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SI.S Introduction

Space Launch System

¢ Microgravity propellant dynamics continue to offer a formidable
modeling challenge for the computational fluid mechanics community

 Analytical approaches to prediction of bulk behavior, e.g. tank forces
and moments, degrades in accuracy below Bo~10; small perturbations
only

* Flows dominated by surface tension; curved interfaces; fluid-wall
contact angles approximately zero

* Many semi-analytical or empirical methods that correlate well with
theory rely on quasi-steady-state parameters and cannot accurately
predict effects of transient flows, e.g. throttling, thruster pulses

* Momentum transfer due to fluid must be computed accurately for
simulation-based verification

¢ Our research explores the applicability of the lattice Boltzmann
method (LBM) to modeling of cryogenic propellant dynamics in
microgravity




SLS  The Lattice Boltzmann Method

Space Launch System

¢ The lattice Boltzmann method (LBM) is an emerging approach to CFM using an
explicit temporal and spatial discretization of the continuous Boltzmann equation:
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* Describes evolution of particle distribution functions, e.g. density distribution
» Regular Cartesian discretization of a 2XD position-velocity phase space on a lattice
* In discrete form, the lattice Boltzmann equation is given by
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| SLS Numerical Implementation and

Space Launch System Li m itati O nS

¢ The fluid dynamics are propagated in two steps

over multiple layers i—8
1. Advection (copy fluid density to adjacent cell: /// " \/<///
“streaming”) // // - N TN N8y
2. Collision (simulate collisions by relaxing 7 7 e
toward Maxwell equilibrium: “relaxation”) AR
e - i=1
¢ Proper choice of units (time=space=1) and A AL L i
periodic lattice: no actual data copy YAy Ay as //31/777
« The streaming step is done using pointer — —
arithmetic: fast s L L L TS
« Data locality (only need knowledge of > fi
adjacent cells): parallelization L ———— P
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¢ Limitations: Density 7/7i ; > fies
« Constant (wall) temperature: isothermal flow = P .
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lattice physical parameters b
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— Incompressible flow approximation is valid
only for steady flow at low velocities
« Stability decreases as timestep decreases at
a fixed kinematic viscosity



SLS Boundary Conditions & Body Forces

Space Launch System

¢ Wall boundary conditions are straightforward to implement
» So-called “bounce back rule”: invert velocity distributions at boundary
» Reconstruct unknown distributions by storing in boundary for one timestep
* Not a hydrodynamically accurate BC, but simulates no-slip wall
» More accurate BCs are required for free slip, walls with high curvature, inlet flow, etc.

¢ Relaxation operation and body forces
 Body forces implemented using Kupershtokh exact difference method (EDM)
« Shift equilibrium distribution under action of force such that lattice remains in equilibrium
» Relaxation operation uses multiple relaxation time (MRT) scheme accounting for
variation in kinematic viscosity with optional subgrid turbulence model
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SLS vuiti-Phase Flow & wall Wetting

Space Launch System

¢ LBE models allow incorporation of multiple phases uniformly in the lattice
* Phase separation explicitly depends on temperature and a real gas EoS

* We use the Carnahan-Starling EoS corrected for the target conditions (LO, @ 94K) in a
Shan-Chen like pseudopotential model

p Lo/t (o)A — (bp/4)"
(1= bp/4)

* Phase segregation approximately obeys Maxwell construction (“mechanical stability”)

p=pR

¢ Parametric wall wetting model allows tuning of free surface contact angle
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SLS Simulating Droplet Dynamics

Space Launch System

¢ The behavior of droplets in microgravity is dominated by surface tension
 Droplet dynamics provide a useful verification case due to analytical solutions
* Oscillation of the free surface can be predicted by Lamb’s equation
« Effective surface tension can be determined from frequency
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*Frohn, A., and Roth, N. Dynamics of Droplets. Springer, 2000



SLS Propellant Slosh (Low Bo)

Space Launch System

¢ Propellant sloshing dynamics are of fundamental concern in spacecraft dynamics
 Analytical solutions exist for axisymmetric containers at high Bo
* Below Bo=1000 modified analytical models must be used
— Stable flow only (continuous free surface) and small perturbations
» CFD solutions required for turbulent flow, transient phenomena, PMD simulation, etc.

¢ LBE method verified using a flow regime near analytical limit
* 0.15 m cylindrical LO, tank with hemispherical ends @ 0.001 g (Bo=20)
« Lattice size = 3462 (4.1 MB)
* Free decay from initial condition with acceleration 15 degrees from symmetry axis
* First mode frequency matches analytical predictions very well (=0.055 Hz)
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SI.S Fluid Slosh (Microgravity)

Space Launch System

¢ LBM approach used for small domain simulation in microgravity
* 0.1m spherical LO, container in microgravity
* High-g initial condition (settled fluid) and 0g at t=0 (20% fill fraction)

* Random perturbing acceleration (-3 dB @ 0.2 Hz, gg,s=0.00003)
« Lattice size = 2662 (2.4 MB)
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SLS Forward Work

Space Launch System

¢ Some promising results have been obtained in the application of the LBE to
propellant sloshing dynamics and related microgravity fluid phenomena

* The LBE method has promise for simulation of thermodynamically consistent multiphase
flows in cryogenic propellants

« Fundamental stability limitations remain for very low kinematic viscosities (real fluids!)

* Recent progress includes stability enhancement via adaptive time-stepping and
improvement in surface tension model using multirange pseudopotential

— Overcomes some stability and surface tension limitations by improving isotropy

¢ Production simulation of cryogenic flows will require incorporation of thermal effects
* Thermal LBE codes are emerging and show some promise
 Important to capture convective phenomena, for example, for modeling of long-term fluid
circulation in propellant storage systems

¢ Ongoing work extends the present proof-of-concept model to a 3D code
» Parallelization opportunities may allow simulation of CFD-in-the-loop with spacecraft
GN&C 6-DoF simulations, for example, using GPU computing
 Possible validation opportunities using existing microgravity fluid experiment data
collected aboard International Space Station (ISS)
» 3D code targeted for NASA Exploration Upper Stage (EUS) ullage settling and propellant
management studies
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