

The NASA Electronic Parts and Packaging (NEPP) Program: Overview and Update FY15 and Beyond

Kenneth A. LaBel

Michael J. Sampson

ken.label@nasa.gov

michael.j.sampson@nasa.gov

301-286-9936

301-614-6233

Co- Managers, NEPP Program

NASA/GSFC

http://nepp.nasa.gov

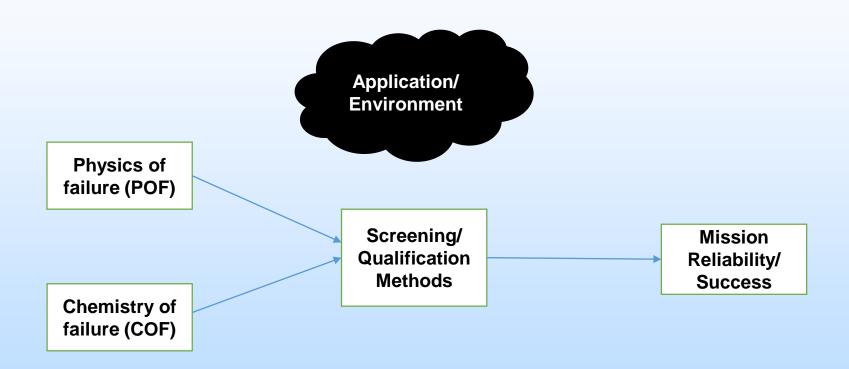
Acknowledgment:

This work was sponsored by: NASA Office of Safety & Mission Assurance

Open Access

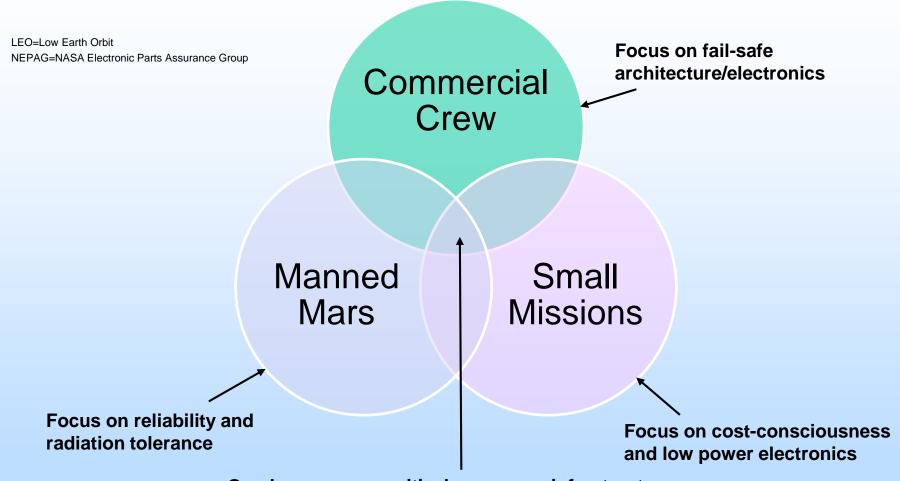
Acronyms

Acronym	Definition						
AEC	Automotive Electronics Council						
Aero	Aerospace						
AFRL	Air Force Research Laboratory						
BME	Base Metal Electrode						
CA	Construction Analysis						
CBRAM	Conductive Bridging Random Access Memory						
CDH	Cadence Health, Central DuPage Hospital Proton Facility						
CMOS	Complementary Metal Oxide Semiconductor						
COTS	Commercial Off The Shelf						
CSAM	Confocal Scanning Acoustic Microscopy						
DWV	Dielectric Withstanding Voltage						
EEE	Electrical, Electronic, and Electromechanical						
FeRAM	Ferroelectric RAM						
FOD	Foreign Object Debris						
FPGA	Field Programmable Gate Array						
FY	Fiscal Year						
GaN	Gallium Nitride						
GSFC	Goddard Space Flight Center						
HEMTs	High-electron-mobility transistors						
HP Labs	Hewlett-Packard Laboratories						
HUPTI	Hampton University Proton Therapy Institute						
IC	Integrated Circuit						
IUCF	Indiana University Cyclotron Facility						
LBNL	Lawrence Berkeley National Laboratories						


