

Thermochemistry of Silicates

Gustavo Costa and Nathan Jacobson NASA Glenn Research Center Cleveland, OH gustavo.costa@nasa.gov

Outline of Presentation

- Silicates in Materials Science, Mineralogy, Geology and Planetary Science
- Silicate Mineral Subclasses
- Thermochemistry of Silicates
- Stability of silicates in different environments and their acid-base chemistry
- Partial thermodynamics quantities (activity): An indicator of reactivity
- Thermodynamic activity in silicates
- Methods to measure activity
- Thermochemistry of Olivine
- Thermochemistry of Rare earth Silicates

 Results for Y₂O₃-SiO₂ and Yb₂O₃-SiO₂ systems
- Summary: Silicates

Silicates in Materials Science

Modern Solid-state Chemistry

- Mesoporous based Silicates Sensors: pH, metal cation and humidity
- Rare-Earth Silicates and Vitreous Silica:
- Electronic devices: microwave, semiconductors, ferromagnetics, ferroelectrics, lasers and phosphors
- High-Temperature Materials: refractory bricks and coatings

Coating applications:

Ceramics in non-moving parts:

- Combustor liners
- Exhaust nozzles
 Eventually moving parts!

Silicates in Geology, Mineralogy and Planetary Science

Ocurrence

- Over 90 % of the Earth's crust consists of silicate minerals

D. Perkins, Mineralogy, 3, Prentice Hall, 2011.

- Moon, Mars, Asteroids, Comets, Interplanetary dust particles and..

G. E. Brown, Rev. Mineral. Geochem., 5, 275-381, 1980. M. T. DeAngelis etal., Am. Mineral., 97, 653-656, 2012.

Silicate Mineral Subclasses

TABLE 2.6 Silicate Mineral Subclasses

Subclass	Si:O Ratio	Si Radical	Example	Mineral Formula	Arrangement of SiO ₄ Tetrahedra	C:4+		not shown inside tetrahedron
framework silicates (tectosilicates)	1:2	SiO ₂ or (Al _x Si _{1-x})O ₂	quartz albite	SiO ₂ Na(AlSi ₃)O ₈		SI	Ś	
sheet silicates (phyllosilicates)	2:5 = 4:10	(Si ₄ O ₁₀) ⁴⁻	pyrophyllite	$\mathrm{AI}_2\mathrm{Si}_4\mathrm{O}_{10}(\mathrm{OH})_2$		6.011 Parts	(a) Meador No.	at corners (b) (c)
single-chain silicates (inosilicates)	1:3 = 2:6	$(SiO_3)^{2-}or$ $(Si_2O_6)^{4-}$	enstatite	$Mg_2(SiO_3)_2$ or $Mg_2Si_2O_6$	A A			
double-chain silicates (inosilicates)	4:11 = 8:22	(Si ₈ O ₂₂) ¹²⁻	tremolite	Ca ₂ Mg ₅ Si ₈ O ₂₂ (OH) ₂				
ring silicates (closilicates)	1:3 = 6:18	(Si ₆ O ₁₈) ¹²⁻	tourmaline	(Na,Ca)(Fe,Mg,Al,Li)₃/	Al ₆ (BO ₃) ₃ Si ₆ O ₁₈ (OH) ₄	_		
isolated tetrahedral (island) silicates (nesosilicates or orthosilicates)	1:4	(SiO ₄) ⁴⁻	forsterite	Mg ₂ SiO ₄	à			
paired tetrahedral silicates (sorosilicates)	2:7	(Si ₂ O ₇) ⁶⁻	akermanite	Ca ₂ MgSi ₂ O ₇	X		- (Fe - Ort	_x Mg _{1-x}) ₂ SiO ₄ orrombic structure (<i>Pbnm</i>).
more complex silicates	1:4 and 2:7	$(SiO_4)^{4-}$ and $(Si_2O_7)^{6-}$	vesuvianite	$\begin{array}{l} Ca_{10}(Mg,Fe)_2Al_4(SiO_4)\\ = Ca_{10}(Mg,Fe)_2Al_4Sig_4 \end{array}$	¹ 5(Si ₂ O ₇) ₂ (OH) ₄ O ₃₄ (OH) ₄		- Rec	l – oxygen.

