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ABSTRACT

Benchmarking of prognostic algorithms has been challeng-
ing due to limited availability of common datasets suit-
able for prognostics. In an attempt to alleviate this prob-
lem several benchmarking datasets have been collected by
NASA’s prognostic center of excellence and made available
to the Prognostics and Health Management (PHM) commu-
nity to allow evaluation and comparison of prognostics algo-
rithms. Among those datasets are five C-MAPSS datasets that
have been extremely popular due to their unique characteris-
tics making them suitable for prognostics. The C-MAPSS
datasets pose several challenges that have been tackled by
different methods in the PHM literature. In particular, man-
agement of high variability due to sensor noise, effects of
operating conditions, and presence of multiple simultaneous
fault modes are some factors that have great impact on the
generalization capabilities of prognostics algorithms. More
than 70 publications have used the C-MAPSS datasets for de-
veloping data-driven prognostic algorithms. The C-MAPSS
datasets are also shown to be well-suited for development of
new machine learning and pattern recognition tools for sev-
eral key preprocessing steps such as feature extraction and
selection, failure mode assessment, operating conditions as-
sessment, health status estimation, uncertainty management,
and prognostics performance evaluation. This paper summa-
rizes a comprehensive literature review of publications using
C-MAPSS datasets and provides guidelines and references to
further usage of these datasets in a manner that allows clear
and consistent comparison between different approaches.

1. INTRODUCTION

In the past decade the science of prognostics has fairly ma-
tured and the general understanding of health prediction prob-
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lem and its applications has greatly improved. Both data-
driven and physics based methods have been shown to pos-
sess unique advantages that are specific to application con-
texts. However, until very recently, a common bottleneck in
development of data-driven methods was the lack of availabil-
ity of run-to-failure data sets. In most cases real-world data
contain fault signatures for a growing fault at various sever-
ity levels but no or little data capture fault evolution all the
way through failure. Procuring actual system fault progres-
sion data is typically time consuming and expensive. Fielded
systems are, most of the time, not properly instrumented for
collection of relevant data or are unable to distribute such
data due to proprietary constraints. The lack of common data
sets, which researchers can use to compare their approaches,
has been an impediment to progress in the field of prognos-
tics. To tackle this problem the Prognostics Center of Excel-
lence (PCoE) at NASA’s Ames Research Center established a
prognostics data repository back in 2007 (Saxena & Goebel,
2008). Several datasets have been since published that have
been used by researchers around the world. Among these
datasets are five datasets from a turbofan engine simulation
model - C-MAPSS (Commercial Modular Aero-Propulsion
System Simulation) (Frederick, DeCastro, & Litt, 2007). By
simulating a variety of operational conditions and injecting
faults of varying degree degradation datasets were generated
for prognostics development (Saxena, Goebel, Simon, & Ek-
lund, 2008a). One of the first datasets was used for a prognos-
tics data challenge at the PHM’08 conference. A subsequent
set was then released later with varying degrees of complex-
ity. These datasets have since been used very widely in pub-
lications for benchmarking prognostics algorithms.

The turbofan degradation datasets have received over seven
thousand unique downloads in the last five years but algo-
rithms developed using these have been published in only
about seventy publications. Furthermore, in many publica-
tions it is not clear how authors are computing results and
comparing with others. There has been a confusion and in-
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consistency in how these datasets have been interpreted and
used in many cases. Consequently, not all comparisons of
performance can be considered valid. Therefore, this paper
intends to analyze various approaches that researchers have
taken to implement prognostics using these turbofan datasets.
Some unique characteristics of these datasets are also identi-
fied that led to use of certain methods more often than oth-
ers. Specifically, various differences among these datasets
are pointed out. A commentary is provided on how these ap-
proaches fared compared to the winners of the data challenge.
Furthermore, this paper also attempts to clear several issues
so researchers in the future can take these factors into account
in comparing their approaches with the benchmarks.

2. C-MAPSS DATASETS

C-MAPSS is a tool, coded in the MATLAB-Simulink R© en-
vironment for simulating engine model of the 90,000 lb thrust
class (Frederick et al., 2007). Using a number of editable
input parameters it is possible to specify operational profile,
closed-loop controllers, environmental conditions (various al-
titudes and temperatures), etc. Additionally, there are provi-
sions to modify some efficiency parameters to simulate vari-
ous degradations in different sections of the engine system.

2.1. Datasets characteristics

Using this simulation environment five datasets were gen-
erated. By creating a custom code wrapper, as described
in (Saxena, Goebel, et al., 2008a), selected fault injection
parameters were varied to simulate continuous degradation
trends. Data from various parts of the system were collected
to record effects of degradations on sensor measurements and
provide time series exhibiting degradation behaviors in mul-
tiple units. These datasets possess unique characteristics that
make them very useful and suitable for developing prognostic
algorithms.