Acronym	Definition			
LEO	Low Earth Orbit			
LLUMC	James M. Slater Proton Treatment and Research Center at Loma			
	Linda University Medical Center			
MGH	Massachusetts General Hospital			
MIL	Military			
MLCC	Multi-Layer Ceramic Capacitor			
MOSFETS	Metal Oxide Semiconductor Field Effect Transistors			
MRAM	Magnetoresistive Random Access Memory			
NASA	National Aeronautics and Space Administration			
NAVY Crane	Naval Surface Warfare Center, Crane, Indiana			
NEPAG	NASA Electronic Parts Assurance Group			
NEPP	NASA Electronic Parts and Packaging			
NSRL	NASA Space Radiation Laboratory			
POC	Point of Contact			
ProCure	ProCure Center, Warrenville, Illinois			
RERAM	Resistive Random Access Memory			
SEE	Single Event Effect			
SiC	Silicon Carbide			
SME	Subject Matter Expert			
SOC	Systems on a Chip			
TI	Texas Instruments			
TRIUMF	Tri-University Meson Facility			
UCD	University of California at Davis (UCD) Crocker Nuclear Lab (CNL)			
VNAND	Vertical NAND			

INTRODUCTION TO NEPP

Taking a Step Back... A Simple View of NEPP's Perspective



NEPP Efforts Relate to Assurance of EEE Parts –

It's not just the technology, but how to view the need for safe insertion into space programs.

A View of NASA Electrical, Electronic, and Electromechanical (EEE) Parts Needs – *Diversity!*

Overlap areas are critical assurance infrastructure (NASA Electronic Parts Assurance Group - NEPAG)

Without forgetting traditional LEO and Deep-Space Robotic needs

NEPP Overview (1)

NEPP provides the Agency infrastructure for assurance of EEE parts for space usage

Qualification guidance

To flight projects on how to qualify

Standards

Ensures NASA needs are represented

Manufacturer Qualification

Support of audits and review of qualification plans/data

Information Sharing

Lessons learned, working groups, website, weekly telecons

Technology Evaluation

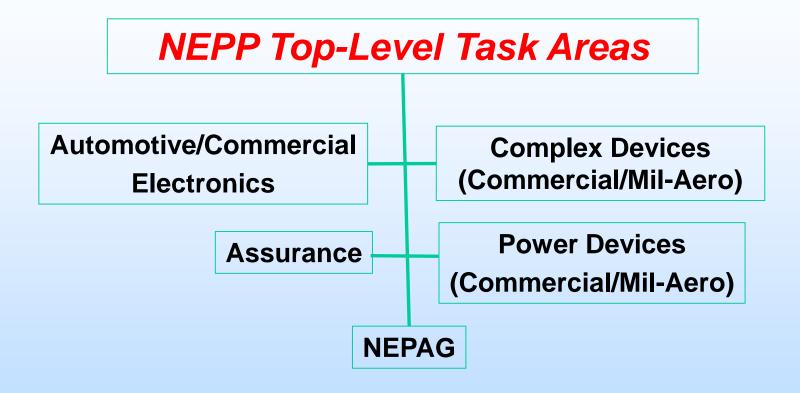
Determine new technology applicability and qualification guidance

Test/Qualification Methods

Evaluate improved or more cost-effective concepts

Risk Analysis

For all grades of EEE parts (commercial, automotive, military/aerospace, ...)


Subject Matter Experts

(SMEs) for NASA programs, other agencies, industry

NEPP and its subset (NEPAG) are the Agency's points of contact (POCs) for assurance and radiation tolerance of EEE parts and their packages.

