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Abstract

An acoustic analogy is proposed that directly includes nonlinear prop-
agation effects. We examine the Lighthill acoustic analogy and replace
the Green’s function of the wave equation with numerical solutions of the
generalized Burgers’ equation. This is justified mathematically by using
similar arguments that are the basis of the solution of the Lighthill acous-
tic analogy. This approach is superior to alternatives because propaga-
tion is accounted for directly from the source to the far-field observer in-
stead of from an arbitrary intermediate point. Validation of a numerical
solver for the generalized Burgers’ equation is performed by comparing
solutions with the Blackstock bridging function and measurement data.
Most importantly, the mathematical relationship between the Navier-
Stokes equations, the acoustic analogy that describes the source, and
canonical nonlinear propagation equations is shown. Example predic-
tions are presented for nonlinear propagation of jet mixing noise at the
sideline angle.
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Nomenclature

Symbols
A Arbitrary vector quantity
Aijlm Coefficient matrix
Aij Subset of Aijlm

Bn Fourier coefficients of BBF
c Speed of sound
D Nozzle exit diameter
Dj Fully expanded diameter
eo Total energy
F Fourier series dependent on x
g Arbitrary function or Green’s function
Jn Bessel function of the first kind of order n
j Integer index
K Fourier coefficient
k Wavenumber
kmax Maximum turbulent kinetic energy

within jet plume
l Turbulent length scale
M Mach number
Ma Acoustic Mach number
Mc Convective Mach number constant
Md Design Mach number
Mj Fully expanded Mach number
m Integer index
Pf Scaling constant for spectral density
Pr Prandtl number
p Pressure
q Heat-flux
q̃ Square of p̃
R Gas constant or propagation distance
Rijlm Two-point cross-correlation of Lighthill

stress tensor
r Vector from source to observer
r Radial coordinate
S Spectral density
St Strouhal number
Sy Equivalent source strength per unit length
T Thermodynamic temperature

Td Thermal diffusion rate
Tij Lighthill stress tensor
t Time
u Velocity
x Observer or position
y Source position or particle displacement
yc Jet potential core length
α Atmospheric absorption coefficient
β Coefficient of nonlinearity

or dispersion coefficient
βs A constant within the two-point

cross-correlation
Γ Group of coefficients involving nonlinearity
γ Ratio of specific heats
δ Dirac delta function or viscous terms
δij Kronecker delta function
ε β(ρ∞c3∞)−1

η(ξ, η, ζ) Source separation vector
μ Kinematic viscosity
ν Dynamic viscosity
ξ Momentum in Lagrangian coordinates or

source separation in x direction
ρ Density
σ Shock formation distance

or amplification factor
τ Retarded time
τs Turbulent time scale
τij Viscous stress tensor
Φsh Earnshaw phase angle
φ Arbitrary vector quantity or wave

emission time
ω Radial frequency

Abbreviations
BBF Blackstock bridging function
NIT Normal Incidence Tube
PSD Power spectral density
SPL Sound pressure level
TTR Total temperature ratio
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1 Introduction

The physical mechanism and associated mathematical model to predict acoustic radiation from
high speed compressible fluid turbulence continues to elude investigators after decades of research.
In most fluid flows, the intensity of turbulence gives rise to acoustic radiation that propagates
according to the theory of linear acoustics and dissipative effects dominate nonlinear effects. When
turbulence is highly intense the resultant acoustic waves have magnitudes that result in nonlinear
propagation due to dominance of nonlinear terms over dissipative terms contained in the equations
of motion. The radiating waves contain all non-zero frequency components, are very energetic, and
coalesce into many discontinuities (shock waves). Here, we seek a unified theory of the radiation
source using an acoustic analogy combined with the nonlinear propagation effects approximately
governed by the generalized Burgers’ equation.

High intensity compressible turbulence is present within the exhaust flow created by rocket and
high performance air breathing jet engines. The acoustic radiation created by these exhaust flows
is potentially harmful to the flight vehicle airframe, launchpad, or flight deck through the mecha-
nism of sonic fatigue or sonic failure. It is also potentially harmful or annoying to the surrounding
community and natural environment. A few recent investigations (among many conducted over
decades) illustrate the relevance of this contemporary problem via the noise produced by aircraft.
Recently, Neilsen et al. [1] conducted measurements of the ‘F-22A Raptor’ flight vehicle with after-
burning engines. They examined the spectral characteristics spatially and the waveforms’ nonlinear
indicators as described by Gee et al. [2], and showed that nonlinear propagation effects are impor-
tant. Though many nonlinear indicators have been proposed, Gee et al. [2] created two that are
complimentary to traditional spectral measurement approaches, and successfully separated geomet-
ric acoustic effects from nonlinear propagation effects. Petitjean et al. [3] performed experiments to
examine nonlinear distortion of acoustic waves and waveforms in the time and frequency domains.
They proposed that the convective Mach number of turbulent structures is highly correlated with
nonlinear effects, which is certainly the case for high speed rocket and jet exhaust. Highly energetic
jet noise spectra were recently analyzed by Tam and Parrish [4], and they proposed that the di-
vergence of measurements from relatively low intensity similarity spectra might be due to indirect
combustion noise from the afterburner. The peak intensities calculated by Tam and Parrish [4]
are 178 dB. Morfey and Howell [5] conducted flight tests and showed that the inclusion of finite-
amplitude noise propagation theory must be used to account for observed aircraft flyover effects.
Thus, prediction approaches for jet noise created by the F-22 or similar aircraft must account for
nonlinear propagation effects.

