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Abstract A suite of decadal predictions has been con-
ducted with the NASA Global Modeling and Assimilation
Office’s (GMAO’s) GEOS-5 Atmosphere—Ocean general
circulation model. The hind casts are initialized every
December 1st from 1959 to 2010, following the CMIP5
experimental protocol for decadal predictions. The initial
conditions are from a multi-variate ensemble optimal
interpolation ocean and sea-ice reanalysis, and from
GMAQO?’s atmospheric reanalysis, the modern-era retro-
spective analysis for research and applications. The mean
forecast skill of a three-member-ensemble is compared to
that of an experiment without initialization but also forced
with observed greenhouse gases. The results show that
initialization increases the forecast skill of North Atlantic
sea surface temperature compared to the uninitialized runs,
with the increase in skill maintained for almost a decade
over the subtropical and mid-latitude Atlantic. On the other
hand, the initialization reduces the skill in predicting the
warming trend over some regions outside the Atlantic. The
annual-mean atlantic meridional overturning circulation
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index, which is defined here as the maximum of the zon-
ally-integrated overturning stream function at mid-latitude,
is predictable up to a 4-year lead time, consistent with the
predictable signal in upper ocean heat content over the
North Atlantic. While the 6- to 9-year forecast skill mea-
sured by mean squared skill score shows 50 % improve-
ment in the upper ocean heat content over the subtropical
and mid-latitude Atlantic, prediction skill is relatively low
in the subpolar gyre. This low skill is due in part to features
in the spatial pattern of the dominant simulated decadal
mode in upper ocean heat content over this region that
differ from observations. An analysis of the large-scale
temperature budget shows that this is the result of a model
bias, implying that realistic simulation of the climatologi-
cal fields is crucial for skillful decadal forecasts.
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1 Introduction

The climate research community has increasingly turned its
attention to the topic of decadal prediction (Zhang and
Delworth 2005; Meehl et al. 2009; van Oldenborgh et al.
2012; Chikamoto et al. 2012). This is in part user driven,
due to the potentially large socio-economic impacts of
skillful predictions on these time scales. It is also in part
driven by the science, since it is a natural extension of the
work done by both the seasonal-to interannual (SI) pre-
diction community (extending to longer time scales) and
the climate change community (extending to shorter
timescales). It is now generally accepted that the decadal
problem requires information of both initial and boundary
conditions (Smith et al. 2007; Keenlyside et al. 2008). This
contrasts with the seasonal-to-interannual prediction prob-
lem where the initial condition is the key, and the cen-
tennial time-scale problem where changing boundary
conditions dominate the projections. In that sense, the
decadal prediction problem bridges the gap between the
two timescales, with the goal of providing useful infor-
mation on near-future climate.

However, it has only been in the last several years that a
few pioneering efforts have made progress in assessing the
importance of initialization for decadal forecasts (e.g.,
Smith et al. 2007; Keenlyside et al. 2008; Pohlmann et al.
2009), while others highlighted the importance of changing
boundary conditions, such as those associated with
anthropogenic greenhouse gases (Wetherald et al. 2001;
Meehl et al. 2005). While phase 3 of the coupled model
intercomparison project (CMIP3) focused mostly on the
forced response of the dynamical models, phase 5 (CMIP5)
specifically includes an assessment of the ability of
dynamical models to simulate and predict decadal vari-
ability including the impact of initialization.

The increase in decadal forecast skill from initialization,
especially over the North Atlantic and Pacific Oceans, has
been attributed to the local decadal variability in those
ocean basins (Read and Gould 1992; Mantua et al. 1997).
Keenlyside et al. (2008) showed that a simple initialization
process using observed sea surface temperature (SST) leads
to improvements in forecast skill particularly in the North
Atlantic. Similarly, Robson (2010) found that the regional
improvements through initialization were found mainly in
the North Atlantic Ocean. It is widely believed that the
source of decadal predictability over the Atlantic Ocean
originates from decadal fluctuations of the Atlantic
meridional overturning circulation (AMOC). This is con-
sistent with previous observational (Enfield et al. 2001;
Huang et al. 2012) and modeling studies (Dong and Sutton
2005; Zhang et al. 2007; Hawkins and Sutton 2011),
indicating that the strength of the AMOC exhibits a strong
multi-decadal variability. For the Pacific Ocean, Mochizuki
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et al. (2010) demonstrated that initialization of their
dynamical model leads to skillful prediction of upper-
ocean temperature in the regions typically affected by the
Pacific decadal oscillation (PDO, Mantua et al. 1997).

While the above studies show that some progresses have
already been made in demonstrating skill in decadal pre-
dictions using dynamical models, there are a number of
outstanding problems that limit current skill. In particular,
the initialization process used in those studies is quite
simple compared to that used for seasonal climate and
weather forecasts. For example, Keenlyside et al. (2008)
use a simple approach that assimilates only sea surface
temperature in order to avoid the difficulties associated
with the sparse historical subsurface ocean observations. At
the National Center for Atmospheric Research (NCAR)
and Max-Planck Institute (MPI), an alternative approach
has been tested where atmospheric reanalyses are used to
force the subsurface ocean temperature and salinity (Meehl
et al. 2009; Matei et al. 2012a). While these efforts avoid
having to deal with sparse, and in some cases biased,
subsurface ocean data (Ishii and Kimoto 2009), it is nev-
ertheless to be expected that the direct use of subsurface
ocean observations would improve forecast skill (Meehl
et al. 2009; Doblas-Reyes et al. 2011).

The other challenge in decadal prediction skill arises
from model deficiencies, which can degrade forecast skill.
For example, model biases can lead to erroneous oceanic
responses to imposed anthropogenic forcing, which can, in
turn, lead to erroneous decadal modes of variability as a
result of the different future climate (Meehl et al. 2007).
Even initialized models will evolve to the model’s own
climate during the forecast (e.g., Lee et al. 2010), resulting
in a forecast bias that is a function of the forecast lead time.
Particularly for the long leads in decadal prediction, the
quality of the model’s simulated climatology may deter-
mine the realism of the decadal variability and the decadal
forecast skill. However, this potential connection between
the quality of the simulated climatological fields and the
quality of decadal predictions is yet to be examined in any
detail.

To contribute to the assessment of the current skill of
decadal forecasts and examine the key factors affecting
such skill, this study analyzes the decadal forecasts from
version 5 of the Goddard Earth Observing System coupled
atmosphere—ocean general circulation model (GEOS-5
AOGCM) developed at the NASA Global Modeling and
Assimilation Office (GMAO). Note that the initialization
process employed for GEOS-5 utilizes most of the avail-
able oceanic observations in order to consider the observed
subsurface variation as well as the surface variations
(Doblas-Reyes et al. 2011). The paper is organized as
follows. The model description and experimental design
for the decadal forecasts are provided in Sect. 2. Section 3



The GEOS-5 forecast system

describes the basic results of the decadal predictions, and
Sect. 4 examines the possible relationship between the
simulated climatology and decadal modes of variability to
determine the quality of decadal prediction skill over the
Atlantic. The summary and conclusion are presented in
Sect. 5.