© 2011 Pearson Education, Inc. D. Perkins, Mineralogy, 3, Prentice Hall, 2011.

- Green – B sites, magnesium or iron.

Thermodynamics and Acid-Base Chemistry

TABLE 2. Acid-base scales for oxides

Mac	$) \pm SiO = MaSiO$				Optical	Enthalpy of solution (kJ/mol)		
inge	$0 + 010_2 - 10000_3$	Ionic Potential (z/r)	Oxide ⁴	cation	basicity	в	C	D
Base	Acid Enstatite	and Acid-Basic Scale	K ₂ O Na ₂ O BaO	0.66 [€] 0.89 1.45	1.4⁼ 1.15 1.15	-282ª -176 -127	-87.9	
,		↑	SrO CaO MnO	1.59 2.00 2.41	1.0	-93.6 -58.0 5.4	-59.2 -23.5	-37.1
5	alkaline earth transition metal N i	z/r < 2 strongly basic $2 \le z/r < 4$ basic	reO ⅓La₂O₃ CoO ⅓Nd₂O₃	2.58 2.68 2.71		-42.6 23.0 -28.4		-20.5
o at	Mng	4 < z/r < 7 amphoteric $z/r >$ acidic	CuO MgO ½3Sm ₂ O ₃ ½Eu ₂ O ₃	2.74 2.77 2.78 2.81	0.76	33.0 -4.8 -26.5 -22.1	-25.9	11.1
of 100-	Mg		ViO V3Dy2O3 V3Y2O3 V3HO2O3	2.90 2.92 2.94 2.96		-24.2 37.0 -17.0 -20.6 -16.7		-3.2
alpy (Ca	Thermodynamic Activity as Indicator	73Er₂O3 1/3Tm2O3 1/3YD2O3 1/3Lu2O3	2.99 3.02 3.05 3.07		-15.9 -15.7 -13.2 -11.44		
41 -200- En En	y sr	of Stability?	ZnO 1/3Sc ₂ O ₃ 1/3Fe ₂ O ₃ 1/2ZrO ₂	3.33 3.45 4.65 4.76		17.9 -0.6 26.7	-13.4	-1.1
-300-	® Ba	$a = \gamma \cdot C$	V3Ga2O3 V3Cr2O3 V3Mn2O3	4.84 4.88 5.17		18.0 11.2		34.6
	1 2 3	Concentration	1/3Al ₂ O3 1/2TiO2 BeO 1/2GeO2	5.60 6.61 7.41 7.55	0.605	11.0 10.8 14.4 1.0	30.0 19.6	5.3
Entha	lpy of formation of orthosilicates	Activity coefficient	1/3WO3 1/3M0O3 1/2SiO2	14.3 14.6 15.4	0.48	-1.8	-6.0	10.1 3.3

Enthalpy of formation of orthosilicates vs. ionic potential (z/r) of divalent cations

Partial Thermodynamics Quantities: Activity and Vapor Pressure Measurement

 $Au(\ell) = Au(g)$

 $\Delta_V H^o = -R^*(-41.162) = 342.20 \text{ kJ/mol}$

Thermodynamic Activities

- Important solution parameters
- Quantify how vapor pressure is reduced due to solution formation
- Example: Olivine—can treat as solution of FeO, MgO, SiO₂
- Use data to calculate thermodynamic activity of each component
- Measure thermodynamic parameters for olivine solutions
 - e.g. In a(FeO) vs 1/T slope is partial molar enthalpy
 - Input to codes to model:
 - Atmospheres of hot, rocky exoplanets
 - Vapor over lava

