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♦  Microgravity propellant dynamics continue to offer a formidable 
modeling challenge for the computational fluid mechanics community 

• Analytical approaches to prediction of bulk behavior, e.g. tank forces 
and moments, degrades in accuracy below Bo~10; small perturbations 
only 

• Flows dominated by surface tension; curved interfaces; fluid-wall 
contact angles approximately zero  

• Many semi-analytical or empirical methods that correlate well with 
theory rely on quasi-steady-state parameters and cannot accurately 
predict effects of transient flows, e.g. throttling, thruster pulses 

• Momentum transfer due to fluid must be computed accurately for 
simulation-based verification 

♦  Our research explores the applicability of the lattice Boltzmann 
method (LBM) to modeling of cryogenic propellant dynamics in 
microgravity 

Introduction 
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♦  The lattice Boltzmann method (LBM) is an emerging approach to CFM using an 
explicit temporal and spatial discretization of the continuous Boltzmann equation: 

• Describes evolution of particle distribution functions, e.g. density distribution 
• Regular Cartesian discretization of a 2XD position-velocity phase space on a lattice 
• In discrete form, the lattice Boltzmann equation is given by  

The Lattice Boltzmann Method 
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typically restricted to very low-velocity flows, it does provide several unique advantages over tradi-
tional solvers. First, the meshing of complex geometry is performed on a regular cartesian lattice of
fluid cells, each having uniform volume in the fluid domain. As such, computations involving flux
across the boundary of adjacent cells are considerably simplified. Secondly, LBE has the advantage
of data locality; LBE-based flow solvers are not required to solve a global continuity equation at
each time step. Finally, LBE is relatively simple to implement and computationally efficient.

In the following sections, the development of an LBE-based flow solver for spacecraft propellant
dynamics will be detailed. In Section 2, the theory and basic implementation details of the LBE
will be introduced. In Section 3, the method of introducing multi-phase behavior into the LBE will
be discussed. In Section 4, the results of test cases that compare the outputs of the LBE flow solver
with theoretical predictions will be presented. In Section 5, a summary of the present research will
be provided along with some opportunities for forward work.

2 THE LATTICE BOLTZMANN METHOD

The lattice Boltzmann equation (LBE) is a discretization of the continuous Boltzmann equation,
describing particle dynamics on a molecular scale. The Boltzmann equation is given by
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where f(x, ⇠, t) is the molecular velocity distribution function (DF) in the phase space (x, ⇠) where
x 2 RD is the spatial position and ⇠ 2 RD is the velocity. The derivation of the Boltzmann
equation follows from the statistical kinetic theory of dilute gases in a closed domain. Here, a is the
acceleration due to the applied body force at the spatial location x, and the collision integral is given
by ⌦. The right-hand side of the Boltzmann equation is the collision term describing the short-range
molecular interactions of the velocity distributions assuming the modeled fluid is a dilute gas.

The direct computation of the collision operator is, in general, intractable for the continuous
Boltzmann equation. However, it can be approximated by a relaxation operation that preserves the
hydrodynamic moments that are invariants of the collision. In the simplest models, such as the BGK
(Bhatnagar-Gross-Krook) approximation, the collision is approximated by a linear relaxation to the
equilibrium distribution, which is related to the temperature and velocity of the flow.

The lattice Boltzmann equation follows from discretization of the 2D-dimensional phase space
and the local approximation of the resultant linear system of ordinary differential equations in dis-
crete time, and the approximation of the equilibrium distribution function consistent with that ve-
locity discretization. For the present model D = 2 and a velocity discretization of 9 directions in
two dimensions is chosen. The spatial discretization is applied on a regular lattice of size �x with a
temporal discretization �t. The lattice structure shown in Figure 1 is known as the D2Q9 model.

The lattice parameter c = �x/�t defines the characteristic speed associated with the velocity dis-
cretization e

i

, i = 0, 1, . . . 8. In this discretization, the k

th cell at spatial location x

k

is described
by a distribution function f(x

k

, t) 2 R9, the velocity distribution function at the lattice site x
k

. The
i

th component of the discretized distribution function describes the density of particles at x
k

having
velocity e

i

. The approximation of the equilibrium distribution f

eq (namely, the Maxwell equilib-
rium) is carried out such that the kinetic hydrodynamic moments are consistently approximated after
discretization. The continuous Maxwell distribution is expanded to third order in the velocity; the
truncated equilibrium approximation then converted into a discretized form using a Gauss-Hermite
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Figure 1. D2Q9 Lattice Structure

quadrature. The solution of the discretized Boltzmann equation can then be approximated by
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where u

k

is the local velocity, and the collision matrix A has been introduced. The conserved
hydrodynamic moments are given by
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and the speed of sound is c
s

= c/

p
3.

Equation (2) is the lattice Boltzmann equation. Under certain conditions, it is possible to recover
the macroscopic transport and continuity equations using the Chapman-Enskog expansion of the
LBE.3 The approximation of incompressible flow is valid only at small velocities for steady flow,
owing partially to the velocity truncation. This implies that compressibility error is the dominant
error source in the application of LBE.

The LBE is typically implemented in two steps comprising advection (streaming) and collision
(relaxation) using two copies of the domain, f and f

0. The boundary conditions are applied at lattice
sites where fluid cells are adjacent to a specified boundary, such as a wall. In almost all numerical
implementations, the units associated with the lattice are chosen such that �x = �t = c = 1 and
the mean density ⇢̄ is on the order of 1. This greatly reduces the computational burden and provides
good numerical conditioning for the requisite computations.