NEPP Overview (2)

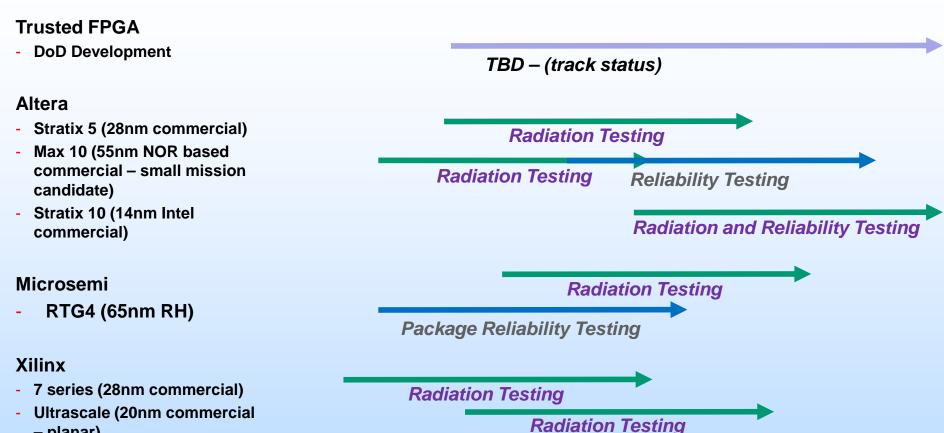
As opposed to a traditional breakdown of parts, packaging, or radiation, NEPP tasks can be categorized into these five areas.

Mil=Military Aero=Aerospace NFPAG

NEPP TECHNOLOGY ROADMAP

Technology Selection Criteria for NEPP Investigation

- The technologies should satisfy all or most of the following criteria:
 - Wide applicability,
 - Product level or in productization, and,
 - No distinction: Commercial off the shelf (COTS) to high reliability aerospace.
- Partnering arrangements with other organizations preferred.
- In general, we avoid:
 - Laboratory technologies, e.g., < Technology Readiness Level (TRL) 3,
 - Limited application devices with certain exceptions (critical application or NASA center specialization).



Technology Investigation Roadmap Discussion

- Technology assurance efforts through NEPAG are not explicitly included except on "Small Missions" chart.
 - Guidelines are a product of many technology evaluation tasks.
- Only major product categories shown.
- Technology areas not on Roadmap but under consideration include:
 - Electro-optics (fiber optics),
 - Advanced analog and mixed-signal devices,
 - Imaging sensors,
 - Modeling and simulation,
 - High-speed communications (serializer-deserializer (SERDES), fast data switches), and,
 - Adjunct processors (eg., graphics, signal processing)
- Note 1: Advanced CMOS technologies not explicitly included:
 - NEPP leverages samples from ongoing DoD and/or commercial sources.
 - 14nm is current target.
- Note 2: "Reliability testing" may include product and/or package testing.
- Note 3: Roadmap updates based on early results.

Field Programmable Gate Arrays (FPGAs)

– planar)Ultrascale+ (16nm commercial - vertical)

- Virtex 5QV (65nm RH)

Radiation Testing Package Reliability Testing

FY14 FY15 FY16 FY17

FY=Fiscal Year

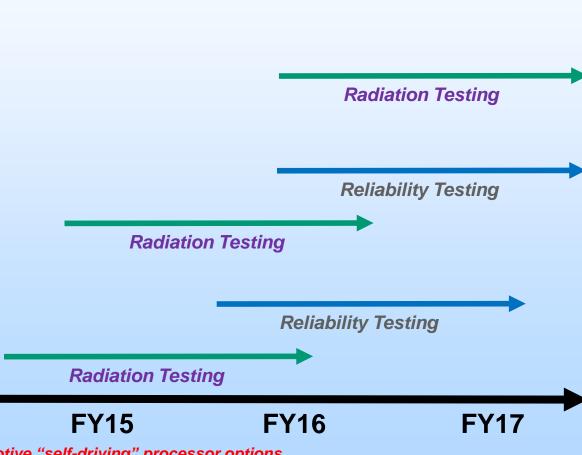
Radiation and Reliability Testing

Advanced Processors

TBD – (track status)