1. Data represent a multi-dimensional response from a
complex non-linear system from a high fidelity simula-
tion that very closely models a real system.

2. These simulations incorporated high levels of noise in-
troduced at various stages to accommodate the nature of
variability generally encountered.

3. The effects of faults are masked due to operational con-
ditions, which is yet another common trait of most oper-
ational systems.

4. Data from plenty of units is provided to allow algorithms
to extract trends and build associations for learning sys-
tem behavior useful for predicting RULs.

Without a doubt these datasets were geared towards data-
driven approaches where very little or no system information
was made available to PHM developers.

As described in detail in Section 3, the analysis on the publi-
cations using these datasets shows that many researchers have
tried to make comparisons between results obtained from
these similar yet different datasets. This section briefly de-
scribes and distinguishes the five datasets and explains why
it may or may not be appropriate to make such comparisons.
Table 1 summarizes the five datasets. The fundamental dif-
ference between these datasets is attributed to the number of
simultaneous fault modes and the operational conditions sim-
ulated in these experiments. Datasets #1 through #4 incor-
porate an increasing level of complexity and may be used to
incrementally learn the effects of faults and operational con-
ditions. Furthermore, what sets these four datasets apart from
the challenge datasets is the availability of ground truth to
measure performance. Datasets 1 − 4 consist of a training
set that users can use to train their algorithms and a test set
to test the algorithms. The ground truth RUL values for the
test set are also given to assess prediction errors and compute
any metrics for comparison purposes. Results between these
datasets may not always be comparable as these data simulate
different levels of complexity, unless a universal generalized
model is available that regards datasets 1− 3 as special cases
of dataset #4.

The PHM challenge datasets are designed in a slightly differ-
ent way and divided into three parts. Dataset #5T contains
a train set and test set just like for datasets 1− 4 except with
one difference. The ground truth RULs for the test set are
not revealed. The challenge participants were asked to up-
load their results (only once per day) to receive a score based
on an asymmetrical scoring function (see (Saxena, Goebel, et
al., 2008a)). Users can still get their results evaluated using
the same scoring function by uploading their results on the
repository page, but otherwise it is not possible to compute
any other metric on the results in absence of ground truth to
allow error computation. The third part of the challenge set is
dataset #5V , the final validation set that was used to rank the
challenge participants, where they were allowed only once
chance to submit their results. The challenge since then is still
continuing and a participant may submit final results (only
once) for evaluation per instructions posted with the dataset
on the NASA repository (Saxena & Goebel, 2008).

2.2. Performance Benchmarking

One of the key drivers for this study was to assess state-of-
the-art in prognostic methods established through compar-
isons and performance benchmarking. However, the survey
revealed a serious lack of consistency in methods used for
performance evaluation. One of the key contributing reasons
towards this inconsistency is thought to be the unavailabil-
ity of established performance banchmark. Originally it was
planned that the PHM08 challenge winning performances
would establish a benchmark that would allow further im-
provements as new methods are developed. But since that
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Table 1. Description of the five turbofan degradation datasets available from NASA repository.

Datasets #Fault Modes #Conditions #Train Units #Test Units

Turbofan data
from NASA
repository

#1 1 1 100 100
#2 1 6 260 259
#3 2 1 100 100
#4 2 6 249 248

PHM2008 Data
Challenge

#5T 1 6 218 218
#5V 1 6 218 435

webpage was taken down in subsequent years these scores
have not been easily available except as reported (often par-
tially) in some publications from the winners. It is, therefore,
planned to compute several relevant metrics on the submitted
results during PHM08 challenge and make them available to
serve as reference for future efforts. These benchmarks, how-
ever, remain beyond the scope of this paper and will be made
available in future publications.

3. C-MAPSS DATASET LITERATURE REVIEW

To analyze various approaches that have been used to solve
C-MAPSS dataset problem, all the publications that cite these
datasets including the references recommended by the repos-
itory were collected through standard web search. The search
results returned over seventy publications which were then
preprocessed to identify overlapping efforts by same authors
or the publications that only cite the dataset but perceivably
did not use them for algorithm development. This resulted
in forty unique publications that were then considered for re-
view and analysis in this work.

For the sake of readability, each of these publications were as-
signed a unique ID to use in various tables summarizing the
results presented in this section. This mapping between pub-
lication and IDs is presented in Table 10 as appendix. Fur-
thermore, to keep the paper length short, a detailed review
analysis of each of the forty publications is not included but
only the summarized findings.