2 Model description and experimental design
2.1 Model description

The main components of the GEOS-5 AOGCM are the
GEOS-5 atmospheric model and the catchment land sur-
face model (Rienecker et al. 2008, Molod et al. 2012), the
Modular Ocean Model, version 4 (MOM4, Griffies et al.
2005) and the Los Alamos sea ice model (CICE model)
(Hunke and Lipscomb 2008). The configuration of the
atmospheric component uses a 2.5° longitude x 2° latitude
grid, with 72 vertical levels extending to 0.01 hPa. The
ocean model configuration is 1° longitude and latitude,
with a meridional equatorial refinement to 1/3°, and 50
vertical levels. The vertical grid spacing is a constant 10 m
over the top 225 m, and gradually increases up to 360 m in
the deep ocean. These two components exchange fluxes of
momentum, heat and fresh water every time step through a
skin layer interface. The skin layer includes the parame-
terization of the diurnal cycle in the near-surface ocean,
and the thermodynamics of CICE. The atmospheric com-
ponent includes a river runoff routing scheme and an aer-
osol model based on the Goddard Chemistry Aerosol
Radiation and Transport (GOCART) model using emis-
sions prescribed by the CMIP5 protocol. Only those vol-
canic aerosols from continually outgassing volcanoes have
been included, i.e., the explosive volcanic eruptions are not
included. All components are coupled together using the
earth system modeling framework (ESMF) interface.

2.2 Experimental design
2.2.1 Initial conditions for the decadal forecasts

The initial conditions for the decadal forecasts/hind casts
are obtained from an ocean and sea-ice assimilation per-
formed using the GEOS-5 AOGCM and a multi-variate
ensemble optimal interpolation (EnOI) analysis scheme
(Vernieres et al. 2012), while the atmosphere is constrained
by MERRA (Rienecker et al. 2011) from 1979 to 2005 and
a related atmospheric analysis prior to 1979. The atmo-
spheric analysis prior to 1979 is produced with the same
observing and assimilation system as MERRA, but the
atmospheric model has coarser resolution. The EnOI for
the ocean and sea ice assimilation is a sequential ensemble

assimilation method, where the error covariance is esti-
mated from an ensemble of multi-year simulations. The
background error covariances are estimated from a static
ensemble, and flow dependency of the background error is
obtained through localization in density space. Details are
provided in Vernieres et al. (2012).

The assimilated ocean profile observations consist of
temperature and salinity profiles from eXpendable bathy-
thermographs (XBTs) and conductivity temperature depth
(CTD) sensors extracted from the EN3 data base (Ingleby
and Huddleston 2007) with time-varying XBT corrections
applied according to Levitus et al. (2009), temperature
observations from the tropical moored buoy array
(McPhaden et al. 2010), and Argo temperature and salinity
profiles from the Argo Global Data Assembly Center
(GDAC, see http://www.usgodae.org/argo/argo.html).
Along-track sea level anomalies from the archiving, vali-
dation and interpretation of satellite oceanographic (AVI-
SO) merged product were also assimilated as was gridded
sea surface temperature (SST). For the latter, NOAA daily
SST of Reynolds et al. (2007) was used from 1982 to
present, and HadISST1 (Rayner et al. 2003; Hurrell et al.
2008) prior to 1982. Unfortunately, the difference in cli-
matology for the updated Reynolds and that used for
HadISST1 was not recognized until the forecasts were
analyzed. Sea-ice concentration from the National Snow
and Ice Data Center (NSIDC) from 1979 onwards and the
CMIP5 sea ice concentration prior to 1979 were also
assimilated. Prior to the Argo period, the model biases
were corrected by assimilating 10 % of the temperature
and salinity profiles, randomly selected, from the World
Ocean Atlas 2009 (WOAQ9) gridded climatology (Antonov
et al. 2010; Locarnini et al. 2010) every 10 days with very
small weights. The assimilation product is used to provide
the initial conditions for decadal forecasts, as well as to
evaluate the results. In the following, we refer to this
assimilation product as the GMAO ocean reanalysis
(ORA).

The ORA was processed in three separate streams, each
initialized from the WOAQ9 climatology and spun up by
assimilating available observations prior to the official
starting date of the stream. Stream 1 is for the period
January 1, 1959 to December 31, 1980, followed by stream
2 from January 1, 1981 to December 31, 1997, and stream
3 from January 1, 1997 to December 31, 2010. A series of
10-year hind casts were initialized from this ORA and the
corresponding atmospheric and land analyses, starting
every December 1 from 1959 to 1980 and from 1985 to
2010. Results from forecasts from the initial conditions
spanning December 1981 to 1984 are not included in the
analysis because it was found that by 1981 the ORA fields
from the first stream had degraded due to a loss of water
volume and those from the second stream were still
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undergoing a spin-up adjustment. Unfortunately, because
of a change in the ORA software, the missing years were
not able to be re-processed.

Predictions were made with three ensemble members for
each start date. One ensemble member started from the
assimilated state, the other two started with perturbations to
the assimilated state, with perturbations generated using a
breeding approach. In this study, the breeding method,
which has been shown to be beneficial to ensemble fore-
casting at various time-scales (Toth and Kalnay 1993,
1997; Yang et al. 2008; Ham et al. 2012a, b), was applied
with a 5-year rescaling interval starting from the year 1959.
A two-sided breeding method was used so that the
rescaling norm was selected as the root mean square
(RMS) difference of the monthly-mean heat content aver-
aged from the surface to 500 m over the Atlantic (90°W-
20°E, 20-70°N) from the two perturbed integrations. The
use of two-sided breeding removes the influence of model
drift during the integration. At the end of every breeding
cycle, the amplitude was reduced to 10 % of the natural
variability over the region used for the norm. The choice of
a 5-year rescaling interval was based on the results from
Vikhliaev et al. (2007) and on sensitivity tests that showed
that the growth rate saturated on that time scale. The initial
perturbation for the atmosphere in the first breeding cycle
was taken from a 6-hour difference on December 1, 1954.
There was no initial perturbation in the ocean at the first
breeding cycle, i.e., the initial ocean states of the ocean for
the bred vectors (BV) and control runs were identical.

2.2.2 Twentieth century simulations

To assess the model’s response to increased anthropogenic
forcing during the Twentieth century, a three-member
ensemble of coupled model simulations was conducted
with observed greenhouse gases (GHG, i.e. CO,, BC, OC,
CH,, Sulfur, NOx, VOC, CO and NH5) from 1950 to 2010,
as specified by the CMIP5 protocol. Initial conditions for
the Twentieth century simulations were taken from a
200-year simulation with perpetual 1950 boundary condi-
tions. Each ensemble member was initialized with same
year-date but 1 year apart. In the following, this experi-
ment will be denoted as C20C simulations.

