_pIn]*g[2k—n]

JO is the first level of decomposition
59
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0.2
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0.8
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Demonstrated the use of the Particle Filter:

1. A nonlinear estimator
2. Capable of incorporating non-Gaussian uncertainties during predictions

Demonstrated the use of the Independent Component Analysis (ICA) and Principal component
analysis for dimensional reduction

Demonstrated the use of Nonlinear Factor Analysis (NFA) followed by FastICA to achieve
uncorrelated states for PDF compression

The Wavelet Transform demonstrated better compression results over lower compression rates
compared to the Fast-Fourier Transform

The Kullback-Leibler divergence and the Kolomogorov-Smirnov tests were used as Information
measures to quantify the reconstructions

Ephemeris compression and reconstruction were able to achieve great results for compression
rates

The reduced number of terms can be potentially used for cataloging accurate non-Gaussian
distributed ephemeris 61



Implementation of the Particle Filter using adaptive number of samples for numeric
efficiency and redundancy elimination.

Include a higher fidelity force model to incorporate additional relevant perturbations
such as atmospheric drag, solar radiation pressure, third body perturbations (Sun and
moon), J2 effects etc.

Develop a systematic way of determining the number of hidden neurons to use as well
as the number of iterations during the training phase (possibly optimize based on
constraints)

. Other decorrelation methods that do not assume Gaussian initial conditions as the NFA

does, could be implemented ex. The Nonlinear Independent Factor Analysis (NIFA)
(nonlinear counterpart of the ICA)

. Optimize the value n in the determination of the number of bins 2" for the histogram
generator

Use other smooth functions to represent the PDF of the components versus a PMF
before compression

Determine the limitations of NFA, NIFA with the number of particles (apart from
computational cost)
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