The analysis of the collected publications reveals several im-
portant observations that are summarized here. First, these
publications are binned into various different categories and
then analyzed for the distributions thus observed. These cat-
egories and corresponding findings are presented next.

3.1. C-MAPSS Dataset Used

Table 2 identifies specific publications that use one or more
of these five datasets. It can be observed that the dataset #1
was the most used one (55%), followed by the test set (#5T )
from the PHM08 challenge (35%), whereas rest of the other
datasets are relatively under utilized. Three publications re-
port generating their own datasets using the C-MAPSS sim-
ulator and (Richter, 2012) describes the simulator and how
it can be used to generate degradation data rather than using

any specific dataset.

The heavy usage of dataset #1 (≈ 70%) compared to all oth-
ers among the four from the NASA Repository may be at-
tributed to its simplicity compared to the rest. On the other
hand, high usage of dataset #5T is attributed to the PHM08
challenge, where several teams had already used these data
extensively, thereby gaining significant familiarity with the
dataset as well as developing a natural preference due to avail-
ability of corresponding benchmark performance from the
challenge leader board.

Table 2. List of publications for each dataset.

Datasets Publication ID %

Turbofan data
from NASA
repository

#1
5, 6, 10, 13, 14, 15, 19, 20,
23, 24, 25, 26, 27, 28, 31,
32, 33, 34, 36, 37, 38, 40

22/40

#2 13, 22, 34, 40 4/40
#3 34, 40 2/40
#4 7, 34, 40 3/40

PHM08 Data
challenge

#5T 1, 2, 3, 4, 8, 12, 16, 17, 21,
29, 30, 34, 35, 40 14/40

#5V 1, 2, 3, 40 4/40
Simulator OWN 9, 11, 39 3/40
Other - 18 1/40

Several publications mentioned in Table 2 have used only
the training datasets that have complete (run-to-failure) tra-
jectories. Using data with complete trajectories gives access
to the true End-of-Life (EOL) to compute RUL from any
time point in a degradation trajectory which could be used
to generate a larger set of training data. This approach is
also relevant to estimating RULs at different time points and
allows the usage of prognostics metrics (Saxena, Celaya, et
al., 2008) such as Prognostic Horizon, α − λ metric, or the
convergence measure. However, in true learning sense the
algorithm, once trained, must be tested on unseen data for
proper validation, as was required for the PHM’08 challenge
datasets. Table 3 shows that 11 different publications used the
full training/testing datasets: the training dataset for estimat-
ing the parameters of the algorithms and using the full testing
datasets for performance evaluation.

3.2. Target Problem Being Solved

As normally expected there is a wide variety of approaches
taken in interpreting the datasets, formulating a problem. and
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Table 3. List of publications using only full training/testing
datasets.

Datasets Publication ID %

Turbofan dataset
from NASA
repository

#1 20, 27, 28, 40 5/40
#2 40 1/40
#3 40 1/40
#4 40 1/40

PHM08 Data
challenge

#5T 1, 2, 3, 4, 16, 21, 40 7/40
#5V 1, 2, 3, 40 4/40

modeling the system to solve the problem. However, contrary
to expectations a significant number of publications have uti-
lized these datasets for analysis heavily focused on diagnosis
(multi-class classification) rather than prognostics.

By posing a multi-class classification problem various publi-
cations attempt to solve mainly three types of problems:

• Supervised classification: The training dataset is labeled
(known classes for each feature vector);

• Unsupervised classification: The classes are not known
apriori and data are not labeled;

• Partially supervised classification: Some classes are pre-
cisely known, others are unknown or are attached with a
confidence value to express belief in that class.

Publications 1, 7, 10, 20, 24, 27, 32 use classification for
preprocessing steps towards solving a prognostics problem.
Specifically, unsupervised classification algorithms are used
in publications 1, 7 to segment the dataset into the six oper-
ating conditions. For reference, detailed information about
various simulated operating conditions in C-MAPSS is de-
scribed in (Richter, 2012), which can also be used to label
these datasets. Supervised and unsupervised classification al-
gorithms are also used in publications 6, 10, 20, 27, 32 to
assign a degradation level according to sensor measurements.
The sequence of discrete failure degradation stages is indeed
relevant for the estimation of the current health state and its
prediction (Kim, 2010).