3 Decadal predictability in the GMAO forecast system

Figure 1 shows the time series of annual mean SST aver-
aged over the region 0-360°E, 60°S—60°N from the
reanalysis, the ensemble mean C20C simulation, and the
ensemble mean decadal predictions. The upper panel
shows the raw value, and the lower panel shows the
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anomaly, which has been bias-corrected by removing the
mean bias away from the reanalysis. For the decadal pre-
diction, the bias-corrected anomaly is calculated as
?jt =Y -0, (Y — Ok)/N — O, where Yj;, and ?jt
are the raw and bias-corrected anomalous predictions,
respectively, at the jth initialized year and forecast lead
year t (ICPO 2011; Eq. (1) of Smith et al. 2013). Here,
0 = 3" Ox/N is the climatology from the reanalysis
(in this study, GMAO ORA) or from SST observations.
The anomaly of the C20C simulation and reanalysis is
obtained by subtracting its own climatology from 1960 to

2010 (i.e. )A(j =X — )A(, where )A(j, and X; are the raw and

anomalous value, and X = Zﬁ‘jl‘)%o Xy /N).

The HadISST1 (Rayner et al. 2003) shows a general
global warming signal beginning in the 1980s. This is less
so for the GMAO ORA, which shows a cooling during the
early 1980s after which the warming is in general agree-
ment with the HadISST1. This apparent cooling signal
results from the switch from the HadISST1 to the daily
Reynolds et al. (2007) data set in 1982, as described above.
However, the variability is quite similar in both, implying a
similarity in decadal variability between the two.

The time series of the annual mean (from January to
December) from the first year of the forecast (labeled year
1 lead forecast) exhibits a warm bias although the warming
trend is similar to that of the ORA. Also, the year-to-year
variability is again quite similar to that of the ORA. The
time series of the 2-year lead forecasts of annual mean SST
shows a stronger warm bias and global warming signal
than the 1-year lead forecasts. This bias is not shown in the
bias-corrected anomaly. In contrast to the 1-year-lead
forecast, a sudden drop of global mean temperature
between forecast starting at 1981 to 1984 in the 2-year lead
forecasts is clear, due to problems in the initial condition as
mentioned earlier. Note that forecasts initialized from 1981
to 1984 have not been used to validate the decadal forecast
skill. The tendency for the global warming trend to become
stronger as the forecast lead year increases is consistent
with the excessive global warming trend in the C20C
simulation. In the forecasts after 6-year leads, there is weak
year-to-year variability and only the warming trend
remains. This indicates that the SST response to the
increased greenhouse gas emission is excessive in this
configuration of the GEOS-5 AOGCM.

Figure 2 shows the spatial pattern of the annual mean
SST bias as a function of forecast lead year using the
raw prediction. That is, the bias is defined as
SN (Yi — Oy)/N. The four-year average (i.e. average
for years 2-5 and 6-9) is used for easy comparison with
other studies (e.g., Goddard et al. 2013; Kim et al. 2012).
The bias has been averaged to a 5° latitude x 5° longitude
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(a) Raw Prediction of Global SST (0-360E, 60S—60N)
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Fig. 1 The annual mean SST (°C) averaged over 0-360°E, 60°S—60°N from the HadISST1 (red), Reynolds SST (blue), the GMAO ocean
reanalysis (black), the GEOS C20C simulation (gray) and decadal forecasts as a function of the forecast lead time

grid, and is defined from the time-averaged values from
1960 to 2010. Note that the HadISST1 is used as verifying
SST. The SST averaged over forecast leads of 2-5 years
shows a warm bias of about 2 °C over the far eastern
Pacific and Atlantic. In fact, a warm bias occurs over much
of the equatorial and subtropical regions, while there is a
cold bias over the high-latitudes poleward of about 50°.
The biases increase with the forecast lead, with the mag-
nitude reaching 3 °C at 6- to 9-year leads when the spatial
pattern and magnitude of the SST bias is similar to that of
C20C simulation. We note that the spatial pattern of the
bias in the long-term simulation of the model with fixed
(1950) CO, concentration is quite similar to that in the 2- to
5-year lead forecast, except for Indian Ocean and mid-
latitude eastern Pacific, where the bias is nearly zero and
slightly negative, respectively, and the higher latitudes
where the bias is more strongly negative.

Two skill measures are used to examine whether the
initialization of the decadal forecasts increases the forecast
skill compared to the C20C simulation, the anomaly cor-
relation coefficient (ACC) and a mean squared skill score
(MSSS; Murphy 1988; Goddard et al. 2013). Note that both
are calculated using the bias-corrected anomaly shown in

Fig. 1b (Goddard et al. 2013), and this is the case for all
subsequent figures except for the climatological values
(i.e., Fig. 11). The MSSS is defined using the mean squared
error of the C20C and decadal forecasts as follows:

MSEc20c — MSEFE.

MSSS =
MSEc20c

where MSEcyoc and MSEg denote the mean-squared-
error (MSE) of anomalies in the C20C simulation and
decadal forecast, respectively. The upper limit of this
value is 1 when the decadal forecast is perfect, and a
positive value denotes decadal forecast skill that is better
than that of the C20C simulation in terms of MSE. In the
following figures, only correlation coefficients that are
non-zero with 90 % confidence level are shown, based on
a one-tailed ¢ test. For this test, the degrees of freedom are
defined using the auto-correlation of the ORA. That is, the
number of degrees of freedom is defined as the total
number of samples (i.e., 51) divided by n, where the auto-
correlation is above the 99 % confidence level for the
(n — 1)-year lag, but not for the (n)-year lag. For example,
where the 4-year-lag auto-correlation in the ORA is above
the 99 % confidence level, and 5-year-lag auto-correlation
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Fig. 2 The SST bias (°C) relative to the HadISST1: a C20C
simulation, b 2-5 year lead initialized forecast, ¢ 6-9 year lead
initialized forecast. The period for the verification is from 1960 to
2010

is below that level, the degree of freedom is defined as 10
(i.e. 51/5).

Figure 3 shows the ACC of the 4-year-averaged SST
from the C20C simulations and the difference of the ACC
for the initialized decadal forecasts from that for the C20C
simulations. Note that the HadISST1 is used for validation
since it is a gridded synthesis of available observations and
provides the appropriate metric for the C20C simulations.
Based on the ACC, there is a predictable signal in the
C20C simulation over the Indian Ocean, western and
south-central Pacific, and equatorial Atlantic. In addition,
the ACC exceeds 0.6 over the mid-latitude western
Atlantic. This skill is entirely due to the external forcing
because the C20C simulation is not initialized. Therefore,
the comparison of the skill in the C20C simulation to that
in the decadal forecasts provides some information on
added skill or on skill degradation due to initialization.
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According to the anomaly correlation measure, the ini-
tialized prediction skill of 2- to 5-year lead forecasts over
the subtropical, mid- and eastern North Atlantic is greater
than that for the C20C simulation. This is significant with
90 % confidence level using the bootstrap approach as in
Smith et al. (2010). This implies that the initialization has
been successful in enhancing the prediction skill of
Atlantic decadal variability. In addition, the prediction skill
over the off-equatorial western Pacific is higher by up to
0.2 in the initialized decadal forecasts. In contrast, the skill
in the subtropical southeastern Pacific and the extratropics
in the southern Pacific and Indian sectors are lower in the
initialized forecasts. This reduction is skill might be related
to a distortion of the trend signal by the decadal variation in
the initialization of forecasts over some areas in the Pacific
and Indian Oceans. In addition, biases in the dominant
decadal modes would also lead to a reduction in skill. The
deficiency at high southern latitudes is related to the
changes in the prescribed SST analysis from the HadISST1
to Reynolds for initialization in 1982. With the GMAO
ORA used for validation, the correlation skill is system-
atically higher than that using HadISST1 and the negative
difference over the southern hemisphere is not apparent
(not shown here).