Solutions: $A_{1-\alpha}B_{1-\beta}C_{1-\gamma}$ Same Phase; Variable Stoichiometry

FeO(solution, a < 1) = Fe(g) + $1/2 O_2(g)$

 $FeO(s) = Fe(g) + 1/2 O_2(g)$

$$\mathbf{K}_{p} = \frac{P_{Fe}^{o} [P_{O_{2}}^{o}]^{1/2}}{a_{FeO}} = \frac{P_{Fe}^{o} [P_{O_{2}}^{o}]^{1/2}}{1} \qquad \qquad \mathbf{K}_{p} = \frac{P_{Fe}^{o} [P_{O_{2}}^{o}]^{1/2}}{a_{FeO}} \\ a_{FeO} = \frac{P_{Fe}^{o} [P_{O_{2}}^{o}]^{1/2}}{P_{Fe}^{o} [P_{O_{2}}^{o}]^{1/2}}$$

Methods to measure silica activity

- Oxidation-reduction equilibrium using gas mixtures or electrochemical cells
- High temperature reaction calorimetry
- Knudsen Effusion Mass Spectrometry

Knudsen Effusion Mass Spectrometry (KEMS)

- 90° magnetic sector; non-magnetic ion source ion counting detector \Rightarrow no mass discrimination
- Cross axis electron impact ionizer
- Resistance heated cell; multiple Knudsen cell system
- Measurements to 2000°C, Pressure to 1 x 10⁻¹⁰ bar

Olivine and Rare – Earth Silicates

Intensity \rightarrow Pressure \rightarrow Activity

Olivine - Results

93% forsterite and 7% fayalite, $Fo_{93}Fa_7 - (Fe_{0.7}Mg_{0.93})_2SiO_4$

Olivine – Starting Material and Characterization

NASA

ICP-OES analysis of the as received olivine samples.

Element	*Wt (%)		
AI	0.0120(6)		
Ca	0.035(2)		
Со	0.0120(6)		
Cr	0.052(3)		
Fe	5.01(3)		
Mg	30(2)		
Mn	0.075(4)		
Na	0.0080(4)		
Ni	0.27(1)		
Sc	0.0040(2)		
Si	20(1)		

*Uncertainties of the analyses are given in parentheses.

XRD patterns of the olivine samples : (A) as received , (B) after KEMS up to 2084 K in a Mo Knudsen cell (C) after KEMS up to 1850 K in a Mo Knudsen cell (D) after KEMS up 2079 K in an Ir Knudsen cell.

Chemical composition of the olivine powder samples $Fo_{93}Fa_7$ before and after KEMS up to 2084 K.

	Wt (%)					
Element	Sample as	After KEMS in a	After KEMS in a Ir			
	received ^a	Mo cell	cell			
Al	0.0120(6)	0.016(6)	0.2(1)			
Ca	0.035(2)	0.009(2)	0.04(2)			
Со	0.0120(6)	0.003(2)	0.004(3)			
Cr	0.052(3)	0.035(4)	0.06(1)			
Fe	5.01(3)	0.006(3)	0.93(3)			
Mg	30(2)	35.0(1)	34(1)			
Mn	0.075(4)	0.003(1)	0.031(3)			
Na	0.0080(4)	-	-			
Ni	0.27(1)	0.005(3)	0.006(3)			
Sc	0.0040(2)	-	-			
Si	20(1)	19.3(1)	21.8(8)			
Mo	0	0.04(2)	0			
Ir	0	0	0.06(3)			

Olivine – Impurities and Container Issues

XRD patterns of the olivine samples : (A) green sand from Hawaii, (B) after KEMS up to 1850 K in a Mo Knudsen cell (C) after KEMS up 2079 K in an Ir Knudsen cell.