Health assessment, anomaly detection (seen as a 1-class clas-
sification problem) or fault identification are tackled in pub-
lications 6, 11, 12, 13, 26, 31, 35 using supervised classifi-
cation methods, and partially supervised classification tech-
niques in publications 12, 27, 33. For these approaches, a
known target (or a degradation level) is required to evaluate
the classification rate. For instance, four degradation levels
were defined for labeling data in publications 6, 10, 27, 33:
normal degradation (class 1), knee corresponding to a notice-
able degradation (class 2 viewed as a transition between class
1 and 3), accelerated degradation (class 3) and failure (class
4). One such segmentation is provided at URL1, whereas
a different set of segmentation was proposed in publication
13. Using these segmented data (clusters) as proxy to ground

1http://members.femto-st.fr/emmanuel-ramasso/data-and-codes

truth, some level of classification performance can be evalu-
ated for comparison purposes.

Similar to several classification approaches used, many ap-
proaches were employed for solving the prognostics problem
for predicting RULs. In order to give due attention to the
analysis of prognostic methods, a discussion is presented sep-
arately in Section 4.

3.3. Method for Treatment of Uncertainty

Given the inherent nature of datasets that include several
noise factors and lack of specific information on the effects of
operational conditions it is important for algorithms to model
and account for uncertainty in the system. Different publica-
tions have dealt with uncertainty at various stages of process-
ing as described below:

1. Signal processing step such as noise filtering using a
Kalman filter as in publications 2, 3, 20, Gaussian kernel
smoothing in publications 1, 7, and functional principal
component analysis in publication 15.

2. Feature extraction/selection step such as using princi-
pal component analysis and other variants of it as sug-
gested in publications 1, 7, 13, grey-correlation in pub-
lication 22, and computing relevance of features for pre-
diction in publication 23.

3. Health estimation step such as based on operating con-
ditions assessment to normalize/factor out the effects of
operating conditions as proposed in publications 1, 7, 21,
40 and using non-linear regression.

4. Classification step where uncertainty modeling plays a
role on data labeling using noisy and imprecise degrada-
tion levels as shown in publications 12, 27, 33, or on the
inference of a sequence of degradation levels such as us-
ing Markov Models or multi-models as in publications 6,
10, 24, 32, 34.

5. Prediction step such as gradually incorporating prior
knowledge during estimation in presence of noise as pro-
posed in publications 4, 14, 16, 17, 19, 21, 30, in deter-
mining failure thresholds as in publications 10, 27, 32 or
in representing health indicator such as in publication 40
to be used in prediction.

6. Information fusion step by merging multiple RUL esti-
mates through Bayesian updating as pointed in publica-
tions 4, 21 or in similarity-based matching as in publica-
tions 1, 27, 40.

A variety of different uncertainty representation theories are
found to be used. Table 4 classifies different publications ac-
cording to the theory of uncertainty treatment used in corre-
sponding analysis (Klir & Wierman, 1999). As shown in the
table, the probability theory is the most popular one (65%)
followed by set-membership approaches (in particular fuzzy-
sets with 15%), Dempster-Shafer’s theory of belief functions
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(13%), and other measures (such as polygon area and Cho-
quet integral).

Table 4. Methods for uncertainty management used on C-
MAPSS datasets.

Theories Publication ID %

Probability theory
1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 15, 16,
17, 19, 20, 21, 22, 26, 28, 29, 30,
31, 32, 33, 34, 35

26/40

Set-membership 10, 14, 23, 25, 36, 39 6/40
Belief functions 6, 10, 24, 27, 33 5/40
Other measures 10, 40 2/40

3.4. Methods used for Performance Evaluation

Table 5 summarizes the performance measures that have
been used for prognostics-oriented publications. A taxon-
omy of performance measures for RUL estimation was pro-
posed in (Saxena, Celaya, et al., 2008; Saxena, Celaya, Saha,
Saha, & Goebel, 2010), where different categories were pre-
sented: accuracy-based, precision-based, robustness-based,
trajectory-based, computational performance and cost/benefit
measures, as well as some measures dedicated specifically
to prognostics (PHM metrics). Since this problem involves
predictions on multiple units it is expected that the major-
ity of publications would use error-based accuracy and pre-
cision metrics. Metric like the Mean Squared Error (MSE)
has been used in two different ways- for the estimation of the
goodness of fit between a predicted and a real signal, and as
an accuracy-based metric to aggregate errors in RUL estima-
tion. Only the publications that fall under latter category are
included in the table. The table clearly shows that accuracy-
based measures were most widely used, in particular the scor-
ing function from PHM08 challenge, which also weighs ac-
curacy by timeliness of predictions. Broader usage of this
metric is also explained by the fact that this is the only met-
ric for which scores from data challenge were available and
can be used as benchmark to compare with any new develop-
ment. However, one may also compute additional measures
if using only the training datasets where full trajectories are
available. In that case approaches like leave-one-out valida-
tion become applicable where all training instances but one
are used for training each time and the remaining one is used
for performance evaluation. Then the average of the perfor-
mance measure is computed from all the runs. Publication 27
presents this approach for dataset #1 and a cross-validation
procedure for dataset #5T is used in publication 21. Note
that publications 19, 20, 32 provide the only RULs estimates
for all testing instances (without computing any metrics) and
publications 10, 27 present distribution of errors.