The MSSS shows more robust improvement with ini-
tialization compared with the anomaly correlation metric.
The MSSS values are positive over most regions of the
globe. However, exceptions are evident in localized areas
over the mid-North Pacific and parts of the subpolar North
Atlantic.

For the 6- to 9-year lead forecasts, the improvement in
ACC has decreased over the subpolar North Atlantic
compared with years 2-5, while that over the mid-latitude
Atlantic and Pacific is even higher than in the C20C sim-
ulations. This indicates that the GEOS-5 AOGCM has
some success in predicting the Atlantic climate up to about
10-year lead times except for the subpolar regions (Matei
et al. 2012b). The MSSS results are similar for both leads.
Thus, by these measures, initialization gives a systematic
increase of prediction skill for SST over many areas of the
globe, with the notable exception of the subpolar North
Atlantic.

Kim et al. (2012) summarized the current prediction
skill in CMIP5 decadal prediction systems. All of the
prediction results show that the skill over the Pacific is
lower than that over the Indian Ocean and Atlantic. This is
consistent with other results show that the prediction skill
for the SST over the North Pacific is lower than that over
the North Atlantic (e.g., van Oldenborgh et al. 2012). The
spatial pattern of ACC over the Atlantic in the GEOS-5
system is similar to that in several models presented in Kim
et al. (2012): three of the seven models shown in that study
have relatively lower prediction skill over the subpolar (or
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Fig. 3 a The anomaly correlation of 4-year moving averaged SST
from the HadISST1 with the C20C simulation. The difference of
anomaly correlation in the b 2-5-year lead forecast and ¢ 6-9-year
lead forecast from that in C20C. The right panel shows the d Mean
square error (MSE) of the C20C simulation, Mean squared skill score

western subpolar) Atlantic compared with other areas of
the Atlantic, while the other models show similar skills
over all regions of the Atlantic (Yeager et al. 2012; Robson
et al. 2012a). This means that several decadal prediction
systems have common issues, although the causes of such
deficiencies are likely to be model-dependent. One possible
reason for this problem in the GEOS-5 system will be
discussed in the next section.

Figure 4 shows the skill measures for the 4-year-aver-
aged heat content in the upper 500 m (defined as the
average temperature from the surface to 500 m, hereafter
HC500). The GMAO ORA is used as a validating product.
Based on the anomaly correlation, there is significant skill
in the C20C simulation in regions of the Atlantic and along
the northern and eastern rim of the Pacific. The skill
elsewhere is not significant and is even negative in a
few places such as the high southern Ilatitudes. The

(d) c2oC

60N |
30N
EQ
308 1
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(¢) 2—5yr Lead Forecast
V] cme.

60E 120E 180 120W 60W
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(MSSS) for the e 2-5-year lead forecast and f 6-9-year lead forecast.
The grey dots b, and ¢ denote that the difference in correlation is
significant with 90 % confidence level. The procedure for the
significant test is the same as in Smith et al. (2010)

improvement in ACC in the initialized decadal prediction
of HC500 at 2- to 5-year leads is apparent in the central
basins and high latitudes as well as the western Indian
Ocean. On the other hand, the ACC over the eastern Indian
Ocean and the eastern equatorial Pacific as well as over the
western and subpolar North Atlantic has degraded in the
initialized forecasts. It is not surprising that the areas of
significant skill for HC500 are larger than for SST because
the subsurface ocean varies more slowly than the ocean
surface (Griffies and Bryan 1997). Degradations in skill by
the initialization might occur in predicting the warming
trend over some regions, presumably from internal
adjustments after the initialization process. It is also pos-
sible that the decadal variability simulated in the model is
systematically incorrect over some areas. The MSSS val-
ues, including over the subpolar North Atlantic, show
patterns that are consistent with those from the ACC. The
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Fig. 4 As for Fig. 3, but for HC500

subpolar North Atlantic will be discussed in more detail
below.

The patterns at 6- to 9-year leads are not very different
from those at 2- to 5-year leads. There is still some predict-
able signal over the subtropical and mid-latitude Atlantic,
suggesting that the decadal variability has some predict-
ability up to 10-year leads over a limited area of the Atlantic.

One may ask why the MSSS score for SST is higher
than that for HC500, since the subsurface is generally
thought to have higher predictability (Griffies and Bryan
1997). In fact, the ACC skill of HC500 is generally higher
than that of SST especially during early forecast years,
consistent with previous studies. The higher MSSS score
for SST compared to HC500 is due to the large MSE of
SST in the C20C simulation, not due to the small MSE of
SST in the decadal forecasts. The large MSE of SST in the
C20C simulation is due to the excessive trend in the sim-
ulation, which is mainly in the surface layer. Therefore, the
MSE is higher for SST than for HC500 (Figs. 3d, 4d).
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Since the MSSS score denotes the improvement relative to
the C20C simulation, it can be higher for SST even though
the MSE of SST for the decadal forecasts is smaller than
that of the HC500.

Up to now, we have compared the skill of the initialized
decadal forecasts to that of the C20C simulations in order to
separate the predictable signal due to the decadal variability
from that due to the external forcing. An alternative
approach is to calculate the prediction skill after removing
the global warming trend. This is done here by removing the
spatial pattern regressed onto observed GHG emissions (the
prescribed forcing for both the decadal forecasts and the
C20C simulations), following the approach of van Olden-
borgh et al. (2012). Note that the GHG emissions used were
those recommended for the CMIP5 experiments (http://
cmip-pcmdi.llnl.gov/cmip5/forcing.html#concentrations).
Due to the different magnitude of the trend, the de-trend-
ing is applied separately for each forecast lead and
reanalysis output.
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Fig. 5 The predictable year of de-trended annual mean SST in
a persistence forecasts, and b decadal forecasts. The predictable year
of annual mean HC500 in persistence forecasts and decadal forecasts

Figure 5 shows the number of years in which the ACC
of the de-trended annual mean values is higher than 0.35
for the decadal hindcasts to measure the e-folding time
scale (i.e. 1/e of the initial correlation value). This is
compared with the ACC of persistence forecasts using the
de-trended HadSST1 and GMAO ORA output for SST and
HC500, respectively. The persistence forecasts show skill
for SST for up to 1 or 2 years, primarily over the subpolar
Atlantic region. In the case of HC500, the predictable
signal extends from subpolar regions to the mid-latitude
Atlantic. There is also some skill out to 3-year leads over
the North Pacific. The skill from persistence apparently
reflects the large decadal variability over the North Pacific
and Atlantic Oceans. In addition, there is some predict-
ability up to 2 or 3 years over some areas of the southern
hemisphere between 30-60°S, possibly due to the low-
frequency variation of the subtropical gyre over the
southern hemisphere (Roemmich et al. 2007; Gille 2008).