- Joint NASA-AFRL Program for RH multi-core processor
- TBD architecture/process

RH Processor

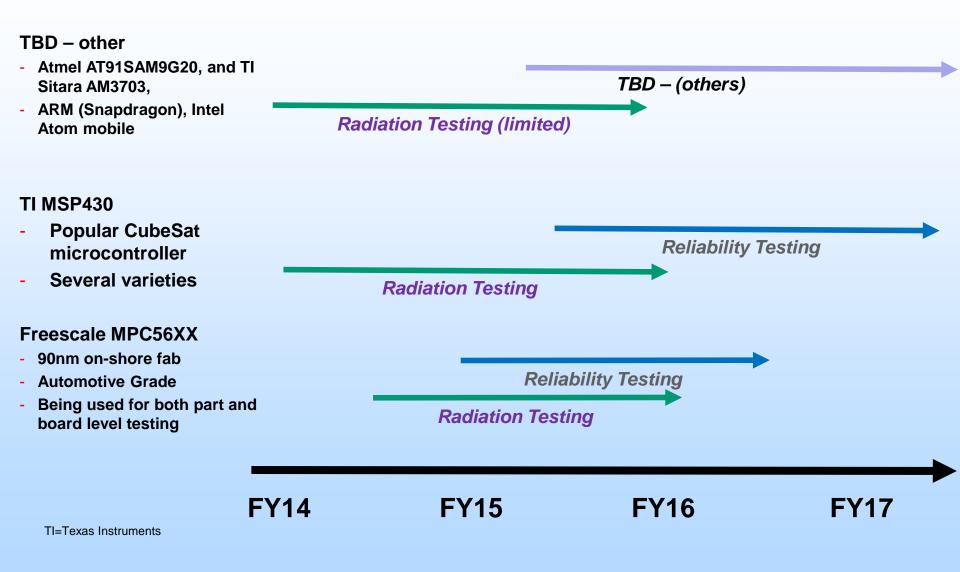

- BAE Systems RAD5510/5545
- Replacement for RAD750

Intel Broadwell Processors

- 14nm FinFET commercial
- 1st high-performance sans heatsink

Freescale P5020/5040

- Commercial 45nm network processor
- Preparation for RH processor



Note: Future considerations include automotive "self-driving" processor options.

FY14

Microcontrollers and Mobile Processors (Small Missions)

Commercial Memory Technology

Other

- **MRAM**
- **FeRAM**

TBD – (track status)

Resistive

- **CBRAM (Adesto)**
- ReRAM (Panasonic)
- ReRAM (Tezzeron)
- **TBD (HP Labs, others)**

Radiation and Reliability Testing

Radiation and Reliability Testing

Radiation and Reliability Testing

TBD – (track status)

DDR 3/4

- **Intelligent Memory (robust** cell twinning)
- Micron 16nm DDR3
- TBD other commercial

Radiation Testing

Radiation Testing Reliability Testing

TBD - (track status)

FLASH

- Samsung VNAND (gen 1 and 2)
- Micron 16nm planar
- Micron hypercube
- TBD other commercial

Radiation and Reliability Testing

Radiation and Reliability Testing

TBD - (track status)

Radiation and Reliability Testing

FY15

FY16

MRAM=Magnetoresistive Random Access Memory FeRAM=Ferroelectric RAM CBRAM=Conductive Bridging Random Access Memory ReRAM=Resistive Random Access Memory HP Labs=Hewlett-Packard Laboratories VNAND=Vertical NAND

Small Missions

EEE Parts Guidelines

- Small missions (Class D, CubeSat – 2 documents)
- System on a chip (SOC single event effects (SEE) guideline

Guideline development

Guideline development

Commodities evaluation

- See commodities roadmaps for processors, power
- CubeSat Star Tracker

Radiation Testing Reliability Testing

Automotive grade electronics

- Multiple classes of electronics (passives, actives, ICs)
- Testing by NASA and Navy Crane

Reliability Testing

Alternate test - board level

- Freescale MPC56XX
- Automotive Grade
- Both part and board level reliability testing