In the following developments, the spatial dependency of the hydrodynamic quantities will be
denoted with a subscript k for brevity, and the temporal dependency is implied.

2.1 Relaxation Operation

In implementations of the LBE using the BGK approximation, the collision matrix is replaced
by a scalar relaxation frequency ! = 1

⌧

where ⌧ is the relaxation time. In this single relaxation
time (SRT) model, all populations relax toward equilibrium at the same rate. It has been recognized
that while the SRT model is simple to implement, the relaxation of all populations at the same
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♦  The fluid dynamics are propagated in two steps 
over multiple layers 

1.  Advection (copy fluid density to adjacent cell: 
“streaming”) 

2.  Collision (simulate collisions by relaxing 
toward Maxwell equilibrium: “relaxation”) 

♦  Proper choice of units (time=space=1) and 
periodic lattice: no actual data copy 
•  The streaming step is done using pointer 

arithmetic: fast 
•  Data locality (only need knowledge of 

adjacent cells): parallelization 

♦  Limitations: 
•  Constant (wall) temperature: isothermal flow 
•  Effective speed of sound is related to the 

lattice physical parameters 
–  Compressibility error increases as M>0.1 
–  Incompressible flow approximation is valid 

only for steady flow at low velocities 
•  Stability decreases as timestep decreases at 

a fixed kinematic viscosity 

Numerical Implementation and 
Limitations 
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♦  Wall boundary conditions are straightforward to implement 
• So-called “bounce back rule”: invert velocity distributions at boundary 
• Reconstruct unknown distributions by storing in boundary for one timestep 
• Not a hydrodynamically accurate BC, but simulates no-slip wall 
• More accurate BCs are required for free slip, walls with high curvature, inlet flow, etc. 

♦  Relaxation operation and body forces 
• Body forces implemented using Kupershtokh exact difference method (EDM) 
• Shift equilibrium distribution under action of force such that lattice remains in equilibrium 
• Relaxation operation uses multiple relaxation time (MRT) scheme accounting for 

variation in kinematic viscosity with optional subgrid turbulence model 

Boundary Conditions & Body Forces 
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♦  LBE models allow incorporation of multiple phases uniformly in the lattice 
• Phase separation explicitly depends on temperature and a real gas EoS 
• We use the Carnahan-Starling EoS corrected for the target conditions (LO2 @ 94K) in a 

Shan-Chen like pseudopotential model 

• Phase segregation approximately obeys Maxwell construction (“mechanical stability”) 

♦  Parametric wall wetting model allows tuning of free surface contact angle 

Multi-Phase Flow & Wall Wetting 
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♦  The behavior of droplets in microgravity is dominated by surface tension 
• Droplet dynamics provide a useful verification case due to analytical solutions 
• Oscillation of the free surface can be predicted by Lamb’s equation 
• Effective surface tension can be determined from frequency 

Simulating Droplet Dynamics 
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Droplet Modes* 

*Frohn, A., and Roth, N. Dynamics of Droplets. Springer, 2000  
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♦  Propellant sloshing dynamics are of fundamental concern in spacecraft dynamics 
• Analytical solutions exist for axisymmetric containers at high Bo 
• Below Bo=1000 modified analytical models must be used 

– Stable flow only (continuous free surface) and small perturbations 
• CFD solutions required for turbulent flow, transient phenomena, PMD simulation, etc. 

♦  LBE method verified using a flow regime near analytical limit 
• 0.15 m cylindrical LO2 tank with hemispherical ends @ 0.001 g (Bo=20) 
• Lattice size = 3462 (4.1 MB) 
• Free decay from initial condition with acceleration 15 degrees from symmetry axis 
• First mode frequency matches analytical predictions very well (f=0.055 Hz) 

 

Propellant Slosh (Low Bo) 
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♦  LBM approach used for small domain simulation in microgravity 
• 0.1m spherical LO2 container in microgravity  
• High-g initial condition (settled fluid) and 0g at t=0 (20% fill fraction) 
• Random perturbing acceleration (-3 dB @ 0.2 Hz, gRMS=0.00003) 
• Lattice size = 2662 (2.4 MB) 

Fluid Slosh (Microgravity) 
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♦  Some promising results have been obtained in the application of the LBE to 
propellant sloshing dynamics and related microgravity fluid phenomena 

• The LBE method has promise for simulation of thermodynamically consistent multiphase 
flows in cryogenic propellants 

• Fundamental stability limitations remain for very low kinematic viscosities (real fluids!) 
• Recent progress includes stability enhancement via adaptive time-stepping and 

improvement in surface tension model using multirange pseudopotential 
– Overcomes some stability and surface tension limitations by improving isotropy 

♦  Production simulation of cryogenic flows will require incorporation of thermal effects 
• Thermal LBE codes are emerging and show some promise 
• Important to capture convective phenomena, for example, for modeling of long-term fluid 

circulation in propellant storage systems 

♦  Ongoing work extends the present proof-of-concept model to a 3D code 
• Parallelization opportunities may allow simulation of CFD-in-the-loop with spacecraft 

GN&C 6-DoF simulations, for example, using GPU computing 
• Possible validation opportunities using existing microgravity fluid experiment data 

collected aboard International Space Station (ISS) 
• 3D code targeted for NASA Exploration Upper Stage (EUS) ullage settling and propellant 

management studies 

Forward Work 
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