The annual mean SST is predictable in the decadal
forecasts only for about 1-year lead times over small areas
of the subpolar Atlantic. The decadal forecasts of HC500
show more widespread areas where the ACC exceeds 0.35
for 1 or more years longer than in the persistence forecasts.
For example, the areas of skill for HC500 extend over the
lower-latitude Atlantic and over the Southern Hemisphere
in the decadal forecasts. Two areas that stand out are the
North Pacific, and mid-latitude eastern Atlantic where the
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is shown in ¢ and d, respectively. Note the predictable year is defined
as the number of years for which the correlation skill is higher than
0.35

skill extends out to 5 years. This is in contrast with the
subpolar Atlantic where the skill extends out to only about
2 years lead time both for SST and HC500, which is sys-
temically shorter than for the persistence forecasts. This
suggests that model deficiencies are generating errors in the
prediction of decadal variability over the subpolar Atlantic.

Figure 6 shows the time series of HC500 over the North
Pacific area (170-150°W, 35-50°N), and the subpolar
Atlantic (40-10°W, 55-65°N). Over the North Pacific, it is
likely that there is a dominant mode of decadal variability,
which is consistent with previous studies investigating the
PDO (Mantua et al. 1997; Mochizuki et al. 2010). Moc-
hizuki et al. (2010), for example, showed that the PDO
signal is predictable almost 6 years in advance at a 70 %
confidence level in a prediction system using model for
interdisciplinary research on climate (MIROC). Consistent
with that study, the HC500 over the North Pacific is pre-
dictable to some extent in the GEOS-5 decadal forecasts.
For example, the increase in HC500 from 1960 to 1975 is
predicted out to about a 5-year lead time. Similarly, the
evolution from 1990 to 1995, and 2005 to 2010 in the
GMAO ORA is also reproduced well in the model hind-
casts. However, during the 2000s the predictions are quite
poor beyond a 4-year lead time, especially for the HC500
predictions during 2003 and 2004. This is potentially
because the variability captured with Argo data in 2003 and
2004 was not represented in the analysis of earlier years
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Fig. 6 The time series of de-trended anomalous annual mean HC500

(°C) in the GMAO ORA (black) and decadal forecasts averaged over
the a North Pacific (170-150°W, 35-50°N), and b subpolar Atlantic

(used for initialization) when Argo data were not available.
The overall ACC of HC500 predictions is significant at the
90 % confidence level, with values remaining above 0.6 for
up to 3-year lead times.

Over the subpolar Atlantic, the ORA shows a dominant
decadal mode of variability (Smith et al. 2007; Keenlyside
et al. 2008). The anomalous HC500 is positive during the
1960s and 2000s, while it is negative from the 1970s to the
1990s. The transition from a positive to a negative phase
between 1960 and 1975 is relatively well simulated in the
decadal hindcasts, while the warming trend in the mid-
1990s and transition to the positive phase during the 2000s
is successfully simulated only up to 2-year leads. The ACC
between the reanalysis and the predictions is above 0.5 for
lead times out to 2 years.

The discussion above was concerned with the overall
quality of decadal predictions. In the next section we
examine several of those results in more detail. In partic-
ular we examine why (1) the skill of the HC500 hindcasts
is systematically higher over the mid- and north- Atlantic
compared with the C20C simulation, and (2) the predict-
able HC500 signal extends to 5 years over the North
Pacific and Atlantic, while over the subpolar Atlantic it is
less skillful than a persistence forecast.
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(40-10°W, 55-65°N). ¢ The correlation between the GMAO ORA
and the decadal forecasts over North Pacific (black) and subpolar
Atlantic regions (red) as a function of the forecast lead year

4 Simulation of Atlantic decadal variability
4.1 The Atlantic meridional circulation

Many studies have pointed out the role of the AMOC as a
source of decadal predictability in the Atlantic (e.g., Del-
worth and Mann 2000; Knight et al. 2005; Dijkstra et al.
2006; van Oldenborgh et al. 2012). Therefore, prior to
examining regional details in the prediction skill, we
examine the predictability of the AMOC strength. Fig-
ure 7a shows the time series of the anomalous AMOC
index (defined here as the maximum of the zonally-inte-
grated annual mean overturning streamfunction averaged
over 41-43°N) using the ORA and forecast output. Note
that the trend has not been removed. The time series is a
3-year moving average to remove high-frequency varia-
tions. The definition used here is similar to that in Huang
et al. (2012), although they selected 44°N for the latitude of
their AMOC index since that was where the 1st empirical
orthogonal function (EOF) pattern of their reanalysis
stream function (derived from the Global Ocean Data
Assimilation System from NOAA’s National Centers for
Environmental Prediction) reached its maximum value.
Similarly, the latitude for the AMOC index used here was



The GEOS-5 forecast system

11

s (a) AMOC Index

(b)Corr with GMAO ORA

1vr
Z)yr

)y/; Eeoo

I

Lead. Forecast
Lead Forecast

adal Pred.

De
Persnstent Pred.
————— Vith Trend
- De—Trended

0.81

orecost
orecast

1985 1990 1995

Time

-5 v v u v
1960 1965 1970 1975 1980

Fig. 7 a The time series of anomalous AMOC index (SV) in the
GMAO ORA (black), ECMWF ORA-S3 (blue), the GEOS C20C
simulation (gray), and decadal forecasts. Note that the AMOC index
is defined as the maximum of the zonally-integrated annual mean
overturning stream function averaged over 41-43°N. The time-series

selected as the location where the 1st EOF of stream
function from the GMAO ORA reached its maximum value
(not shown). However, note that the AMOC index is not
very sensitive to the slight change in latitude choice
between 40-45°N. Bingham et al. (2007) shows that
AMOC variations farther south are dominated by interan-
nual variations rather than decadal variations as in the
subpolar branch.

In the GMAO ORA, there is a weak decreasing trend in
the AMOC at this latitude. This decreasing trend is also
seen in the System 3 ORA (ORA-S3) from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
(blue line, Balmaseda et al. 2008), which exhibits very low
transport in 2007. The decadal variations are generally
consistent with those from 1985 to 2003 in Bingham et al.
(2007) using an ocean circulation and climate advanced
modeling project model (OCCAM) simulation. The
OCCAM simulation shows AMOC variations north of
40°N that increase in strength from the late 1980s until the
mid-1990s and then afterwards gradually decrease,
continuing that trend for the rest of the simulation. Reichler
et al. (2012) also shows that in a multi-reanalysis from
1979 to 2010 AMOC variations at 45°N peaked in the mid-
1990s, then gradually decreased. Relative to the mean
anomaly from the multi-reanalysis in the 1990s, the

2000

2010 2 3 4 5 6 7 8 9 10
Forecast Lead Year

2005

shown is a 3-year moving average and is not de-trended. b The
correlation of annual-mean AMOC index from the GMAO ORA and
decadal forecasts (red) and persistence forecast (i.e. auto-correlation;
black). The solid line denotes the correlation with trend, and dashed
line denotes the correlation after removing the trend

GMAO ORA peaks too early and decays too early. How-
ever, Fig. 1b in Reichler et al. (2012) and Fig. | in Pohl-
mann et al. (2013) shows that there is a lot of spread in the
ocean reanalyses (since the analyses are not always well
constrained by observations, especially during periods of
sparse observations) so the differences between ORAs seen
in Fig. 7 are not uncommon.