4. PROGNOSTIC APPROACHES

C-MAPSS datasets were generated to allow development and
benchmarking of various prognostics approaches. However,

Table 5. Performance measures used in prognostics-oriented
publications applied on C-MAPSS.

Categories Measures Publication ID %

Accuracy

PHM08 Score 1, 2, 4, 5, 8, 16, 21, 29, 30, 40 10/40
FPR, FNR 8, 10, 27, 40 4/40

MSE 3, 8, 15, 17, 29, 40 6/40
MAPE 4, 23, 28, 32, 34, 39, 40 7/40
MAE 5, 13, 38, 40 4/40

Precision ME 25,28,32,39 4/40
MAD 25 1/40

Prognostics

PH 7, 22 2/40
α− λ 7, 22 2/40

RA 7, 22, 34 3/40
CV 7, 22, 34 3/40
AB 34 1/40

as observed from the literature review (see Section 3.2) many
researchers have used them to cast a multiclass classification
problem instead, even though majority of publications did use
them to develop prognostics algorithm. This section focuses
on describing those prognostic approaches. These approaches
used on C-MAPSS datasets can be divided into three broad
categories as described next.

4.1. Category 1: Using functional mappings between set
of inputs and RUL

Methods in this category (see Table 6) first transform the
training data (trajectories) into a multidimensional feature
space and use corresponding RULs to label corresponding
feature vectors. Then using supervised learning methods a
mapping between feature vectors and RULs is developed.
Methods within this category are mostly based on Neural Net-
works with various architectures. Different sensor channels
were used to generate corresponding features. However, it
was observed that the approaches yielding good performance
also included a feature selection step through advanced pa-
rameter optimization such as using genetic algorithm and
Kalman filtering as described in publications 2, 3 that ranked
2d and 3rd respectively in the competition.

Table 6. Category 1 methods using a mapping learned be-
tween a subset of sensor measurements as inputs and RUL as
output.

Methods Publication ID

RNN, EKF 2
MLP, RBF, KF, Ensemble 3
MLP 8
ANN 9
ESN 20
Fuzzy rules, genetic algorithm 36
MLP, adaboost 38
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4.2. Category 2: Functional mapping between health in-
dex (HI) and RUL

Methods listed in Table 7 are based on the estimation of
two mapping functions: One maps sensor measurements to
a health index (1-D variable) for each training unit based on
sensor measurements; The second mapping links health in-
dex values to the RUL. These approaches construct a library
of degradation models. Inference of the RUL for a given test
instance includes using the library as prior knowledge to up-
date the parameters of the model corresponding to the new
test instance. Updating can be done using Bayes rule as pro-
posed in publication 4 or other model averaging or ensemble
techniques designed to take into account the uncertainty in-
herent to the model selection process (Raftery, Gneiting, Bal-
abdaoui, & Polakowski, 2003).

Table 7. Type 2 methods using health index as input and RUL
as output.

Methods Publication ID

Quadratic fit, Bayesian updating 4
Logistic regression 5
Kernel regression, RVM 7
RVM 16
Gamma process 17
Linear, Bayesian updating 19
RVM, SVM, RNN, Exponential and quadratic fit,
Bayesian updating

21

Exponential fit 28
Wiener process 29
Copula 30
HMM, LS-SVR 34

Table 8 lists some other approaches that use approximation
functions to represent the evolution of individual sensor mea-
surement through time. Given a test instance as many predic-
tions are made as the number of sensors. These predictions
are then used in a classifier that assigns a class label related
to identified degradation level. Some of these approaches
also update classifier parameters with new measurements us-
ing some Bayesian updating rules as mentioned previously.
These methods were however applied only on dataset #1 in
which sensors depict clear monotonic trends.

Table 8. Category 2 methods based on individual sensor mod-
eling and classification.

Methods Publication ID

exTS, supervised classification 10
SVR 13
exTS, ARX 14
ANN, ANFIS 23
Piece-wise linear (multi-models) 24
exTS 25
ELM, unsupervised classification 32

4.3. Category 3: Similarity-based matching

In these methods (Table 9), historical instances of the system
(sensor measurements trajectories labeled with known failure
times) are used to create a library. For a given test instance
similarity with instances in the library is evaluated generating
a set of Remaining Useful Life (RUL) estimates that are even-
tually aggregated using different methods. Compared to cat-
egory 2 methods, these methods do not make use of training
trajectory abstraction into features, but trajectory data (possi-
bly filtered) are themselves stored. Similarity is computed in
the sensor space as in publication 27 or using health indices
as in publications 1, 7, 17, 21, 40.