Side view (cross-section) of the Mo Knudsen cell containing the olivine sample heat treated up to 2084 K.

www.nasa.gov

Complete van't Hoff Plot

Fegley and Osborne, "Practical Chemical Thermodynamics For Geoscientists, Elsevier 2013, Fig. 12-11.

Measurements show good agreement with the phase diagram calculated by Bowen and Shairer.

Temperature dependence of ion intensity ratios of Mg^+ , N. L. Bowen and J. F. Schairer, Am. J. Sci. 29, 151-171 (1935). Fe⁺, SiO⁺, O⁺ and O₂⁺ in the olivine sample.

Thermodynamic Activities in Olivine - (Fe_xMg_{1-x})₂SiO₄

Rare earth Silicates

Low Reactivity of Rare earth Silicates

Key Parameters in Boundary Layer Limited Transport Modeling

• SiO₂(pure or in silicate soln) + 2 $H_2O(g) = Si(OH)_4(g)$

• Reduce $a(SiO_2) \Rightarrow$ reduce recession. Recession drives need for <u>coatings</u>

Calculated Y₂O₃-SiO₂ Phase Diagram: Fabrichnaya-Seifert Database

Indirect evidence suggests that the SiO₂ thermodynamic activity is lower in the Y_2O_3 - Y_2SiO_5 and Y_2SiO_5 - $Y_2Si_2O_7$ regions But there are no direct measurements!

Issues with Measuring a(SiO₂) in RE Silicates

- Vapor pressure of SiO₂ too low to measure in temperature range of interest
- Need measurable signal for SiO₂—use reducing agent to make excess SiO(g). Tried several, selected Mo or Ta
 - For $a(SiO_2) < \sim 0.02$
 - $2Ta(s) + 2\underline{SiO}_2(soln) = 2SiO(g) + TaO(g) + TaO_2(g)$
 - For $a(SiO_2) > \sim 0.02$
 - $Mo(s) + 3\underline{SiO}_2(soln) = 3SiO(g) + MoO_3(g)$
 - Note reducing agent must not change solid phase composition
 - Monosilicates + disilicates +Ta leads to tantalates
- Need to account for non-equilibrium vaporization
- SiO overlaps with CO_2 (m/e = 44)
 - Use LN₂ cold finger for improved pumping
 - Shutter to distinguish vapor from cell and background
 - Gettering pump for CO₂

Approaches use two phase regions

1 – Monosilicate + RE_2O_3

Two cells:

- Au
- $3Ta + Y_2O_3 + Y_2O_3 \cdot SiO_2$

 $2Ta(s) + 3\underline{SiO}_2(soln) = 3\underline{SiO}(g) + TaO(g) + TaO_2(g)$

- Using P_{eq}(SiO) and FactSage (free energy minimization)
- Correction for non-equilibrium vaporization

Cells are part of the system

2 – Monosilicate + Disilicate

Three cells:

- Au (reference)
- 3Mo + $Y_2O_3 \cdot 2SiO_2 + Y_2O_3 \cdot SiO_2$
- $3Mo + SiO_2$

 $Mo(s) + 3SiO_2(soln) = 3SiO(g) + MoO_3(g)$

- Compare cells 1 and 2
- Less data processing than with Ta
- Correction is not needed.

$$K = \frac{[P(SiO)]^{3} P(MoO_{3})}{[a(SiO_{2})]^{3}}$$

$$Mo + 3SiO_{2} = 3SiO + MoO_{3}$$

$$a(SiO_{2}) = 1 = \left\{ \frac{[P^{o}(SiO)]^{3} P^{o}(MoO_{3})}{K} \right\}^{0.33}$$

$$Mo + 3SiO_{2} = 3SiO + MoO_{3}$$

$$a(SiO_{2}) = \left\{ \frac{[P(SiO)]^{3} P(MoO_{3})}{K} \right\}^{0.33}$$
Cell 2
$$a(SiO_{2}) = \left\{ \frac{[I(SiO)]^{3} I(MoO_{3})}{[I^{o}(SiO)]^{3} I^{o}(MoO_{3})} \right\}^{0.33}$$
Cell 3