In the forecasts, the overall variation, with a minimum
in the mid-1970s and a decrease from the mid-1990s, is
captured at all lead times up to 5 years; however, the
details of shorter timescale variations change with lead
time. Interestingly, the forecasts display a decline in
transport in the late 1990’s with a timing more consistent
with ORA-S3 than with the GMAO ORA. The correlation
of the forecast time series with the ORA transport is over
0.5, which is significant at about the 90 % confidence level,
according to the one-tail 7 test as described earlier, for leads
up to 4 years. The correlation skill of a persistence forecast
shows slightly lower predictability. Similar results are
found if the ECMWF ORA-S3 is used for validation.
Interestingly, the correlation skill in the initialized decadal
forecasts rebounds after 6 years. This implies that the
predictability of the AMOC is systematically higher in the
dynamical forecast system, and the AMOC variability is
likely to be predictable up to almost a decade. Note that the
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C20C simulation shows slight increases in the AMOC
index with time and cannot simulate the decadal variations.
The correlation skill of the initialized decadal predictions
calculated after removing the trend is systematically lower
than that with the trend, however, the behavior is basically
the same.

4.2 The upper oceanic heat content (HC500)

The successful prediction of the AMOC transport does not
guarantee a skillful forecast of the patterns of temperature
change in the Atlantic. Figure 8 shows the correlation skill
of the de-trended annual mean HC500 as a function of the
forecast lead year. The warming trend has been removed in
the same way as for Figs. 5 and 6 to focus on the low-
frequency variability. Only correlations significant at the
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90 % level are shown. Note that the degrees of freedom at
each grid point are calculated using auto-correlation as
done in previous figures. In the C20C simulation, the
correlation skill is not significant anywhere over the
Atlantic except for the Labrador Sea and southwest of the
Iberian Peninsula. This correlation might be due to a
nonlinear response to increasing GHG or merely to chance
because of the small number of ensemble members.

In the 1-year lead initialized forecasts, the correlation
skill is above 0.6 over most of the Atlantic, systematically
higher than that in the C20C simulation. During the second
year, the correlation skill drops over the Gulf Stream and in
parts of the subpolar gyre. During the third year, the cor-
relation skill remains above 0.6 over the eastern Atlantic,
and the rim of the subpolar gyre. In addition, the correla-
tion skill over the western Atlantic around 30°N is almost
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Fig. 8 The correlation skill of the de-trended annual mean HC500 anomaly in a the C20C simulation, b 1-year lead forecasts, ¢ 2-year lead
forecasts, d 3-year lead forecasts, e 4-year lead forecasts, and f 5-year lead forecasts
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zero. During the fourth and fifth years, the correlations
decay further although the areas of significant correlation
remain unchanged except for the region southeast of
Greenland, in the Irminger Current, where the correlation
has dropped below the 90 % significance level.

Why does the correlation skill start to drop relatively
faster over some areas of the Atlantic? Here we investigate
how this decay is related to the realism of the simulated
decadal modes over the Atlantic and show that the forecast
skill degrades where the spatial pattern of the dominant
decadal mode in the predictions departs from that in the
ORA.

Figure 9 shows the first EOF and principal component
(PC) of the de-trended HC500 from the ORA. Note that the
EOF analysis performed is based on the Atlantic region
(80°W-20°E, 20-65°N). The first EOF is comprised of a
dipole pattern over the North Atlantic, with correlated
variability of opposite signs in the subpolar gyre and the
northern recirculation region of the Gulf Stream. It explains
almost 28 % of the total de-trended variability. This dipole
pattern is consistent with the dominant decadal mode in
several observational and modeling studies (Hakkinen and
Rhines 2004; Dong and Sutton 2005; Hatun et al. 2005;
Zhang 2008), and the EOF analysis using ECMWF ORA-3,
EN3 (Ingleby and Huddleston 2007, http://www.metoffice.
gov.uk/hadobs/en3/), or grid point data from NOAA’s
National Oceanographic Data Center (NODC) (http://
www.nodc.noaa.gov/OC5/3M_HEAT_CONTENTY/) (plots
not shown). From an analysis of HadCM3 (the climate
prediction model of the UK Met Office) output, Dong and
Sutton (2005) argue that temperature and salinity advection
is a crucial factor for the maintenance and transition of this
decadal mode. Zhang (2008) finds that shifts in the location
of the Gulf Stream are tied to this decadal dipole mode.
Consistent with their studies, the positive values in the first
EOF of HC500 in Fig. 9 are located along the Gulf Stream
between 30°N and 45°N, implying that oceanic advection
by the Gulf Stream and North Atlantic Current play an
important role in producing and maintaining this decadal
mode in the GEOS-5 AOGCM.

The PC of the first EOF shows multi-decadal time-
scales, with negative anomalies from 1960 to 1970, and in
the 2000s, and positive anomalies between 1970 and 2000.
This variation is also consistent with the results from EC-
MWF ORA-S3, EN3, and NODC output. (The correlation
between any of these time series is at least 0.89.). The
variations are closely aligned to those in the subpolar
branch of the AMOC (grey line in Fig. 9b), though with
less prominent peaks. The lagged correlation between the
two time series is 0.55 at 8 years with HC500 leading. As
found in the modeling study by Zhang (2008), the HC500
anomalies lead the AMOC anomalies and there is an out-
of-phase relationship between the AMOC and the subpolar

gyre. Thus, strengthening of the AMOC is associated with
the strengthening of the northern recirculation gyre (lower
HC500 near the Gulf Stream path) and the weakening of
the subpolar gyre (higher HC500 in the subpolar gyre).
Consistent with the lag between HC500 and AMOC
anomalies noted above, the patterns from the regression of
the AMOC time series onto the time series HC500 and the
corresponding time series for salinity and density 8 years
earlier show that salinity variations are well correlated with
density variations in the Labrador Sea and northern recir-
culation gyre while the temperature variations are well
correlated in the subpolar gyre (not shown). Negative
HCS500 anomalies over the subpolar area along with posi-
tive salinity anomalies, both of which are positive density
anomalies, are related to a stronger AMOC through
enhanced deep water formation.

The ACC of the forecast PC is calculated with respect to
the GMAO ORA in Table 1. The forecast PC is calculated
by pattern regression of the ORA HC500 EOF onto the
predicted HC500 anomaly. The ACC of the PC as a
function of forecast lead time is above 0.6 for up to 6-year
lead times, indicating that the dominant mode is quite
predictable because of its decadal time-scale. However, as
mentioned earlier, it does not guarantee a skillful forecast
over the entire Atlantic, because the spatial pattern of the
dominant simulated mode is different from the EOF
obtained from the GMAO ORA.