As mentioned in publications 1, 7, in practice the test instance
and the training instance may take different time in reaching
a particular degradation level from the initial healthy state.
Therefore, similarity-based matching must accommodate this
difference in the early phases of degradation curves. In pub-
lication 40, this problem was tackled by assuming a constant
initial wear for all instances yielding an offset on health in-
dices. Efficient similarity measures are also necessary to cope
with noise and degradation paths. For instance, in publica-
tions 1, 7 three different similarity measures were used, and
in publication 40, computational geometry tools were used
for instance representation and similarity evaluation.

Table 9. Category 3 methods using similarity-based match-
ing.

Methods Publication ID

HI-based 3 similarity measures and kernel smoothing 1, 7
Similar to 1 and 7 using 1 similarity measure 22
Feature-based similarity, 1 similarity measure, en-
semble, degradation levels classification

27

HI-based similarity, polygon coverage similarity, en-
semble

40

An advantage of approaches in this category is that new in-
stances can be easily incorporated. Moreover, similarity-
based matching approaches have demonstrated good general-
ization capability on all C-MAPSS datasets as shown in pub-
lications 1, 7, 40 despite a high level of noise, multiple simul-
taneous fault modes, and a number of operating conditions.
This category of algorithms are relatively easily parallelized
to reduce computational times needed for inference.

5. SOME GUIDELINES TO USING C-MAPSS DATASETS

Another contribution from this paper is through summariz-
ing some guidelines in using C-MAPSS datasets that my help
future users to understand and utilize these datasets better.
It summarizes information gathered from the literature re-
view and authors’ own experiences, which in many cases goes
beyond the documentation provided along with the datasets.
Specifically, it offers some general processing steps and lists
relevant publications that describe implementation of these
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preprocessing steps that could be useful in developing a prog-
nostic algorithm (Figure 1).

Dataset Selection

Understanding 

C-MAPSS Data

Formulating the 

Problem

Data Preparation

Learning and 

Predicting

Performance 

Evaluation

Turbofan Dataset from 

NASA (#1, #2, #3, #4)

PHM08 Challenge Dataset 

(#5T, #5V)

Multiclass classification

Prognostics

Create Train, Test, Validation 

sets

Sensor selection

Feature extraction

Noise filtering

Neural Network-based methods

Extrapolation-based methods

Similarity-based methods

Choice of metrics

Comparison with benchmarks

Evaluation on challenge 

validation set by NASA

Figure 1. Guidelines to Using C-MAPSS Datasets.

Based on the analysis presented in (Section 3), five general
data processing and algorithmic steps are considered:

[Step 1:] Understanding C-MAPSS datasets – Compre-
hensive background information on turbofan engines and
C-MAPSS datasets is well presented in three publications,
(Saxena, Goebel, Simon, & Eklund, 2008b), (Richter, 2012),
and (T. Wang, 2010). More details about the hierarchical
decomposition of the simulated system into critical compo-
nents can also be found in (Frederick et al., 2007; Abbas,
2010), which provides valuable domain knowledge. These
publications do not focus on the physics-of-failure of tur-
bofan engines but describe generation of these datasets and
various practical aspects when using C-MAPSS datasets for
prognostics. These include description of sensors measure-
ments, illustrations of operating conditions, impact of fault
modes, etc., which can play an important role in improv-
ing data-driven prognostics algorithms as well. Going from
dataset #1 to #4 represents varying degrees of complexity
and, therefore, it is recommended to use them in that order to
incrementally develop methods to accommodating individual
complexity one by one. The challenge datasets fall some-
where in the middle as far as complexity level goes but suffer
from availability of ground truth information for a quicker
feedback during algorithm development. Therefore, these
datasets may be used as validation examples and should be
compared to other approaches using benchmarks presented
in Section 2.2.

[Step 2:] Defining the problem – Given the nature of these
datasets several types of problems can be defined. As men-

tioned in Section 3.2 in addition to prediction, a multi-class
classification problem can be defined for a multidimensional
feature space. However, the intent behind these data was
to promote prognostics algorithm development. Since these
data consist of multiple trajectories a problem to predict RUL
for all trajectories can be constructed just as the one posed
in the data challenge. However, one could also define the
problem at a higher granularity by modeling the degradation
for each trajectory individually and predict RULs at multiple
time instances, which would be more of a condition based
prognostics context.