Reliability Testing

Radiation Testing

FY14 FY15

FY16

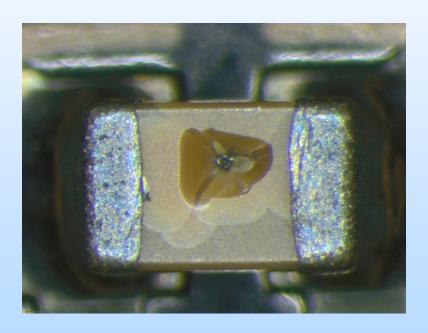
FY17

NEPP Evaluation Automotive Grade Parts – Current Status

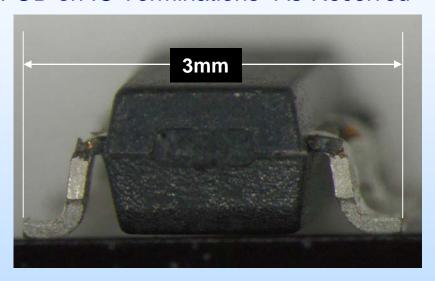
Parts were purchased through distributors as Automotive Electronics Council (AEC) Q-"XXX" Automotive Grade

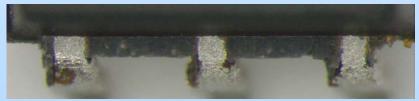
Commodity	Test	Status	Comments			
	Construction Analysis	Complete	At their own discretion a manufacturer supplied devices made with "flexible termination"			
Ceramic Capacitors 3 Different Mfrs	Initial Parametric Measurements	Complete	No Failures DWV known to produce negative cap shift Mfrs recommend bake-out to restore cap			
Base Metal Electrode (BME), 0805, 0.47uF, 50V	Life Test (2x Vrated, 125°C)	> 6000 Hrs Complete (Progressing to 10k hours)	 1 lot exhibits 5 life test failures (120pc) up to 6000 hrs 2 failures at 3100 hrs; 3 failures at 4700 hrs 2 lots exhibit no life test failures up to ~5500 hrs 			
Integrated Circuits 2 Different Mfrs	Construction Analysis	In Process	 FOD on Terminals "As-Received" (Linear IC) Tg measurements complete CSAM complete for digital IC CA to be performed at end of test 			
1 digital IC (Diff Bus Driver;	Initial Parametric Measurements	In Process	No Failures for digital IC Linear IC to be tested 04/15			
1 linear IC (Comparator)	Burn-In & Life Test	Begin 04/15				
Discrete Semiconductors	Construction Analysis	Awaiting input	Awaiting input			
	Initial Parametric Measurements	Awaiting input	Awaiting input			
	Burn-In & Life Test	Awaiting input	Awaiting input			