Figure 10 shows the first EOF of HC500 in the ORA and
the regression of its PC onto current vectors averaged from
the surface to 500 m, from the ORA as well as from the
forecast fields at leads of 1-5 years. In the ORA, there is an
anticyclonic flow around the positive HC500, i.e., the
negative density anomaly related to the positive HC500
anomaly produces an anticyclonic geostrophic current
(Dong and Sutton, 2005). This anticyclonic flow produces
an eastward current over the subpolar Atlantic, and
southwestward current over the mid-eastern Atlantic. Note
that the negative HC500 anomaly on the northern limb of
the subpolar gyre is coincident with an acceleration of the
subpolar gyre (Zhang 2008; Lohmann et al. 2009; Hakki-
nen et al. 2011; Robson et al. 2012b).

During the first year of the forecast, the overall pattern is
quite similar to that in the GMAO ORA. However, the
positive HC500 anomaly is generally thicker than the
ORA, and is not as strong in the western Atlantic as in
ORA. The negative HC500 anomaly is slightly weaker than
that in the ORA. During the second year of the forecast, the
positive HC500 anomaly extends farther to the north above
50°N (i.e. the red box), and the negative HC500 anomaly in
the subpolar gyre is split into two separate regions. The
magnitude of the anomalous current is weaker than that in
the ORA. During the third year of the forecast, the positive
HC500 anomaly extends far north along the North Atlantic

@ Springer



14

Y.-G. Ham et al.

(a) GMAO EOF—1

60N 1

45N 1

27.98%

30N

—0.6 -05 -0.4 -03

(b) PC Time Series & AMOC Index

EOF 1stPC
o

-1.51

AMOC Index
Lag Correlation

- 0.3

PC Lead

PC ‘Lag

-0.6

Time

Fig. 9 a The first EOF of the GMAO ORA de-trended annual mean
HC500 anomaly (°C). b The PC of the first EOF of HC500 in the
GMAO ORA (red), ECMWF ORA-S3 (black), EN3 (green), and

Table 1 The anomaly correlation between the PC of the 1st EOF
from the GMAO ORA and the time series from the regression of the
ORA EOF on the forecast, shown as a function of the forecast lead
year

Forecast lead time Decadal forecast

1 year 0.93
2 years 0.87
3 years 0.78
4 years 0.73
5 years 0.68
6 years 0.61
7 years 0.54
8 years 0.51
9 years 0.26
10 years 0.10

The bold values indicate that the correlation coefficient is over 90 %
confidence level

@ Springer
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NODC output (blue), and the de-trended AMOC index (gray). ¢ The
lag-correlation between the PC and AMOC index (unitless quantity)

and Irminger Currents, above 50°N. The anomalous geo-
strophic currents related to this positive HC500 anomaly
are primarily meridional. Correspondingly, the negative
HC500 anomaly in the Greenland Sea is quite weak, and
the negative HC500 anomaly on the southern branch of the
subpolar gyre is advected farther eastward. These anoma-
lies gradually decay in later years.

These differences that emerge in the dominant decadal
mode as the forecast evolves are consistent with the spatial
patterns of correlation skill as a function of forecast lead
time. For example, the forecast skill is relatively low over
the subpolar central Atlantic in the 2-year-lead forecasts
because the positive HC500 related to the dominant dec-
adal mode is extended too far north. The ACC over the
subpolar Atlantic drops quickly because the negative
HC500 anomaly over the subpolar region becomes weak.
Similarly, the confinement of the higher correlations to the
rim of the basin in the forecasts at 5-year lead times is
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Fig. 10 The pattern of de-trended HC500 (°C) and currents (m/s)
averaged from the surface to 500 m regressed onto the 1st PC from
the GMAO ORA in a the GMAO ORA, b l-year lead forecasts,

consistent with the representation of dominant decadal
mode at that lead.

Why is the spatial pattern of the simulated decadal mode
different from that in reanalysis output? Motivated by
previous studies that emphasized the role of the strength of
mean current on the dominant decadal mode (e.g., Zhang
2008), we compare the simulated climatology of HC500
and currents averaged between the surface and 500 m to
the ORA (Fig. 11). Although, the overall patterns of the
analyzed climatological HC500 and currents are well
simulated by the decadal forecasts, the systematic biases
increase with forecast lead. One of biggest differences is
the strength of North Atlantic Current (NAC), continuing
the Gulf Stream northeast above 45°N, which is gradually
stronger at longer forecast leads. After 3 years, the strength
of the NAC in the forecasts is almost twice that in the ORA

|
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| I [ T T
0.1 0.2 0.3 0.4 0.5 0.6 >

¢ 2-year lead forecasts, d 3-year lead forecasts, e 4-year lead
forecasts, and f 5-year lead forecasts

and the zonal temperature gradient over the subpolar region
near 30°W is stronger.

This is important because it can lead to stronger
advection of positive HC500 anomalies along the NAC,
and ultimately cause the excessive northward extension of
positive anomalies in HC500 shown in Fig. 10c, d. The
anomalous meridional current would not in turn generate
HC500 anomalies since the current anomalies tend to be
along the climatological temperature gradient in the later
forecasts.

To summarize the results of Figs. 10 and 11, we analyze
the advection terms in the HC500 budget over 35-25°W,
50-60°N (i.e., the red box in Figs. 10, 11), where the
simulated decadal mode has an unrealistic northward
extension of positive anomalies in HC500. Figure 12
shows the HCS500 advection analysis related to the
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Fig. 11 As for Fig. 10, but climatological HC500 (°C) and currents (m/s) averaged from the surface to 500 m. The green vectors denote currents

with a speed above 0.04 m/s

dominant EOF in the GMAO ORA (denoted as 0 on the x-
axis), and from the decadal forecasts as a function of
forecast lead year (denoted as 1-5 on the x-axis). For this
calculation, we regressed current anomalies onto the PC of
the first EOF of HC500, then calculated the HC500
advection terms: —u/’ aa—f, —/ %—5 , —ﬁaa—i/ , —\7%', where o', V',
and T are the zonal current, meridional current, and tem-
perature anomalies related to the first EOF, and i, v, and T
denote the climatological values. The analysis is conducted
as a function of forecast lead year. All fields were averaged
from the surface to 500 m prior to regression. Then, the

area-averaged value over 30-20°W, 50-60°N was calcu-
lated. Note that the term —/ %—Z is not shown because the
regression was not significant at the 95 % confidence level.

In the ORA, the total HC500 advection (black) is neg-

ative, consistent with Fig. 10a. However, in first year of the

@ Springer

forecasts, the total HC500 advection is positive due to
stronger advection by the climatological currents. The
difference becomes robust during the second year of the
forecasts, consistent with the increasing tendency of posi-
tive HC500 anomaly up to the third year of the forecasts
(i.e. difference Fig. 10c from b, or d from c). In later
forecast years, the total advection terms are negative, again
consistent with the decreasing positive HC500 after the
3-year lead forecast in Fig. 10c, d, e.