[Step 3:] Data preparation – After a dataset (turbofan or
data challenge) is selected, it is suggested to split the orig-
inal training dataset into two subsets: a training dataset for
model parameter estimation (learning) and a testing dataset
to test the learned model 7 (see for example publications 21,
40). For the datasets #1 − 4 corresponding RUL vectors
are provided for the test sets so users can validate their al-
gorithms. However for the challenge datasets the evaluations
can only be obtained by submitting the RULs to the NASA
website (on once per day basis for #5T and only once for
#5V ). Therefore, it may be desirable to split the training set
itself for training, test, and validation purposes during algo-
rithm development. The next step is to downselect sensors to
reduce problem dimensionality. Some data exploration and
preparation approaches for the data challenge (datasets #5T
and #5V ) are well described in publications 1, 2 and 7. Some
“heuristic rules” to avoid over-predictions are also presented
in publication 40 and applied on all five C-MAPSS datasets.
Some of the better performing methods are based on a PCA
such as in publication 1, and other sensor selection proce-
dures such as in publications 2, 3 and 40. From the survey it
was noted that the most commonly selected subset of sensors
was 7, 8, 9, 12, 16, 17, 20 (as it was also initially suggested in
publication 1). Additional sensors may also be considered,
similar to the approach proposed in publication 40 where a
total of 511 combinations were studied for each dataset for
an exhaustive evaluation.

[Step 4:] Learning and Predicting – This step forms the
core of prediction problem. As described in Section 3 a vari-
ety of learning approaches can be employed to learn various
mappings between the sensor data and system health to com-
pute RULs. Some of these methods try to learn RUL as a
function of sensor data (system state) or features thereof, oth-
ers estimate a health index first. Each of the trajectory can
be modeled into a degradation process to predict when they
cross the zero health threshold using regression methods. Ap-
proaches based on health index computation can be applied
to all datasets. The approach proposed in publications 1, 7
is the simplest to implement. To deal with normalization (or
alternatively segmentation) of data by operating conditions
one could use a clustering approach as suggested by the au-
thors above, or one may directly use the parameters described
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in publication 18 to validate the performance of segmenta-
tion. Some variants for health indicator estimation can also
be picked from publications 21 and 40.

[Step 5:] Performance evaluation – Once a learned model
results in to satisfactory results on the testing set aside by par-
titioning the training data, one may use the actual test dataset
provided with the datasets. After further tuning, esp. for
datasets(#5T and #5V ) a final validation can be done by
submitting the results to the NASA repository per instructions
provided there and receiving the scores. Before uploading
the final submission, the generalization capability should be
ensured by computing using several performance metrics as
discussed in Section 2.2. Some benchmarks have been pro-
vided in Section 2.2 using metrics that aggregate prediction
performance from multiple units. While the exact numbers
would not match, the performance is expected to be in the
similar range for results obtained from turbofan datasets that
have access to RULs. For comparison purposes, the scores
obtained in previous works on complete C-MAPSS trajecto-
ries are summarized in publication 40. Note that here using
the full trajectory data it is possible to compute prognostics
metrics as presented in (Saxena, Celaya, et al., 2008; Saxena
et al., 2010) as the actual EOL is known apriori. This allows
testing the critical time aspect of a prediction in addition to
accuracy and precision measures.

6. CONCLUSION

As observed from published PHM literature the most widely
used datasets for data-driven prognostics come from the C-
MAPSS turbofan simulator from among the other openly
available prognostic datasets. Guided by this observation, a
survey of approaches developed using these datasets (since
2008) was carried out with the purpose of understanding the
current state-of-the-art and assess how these datasets have
helped in development of prognostic algorithms. However,
it was noticed that due to several factors these datasets did
not get used as intended and any meaningful comparison be-
tween approaches was not trivial. Specifically following ob-
servations were made and this paper tries to alleviate some of
these factors to improve usage of these datasets as originally
intended.

• Despite several thousand downloads only 70 papers re-
ferring to C-MAPSS were found in the published liter-
ature. This suggests that a vast majority of those who
downloaded did not get to utilize these data to the point
of publishing the results in a publication. Therefore,
some guidance has been provided to help in understand-
ing these datasets and how a prognostics problem may
be set up in few different ways. Furthermore, a descrip-
tion of all five C-MAPSS datasets is provided identifying
their distinguishing characteristics and clearing up some
misunderstandings as identified from the survey.

• Among the 70 papers, only a few actually used the test-
ing datasets for evaluating their methods. A mix of dif-
ferent datasets and the metrics used to evaluate perfor-
mance was observed from the survey. This made it diffi-
cult to compare performance between different reported
methods in a consistent manner. Therefore, a better ex-
planation of differences in these datasets and providing
the top thirty scores from challenge datastes should help
future users in comparing their methods against a bench-
mark in a more consistent manner. Furthermore, it is also
suggested how results from datasets that are not from the
challenge could be compared against this benchmark es-
tablished on the challenge set.