CSAM=Confocal Scanning Acoustic Microscopy


CA=Construction Analysis

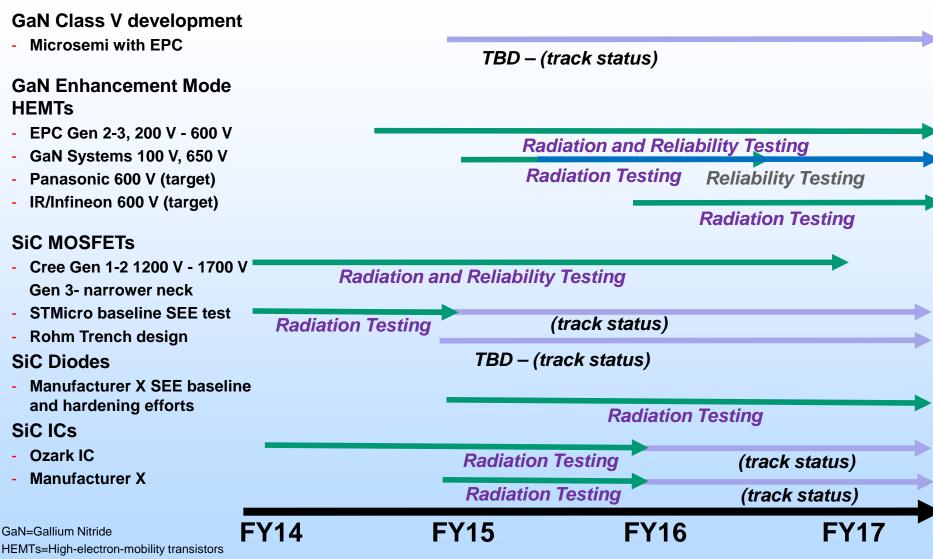
DWV=Dielectric Withstanding Voltage


Observations from NEPP Automotive Grade EEE Parts Evaluation


MLCC Life Test Failure Catastrophic Short Circuit

EEE=Electrical, Electronic, and Electromechanical MLCC=Multi-Layer Ceramic Capacitor FOD=Foreign Object Debris IC=Integrated Circuit

FOD on IC Terminations "As-Received"



SiC=Silicon Carbide

ICs=Integrated Circuits

MOSFETS=Metal Oxide Semiconductor Field Effect Transistors

Wide Band Gap (WBG) Technology

Silicon Power Devices

ALL ABOUT PROTONS

Indiana University Cyclotron Facility (IUCF) Closure

- IUCF has been the most used higher energy proton test facility for most of the U.S. space industry (electronics).
 - It is primarily a medical facility that NASA and others have supported to develop a parallel capability for proton testing of electronics.
 - ~2000+ hours of use per year for electronics testing
 - IUCF closed to the Space Community Usage on Oct 31, 2014.
- High energy Proton Test (>200 MeV) is Critical to Space Community.
- Possible options:
 - Use of Tri-University Meson Facility (TRIUMF) Vancouver, Canada
 - Challenges with "border crossing", limited "cycles" of availability
 - UPDATE: TRIUMF is working w US State Dept for easier access and HW transfer
 - Massachusetts General Hospital (MGH) Francis H. Burr Proton Therapy Center (additional access limited beyond current beam amounts),
 - University of California at Davis (UCD) Crocker Nuclear Lab (CNL)
 - Lower prime energy (63 MeV) does not meet all test requirements,
 - Lawrence Berkeley National Laboratories (LBNL) (50 MeV) has similar technical challenges as CNL,
 - Loma Linda University Medical Center (LLUMC) and NASA Space Radiation
 Laboratory (NSRL) have pulsed beam and some technical limits, and,
 - Multiple other proton medical therapy centers
 - See: http://proton-therapy.org for example listing.
- Ad hoc team formed to investigate options.

Team Members

(min. 1 site visit)

- NASA
 - Ken LaBel, Chuck Foster (consultant)
- The Aerospace Corporation
 - Tom Turflinger, Andy Kostic, Rich Haas, Jeff George
- Integrity Applications Incorporated (IAI)
 - Brian Wie
- Vanderbilt University
 - Robert Reed
- Boeing
 - Jerry Wert, Sudhakar Shetty
- BAE Systems
 - Reed Lawrence, John Davis
- Jet Propulsion Laboratory
 - Steve Guertin

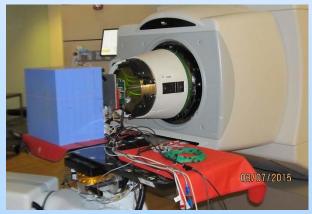
Ad Hoc "Team" Plan – Proton Therapy Sites

- Contact facilities (focus on cyclotrons)
- Site visit to determine interest
 - Technical
 - Access
 - Business case
- Beta/shakeout tests at interested sites to determine usability
- Determine guidelines for usage of these sites
- Work logistics of access
- Recommendations for modifications and longer term access.

Assumption: Facilities will have available 300-500 hours/year each (weekends).

Multiple facilities required to replace IUCF in the near term.

Note: Special Session with facilities planned at Single Event Effects (SEE) Symposium – May 18-21 2015 in La Jolla, CA


Challenges Identified with Using Proton Therapy Facilities

Technical

- Beam structure and delivery are mostly different than we are used to.
 This is the largest technical concern.
- Beam intensity control: translation between SEE test parameters and tumor delivery.
- Remote-controlled movement of test article mounting stage may not exist at all sites – time hindrance.
- Dosimetry at target site needs evaluation.
- Beam stops required (therapy "stops" beam in patient).
- Radiation dosage limits may impact some higher fluence tests.