Monosilicate + RE_2O_3

 Y_2O_3 -SiO₂

Yb₂O₃-SiO₂

XRD after KEMS Measurements of RE Monosilicates + RE_2O_3 + Ta:

Ytterbium monosilicate + Yb_2O_3 + Ta

Phase	wt (%)	Phase	wt (%)
$Y_2O_3.(SiO_2)$	41	$Yb_2O_3.(SiO_2)$	24
Y_2O_3	49	Yb ₂ O ₃	66
Та	4	Та	2
Ta ₃ Si	4	Ta₂Si	2

*Liang et al. "Enthalpy of formation of rare-earth silicates Y_2SiO_5 and Yb_2SiO_5 and N-containing silicate $Y_{10}(SiO_4)_6N_2$ ", J. Mater. Res. 14 [4], 1181-1185. **J. A. Duff, J. Phys. Chem. A 110, 13245 (2006)

Monosilicate + Disilicate

 $Y_2O_3-SiO_2+Y_2O_3-2SiO_2$

 Yb_2O_3 -SiO₂+ Yb_2O_3 -2SiO₂

XRD after KEMS Measurements of RE Monosilicates + Disilicates + Mo:

Yttrium monosilicate + disilicate + Mo

Ytterbium monosilicate + disilicate + Mo

Phase

 $Y_2O_3.(SiO_2)$

 $Y_2O_3.2(SiO_2)$

Мо

Phase	wt (%)
$Yb_2O_3.(SiO_2)$	56
$Yb_2O_3.2(SiO_2)$	36
Мо	8

$$Y_2O_3.(SiO_2) + Y_2O_3.2(SiO_2)$$

Now Have the Needed Quantities for Modeling Recession

- L = 10 cm
- $\eta = 5 \times 10^{-4} \text{ g/cm-s}$
- $\rho_{\infty} = 2.2 \text{ x } 10^{-3} \text{ g/cc}$
- D_{Si(OH)4} = 0.19 cm²/s
- log K = -2851.2/T 3.5249 (Si(OH)₄(g) transpiration measurements)
- a(SiO₂) from activity measurements

Summary

- Fundamental understanding of thermodynamic is critical to models and structure-property relationships
 - Vapor pressure techniques—Knudsen effusion mass spectrometry
- Silicates are everywhere from minerals to electronic materials to aircraft engines

Olivine

- Secondary phases of the olivine sample were removed at temperatures > 1060 °C.
- Mo and Re cell reacts with olivine sample. Ir must be used
- The main vapor species of the olivine sample are Mg⁺, O⁺, O₂⁺, SiO⁺ and Fe⁺ following this order of evaporation.
- The melting point of the olivine sample was determined by the ion intensity discontinuity to be 1805 °C.
- Temperature dependence of partial pressures of the species were determined and their activities. Next steps
- Vaporization coefficient measurements

Rare-Earth Silicates

- The reduced SiO₂ activity in Rare-earth silicates should limit their reactivity with water vapor
- Solid State rare earth oxides—activity of SiO₂
 - Need reducing agent to obtain a measurable signal for SiO(g), which in turn relates to activity of SiO₂. Reducing agent must not change solid phase composition.
 - Method and choice of reducing agent depends on particular silicate
- Thermodynamic data for gas phase hydroxides and solid candidate coating ⇒ recession modeling input data

Acknowledgements

- Helpful discussions with B. Opila (Formerly NASA Glenn now University of Virginia)
- Multiple cell and sampling system improvements to mass spectrometer: E. Copland (formerly NASA Glenn now CSIRO, Sydney, Australia)
- XRD: R. Rogers (NASA Glenn)
- NASA/ORAU Post-doctoral Fellowship Program