In the ORA, the negative HC500 anomaly is mainly
produced by the anomalous advection of mean HC500
(blue bar), i.e., the anomalous eastward current that advects
cold water from the Labrador Sea. The contribution of this
advection term is overwhelmed by the other terms in
forecasts after the first year although the magnitude
remains comparable to that in the ORA. In the first year of
the forecast, the mean zonal advection of anomalous
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, HC500 Budget (35—25W,50—60N)

Total
—VmxdT!/dy
—UmxdT!/dx
—U'*dTm/dx

Regression

0 1 2 3 4 5
0: OBS, 1-5: Forecast Lead Year

Fig. 12 The magnitude of HC500 advection terms (°C/year) related
to the first EOF averaged over 35-25°W, 50-60°N (i.e. the red box in
Figs 10, 11) from the ORA (0 in x-axis), and each forecast lead years
(1-5 in x-axis) using the regression analysis. The total advection term
(black bar), advection of anomalous HC500 due to mean meridional
current (—v %, red bar), that due to mean zonal current (—it aa—z/, green
bar), the advection of mean HC500 due to anomalous zonal current
(—u' %—f blue bar) is denoted. Note that the term — —V/ %—C is not
shown because it is not over the 95 % confidence level for the
reanalysis and any of forecasts

HC500 (green bar), related to the eastward extension of the
Gulf Stream, becomes significant. In the second year of the
forecast, the contribution from the mean meridional current
(red bar) peaks, caused by the strong NAC over the mid
Atlantic above 45°N. Thus, the excessive northeast exten-
sion of positive HC500 anomalies related to the dominant
EOF is due to the stronger climatological meridional cur-
rents in the decadal forecasts. The advection due to the
mean current becomes negative from year 3 because the
anomalous temperature gradient changes its sign from
negative to positive as the center of positive HC500 shifts
slightly to the east. Because the simulated NAC increases
in strength during the first few years of the forecast, the
advection of positive HC500 anomalies by the mean
meridional current remains strong in later years even
though the magnitude of the HC500 anomaly becomes
slightly weaker later in the forecast due to the negative
contribution from the other advection terms.

In summary, the dominant decadal mode simulated in
the decadal forecasts is different from that in the ORA
especially along the NAC, and this leads to a relatively
rapid drop in prediction skill over this region. While the
dominant EOF in the ORA exhibits a negative HC500
anomaly over the subpolar regions related to anomalous
eastward advection of HC500, in the second year of the
forecast there is a positive HC500 anomaly in the same
region that is tied to a too strong climatological NAC.
Thus, the mechanism that leads to negative HCS500

anomalies in the GMAO ORA is not operating in the
decadal forecasts. This implies that the realistic simulation
of the climatological circulation is crucial to skillful dec-
adal forecasts.

The impact of the stronger NAC on other EOFs in the
decadal forecasts is examined in Fig. 13, following the
same procedure as used for the first EOF. Clearly the same
degradation in the patterns is seen as a function of forecast
lead. This implies that climatological biases in this region,
particularly in the North Atlantic Current, is the one of
main reasons for the loss of prediction skill over the North
Atlantic.

The dominant decadal mode is strongly coupled with the
North Atlantic Oscillation (NAO)-like atmospheric varia-
tions in observations (Lohmann et al. 2009). Unfortunately,
the NAO is not successfully simulated in the decadal
forecast (not shown). Since the NAO is important for the
subpolar North Atlantic ocean (Hakkinen et al. 2011;
Yeager and Danabasoglu 2012), the weak NAO-like rep-
resentation in the decadal forecast system might be another
reason of the abrupt degradation of forecast skill over the
subpolar regions.

5 Summary and conclusion

In this study, the forecast skill of decadal hindcasts from
1960 to 2010 using the GMAO’s GEOS-5 AOGCM has
been evaluated. The mean of decadal forecasts using three
ensemble members shows a warm bias between 50°S—50°N
and a cold bias poleward of those latitudes. The warm bias
increases with longer forecast lead times, consistent with
the fact that the global warming trend in the AOGCM is
stronger than observed. The forecast skill of 4-year-aver-
aged SST shows that there are improvements in MSSS up
to 10-year lead forecasts over the Atlantic, Indian Ocean,
and the tropical western Pacific, indicating the benefits of
initializing the decadal forecasts. The improvement in the
initialized decadal forecast is also due to the reduction in
the global warming signal in the initialized forecast relative
to the C20C run. In particular, the forecast skill of 4-year-
averaged SST is systematically higher over the North
Atlantic with the aid of initialization. The increase of skill,
measured by both anomaly correlation and MSSS, in the
decadal forecast is maintained for almost a decade over the
subtropical and mid-latitude Atlantic.

Even though the skill in upper ocean heat content is not
as widespread as for SST, the MSSS shows there is about
50 % improvement over the subtropics and mid-latitude
Atlantic up to lead times of 6-9 years with initialization
by successful simulation of Atlantic decadal variability.
On the other hand, the MSSS value is negative over the
North Pacific and southern Atlantic, implying that the
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Fig. 13 The de-trended annual mean HC500 anomaly regressed onto the second (left panel), and third (right panel) EOF in the ORA and the

forecasts at 1- to 3-year lead times

initialization reduces the prediction skill over some regions
outside the Atlantic. The annual-mean AMOC index for the
subpolar branch of the AMOC is predictable for up to
4-year leads, consistent with the predictable signal in
subsurface temperature over the mid-latitude and North
Atlantic. However, the predictable signal in the HC500
over the Atlantic is relatively lower in the subpolar gyre.

The predictability of the decadal signal was investigated
by detrending the decadal forecasts prior to calculating the
decadal anomalies. The system has lower prediction skill
for detrended decadal heat content anomalies in the
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subpolar North Atlantic than for other ocean regions and
the predictability time scale (or e-folding time scale) is
lower in this region than for persistence. This low skill is
related to the fact that the spatial pattern of the dominant
decadal mode in HC500 over this region in the ORA is
quite different from that in the forecasts beyond the first
year. An analysis of the advection terms as a function of
forecast lead shows that biases in the climatological NAC,
which is too strong in the decadal forecasts, are responsible
for the excessive northward extension of mid-latitude
anomalies to the subpolar Atlantic. This implies that the
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realistic simulation of the climatological circulation is
crucial for skillful decadal forecasts.

This study reveals the relationship between the simulated
climatology and decadal modes, and shows how this rela-
tionship directly impacts the decadal prediction skill of
upper ocean heat content in the North Atlantic in the GEOS-
5 AOGCM. This study gives some potential insights into
the performance of anomaly initialization (Schneider et al.
1999; Smith et al. 2007; Keenlyside et al. 2008; Pohlmann
et al. 2009; Smith et al. 2013). Anomaly initialization has
the advantage of reducing the initialization shock, however,
it has drawbacks by using the climatology in the model right
from the outset. Hence, depending on the model biases, it
might be expected that anomaly initialization might lead to
lower skill at short forecast leads than full initialization.
However, Smith et al. (2013) find that the differences in
skill between full-field and anomaly initialization are gen-
erally not significant. The best method for initializing dec-
adal forecasts is still an active area of research as is the
identification of predictable decadal signals.
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