Logistics

- Access
- Scheduling
- Cost

Shakeout testing at Cadence Proton Center, Warrenville, IL

Proton Facility Status

	Facility	Location	Visit	Beam Attributes*	User friendly**	Hourly Rate	Invest. required	Annual Hours	Current Avail.	Short term Avail.	Long term Avail.	Beta Test
Future Facilities	Cadence Health (CDH) Proton Facility - ProCure	Warrenville, IL	Y	Acceptable (cyclotron)	N/A	TBD	Yes \$ TBD	500	No	Maybe	Maybe	Mar 7
	Hampton University Proton Therapy Institute (HUPTI)	Hampton, VA	Y	Acceptable (cyclotron)	N/A	TBD	Yes \$ TBD	350	No	Maybe	Maybe	TBD
	Provision Center for Proton Therapy	Knoxville, TN	Y	Acceptable (cyclotron)	N/A	TBD	Yes \$ TBD	500	No	No	Maybe	TBD
	Seattle Cancer Care Alliance Proton Therapy - ProCure	Seattle, WA	Y	Acceptable (cyclotron)	N/A	TBD	Yes \$ TBD	500	No	Maybe	Maybe	Yes
	University of Florida Proton Therapy Institute	Jacksonville, FL	Y	Acceptable (cyclotron)	N/A	TBD	Yes \$ TBD	500	No	No	Maybe	TBD
	University of Maryland Proton Treatment Center	Baltimore, MD	Y	Acceptable (cyclotron)	N/A	TBD	Yes \$ TBD	500	No	No	Maybe	TBD
	Scripps Proton Therapy Center	La Jolla, CA	Y	Acceptable (cyclotron)	N/A	TBD	Yes \$ TBD	500	No	Maybe	Maybe	May 1-2
	OKC ProCure Proton Therapy Center	окс, ок	Y	Acceptable (cyclotron)	N/A	TBD	Yes \$ TBD	500	No	Maybe	Maybe	May- June
	Mayo Foundation	Rochester, MN Phoenix, AZ	N	TBD (synchrotron)	TBD	TBD	TBD	TBD	No	No	TBD	TBD
Existing Facilities	Tri-University Meson Facility (TRIUMF)	Vancouver, CAN	N	Acceptable (cyclotron)	Yes	\$750	No	4x/year	Yes	Yes	Yes	N/A
	Slater Proton Treatment and Research Center at Loma Linda University Medical Center (LLUMC)	Loma Linda, CA	Y	Acceptable (synchrotron)	Yes	\$1,000	No	1000	Yes	Yes	Yes	N/A
	Mass General Francis H. Burr Proton Therapy	Boston, MA	N	Acceptable (cyclotron)	Yes	\$1,000	No	< 800 hours, at capacity	Yes	Yes	Yes	N/A
	NASA Space Radiation Lab (NSRL)	Brookhaven, NY	Υ	Acceptable (synchrotron)	Yes	\$4,700	No	> 1000 hours	Yes	Yes	Yes	N/A
Inc	liana University Cyclotron Facility	Bloomington, IN	N/A	Reference	Yes	\$820	N/A	2000 hours	No	No	No	N/A

^{*}Beam size, dosimetry, flux, fluence, uniformity; **location, safety training, regulations, scheduling, payment, hazardous material handling, shipping, contracts, ITAR, etc...

Summary

- NEPP is an agency-wide program that endeavors to provide added-value to the greater aerospace community.
 - Always looking at the big picture (widest potential space usage of evaluated technologies and NEPP products).
 - We look to the future by learning from our past.
- We've provided a developing roadmap as well as few general interest items.
- Next NEPP Workshop planned for June 23-26 2015.
 - Will be a mix of traditional June meeting plus CubeSat focus.
 - On-site open to U.S. only.
 - Web access available to international participants.

https://nepp.nasa.gov