• The survey reveals usage of various prognostics ap-
proaches that can be divide into three main categories.
These approaches are briefly described with potential ar-
eas for further improvement. The survey also demon-
strated that C-MAPSS datasets can be used for devel-
oping and testing methods for several intermediate steps
in prognostics such as sensor selection, health indicator
estimation, operating conditions modeling in addition to
fault estimation and prediction.

With the analysis presented in this paper and references to a
variety of approaches employed, this paper hopes to establish
public knowledge that can be used by future users in prognos-
tic algorithm development and aid in fulfilling the underlying
intent of data repository to facilitate algorithm benchmarking
and further development. The issue of performance bench-
marking remains to be explored as part of future work where
authors plan to compute performance for challenge entries
based on several other metrics that will allow comparisons
with performance results reported in many publications.

NOMENCLATURE

PHM Prognostics and Health Management
RUL Remaining Useful Life
CMAPSS Commercial Modular Aero-Propulsion

System Simulation
HI Health index
MLP MultiLayer Perceptron
ANN Artificial neural network
RNN Recurrent neural network
RBF Radial basis function
ESN Echo state network
ELM Extreme learning machine
EKF Extended Kalman filter
KF Kalman filter
SVR Support vector regression
LS-SVR Least squared support vector regression
exTS Evolving extended Takagi-Sugeno system
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ARX Autoregressive exogeneous model
ANFIS Adaptive neuro fuzzy inference system
RVM Relevance vector machine
HMM Hidden Markov model
PCA Principal components analysis
MSE Mean squared error
MAPE Mean absolute percentage error
MAE Mean absolute error
ME Mean error
PH Prediction horizon
AP Acceptable predictions (rate)
α− λ Accuracy at specific times
RA Relative accuracy
CV Convergence
AB Average bias
FPR False positive rate
FNR False negative rate
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APPENDIX

All references were mapped to numeric identifiers to be used
in survey and analysis results for better readability. This map-
ping is provided in the Table 10 below.

Table 10. References to ID mapping.

Reference Publication ID

(T. Wang, Yu, Siegel, & Lee, 2008) 1
(Heimes, 2008) 2
(Peel, 2008) 3
(Coble & Hines, 2008)

4(Coble, 2010)
(Coble & Hines, 2011)
(Siegel, 2009) 5
(Ramasso, 2009) 6
(T. Wang, 2010) 7
(Riad, Elminir, & Elattar, 2010) 8
(Abbas, 2010) 9
(Ramasso & Gouriveau, 2010) 10
(Ramasso & Gouriveau, 2013)
(Sarkar, Jin, & Ray, 2011) 11
(Xue, Williams, & Qiu, 2011) 12
(Zhao, P., & Willett, 2011) 13
(El-Koujok, Gouriveau, & Zerhouni, 2011) 14
(Liao & Sun, 2011) 15
(P. Wang, Youn, & Hu, 2012) 16
(Son, Fouladirad, & Barros, 2012) 17
(Richter, 2012) 18
(Sun, Zuo, Wang, & Pecht, 2012) 19
(Peng, Wang, Wang, Liu, & Peng, 2012) 20
(Hu, Youn, Wang, & Yoon, 2012) 21
(Peng, Xu, Liu, & Peng, 2012) 22
(Javed, Gouriveau, Zemouri, & Zerhouni, 2012) 23
(Serir, Ramasso, & Zerhouni, 2012) 24
(Gouriveau & Zerhouni, 2012) 25
(Yu, 2013) 26
(Ramasso, Rombaut, & Zerhouni, 2013) 27
(Liu, Gebraeel, & Shi, 2013) 28
(Son, Fouladirad, Barros, Levrat, & Iung, 2013) 29
(Xi, Jing, Wang, & Hu, 2013) 30
(Lin, Chen, & Zhou, 2013) 31
(Javed, Gouriveau, & Zerhouni, 2013) 32
(Ramasso & Denoeux, 2013) 33
(Li, Qian, & Wang, 2013) 34
(Tamilselvan & Wang, 2013) 35
(Ishibashi & Nascimento Junior, 2013) 36
(Gouriveau, Ramasso, & Zerhouni, 2013) 37
(Jianzhong, Hongfu, Haibin, & Pecht, 2010) 38
(Zein-Sabatto, Bodruzzaman, & Mikhail, 2013) 39(Al-Salah, Zein-Sabatto, & Bodruzzaman, 2012)
(Ramasso, 2014b) 40
(Ramasso, 2014a)
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