Contemporary studies of rocket noise with emphasis on nonlinear propagation have recently been
conducted. Rocket noise data was analyzed by McInerny and Olcmen [6], and they observed many
shocks within the waveforms at all angles and distances from the flight vehicle. They concluded
that nonlinear effects must be accounted for to explain the many discontinuities observed in the
measured waveform. Recently, Gee et al. [7] characterized the rocket noise source by performing
measurements of a statically fired rocket engine. These measurements yielded insight into the rocket
noise source strength and spatial distribution based upon near-field microphone measurement.
Nonlinear indicators from these measurements implied that the source is intense and necessitates
the use of finite-amplitude acoustic theory for sound propagation. In these investigations, the
far-field noise can only be obtained by propagating the measured signal from the near-field to the
far-field. These contemporary investigations (and those in the past) measure the far-field noise
directly or propagate the measured near-field signal to the far-field from an intermediate point.
Here, we attempt to create a prediction method to propagate acoustic radiation from high intensity
jets to the far-field directly from the source.
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In this paper, the Navier-Stokes equations are used to derive the generalized Burgers’ equation
and the Lighthill [8] acoustic analogy. The form of the acoustic analogy and associated sources are
modeled for jet mixing noise using the approach described by Miller [9]. We retain the Green’s
function of the wave equation as an argument for the spectral density in the far-field. It is argued
that the modulus squared of the Green’s function of the wave equation, contained explicitly in the
acoustic analogy, can be approximated with solutions of the generalized Burgers’ equation. For low
intensity turbulence, limiting forms of solutions of the generalized Burgers’ equation are equal to
those of the wave equation. When the radiation source is relatively more intense, then nonlinear
effects present within the generalized Burgers’ equation are captured directly within the acoustic
analogy approach. The combination of approximating the Green’s function of the wave equation
with the generalized Burgers’ equation leads to a unique approach that overcomes limitations of
previous linear acoustics approaches. However, some important assumptions must be made. In
particular, for propagation purposes only, the source origin is approximated at a point in space.
The source spectrum is still evaluated with a volumetric integral.

This paper first surveys the mathematical theory of the governing equations of motion and
the subsequent derivation of the source model and propagation model. Particular solutions of
propagation models are developed. The relationship between the source model and the propagation
model is shown. The process of evaluating the closed form models numerically is discussed. Next,
example calculations are presented that illustrate the physics of nonlinear propagation for both the
limiting cases and the model, and are compared with select measurement data. Finally, predictions
are conducted for the power spectral density of high intensity jet mixing noise at various observer
positions to illustrate the effect of nonlinear propagation.

2 Mathematical Theory

This section is heavily based upon the work of Schlicting and Gersten [10], Crighton [11], and
Blackstock [12, 13]. The equations of motion are introduced, a source model and propagation
model are derived independently, and their connection is shown. We begin with the Navier-Stokes
equations as shown by Schlicting and Gersten [10] where the continuity equation is

∂ρ

∂t
+

∂ρui
∂xi

= 0, (1)

the momentum equation is
∂ρui
∂t

+
∂ρuiuj
∂xj

=
∂τij
∂xj

, (2)

and the energy equation is

∂ρeo
∂t

+
∂ρujeo
∂xj

= −∂ujp

∂xj
− ∂qj

∂xj
+

∂uiτij
∂xj

, (3)

where

τij = −pδij + μ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
μ
∂uk
∂xk

δij , (4)

eo is the total energy, p is the pressure, t is time, u is the velocity vector, q is the heat-flux, x is
the spatially independent variable, δij is the Kronecker delta function, ρ is the density, and μ is the
viscosity. We assume that the gas is ideal and p = ρRT , where R is the gas constant and T is the
temperature.
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2.1 The Propagation of Weakly Nonlinear Waves

We simplify the Navier-Stokes equations by assuming that u = ∇φ + ∇ × A, where φ and A
are used to represent the dependent variable u. Only the first- (linear), second-order (nonlinear),
and dissipative terms that are linear relative to dependent variables and diffusion coefficients are
retained. We also assume that the diffraction coefficients are constant and equal to their reference
(ambient) values. The Prandtl number is Pr = νT−1

d , where the kinematic viscosity is ν = μρ−1∞
and Td is the thermal diffusion rate. We obtain

−c2∞νPr−1∇4φ+

(
2 +

μv

μ
+

γ

Pr

)
ν∇2∂

2φ

∂t2
+

∂

∂t

(
c2∞∇2φ− ∂2φ

∂t2

)

=
∂

∂t

[
2∇φ · ∇∂φ

∂t
+ (γ − 1)

∂φ

∂t
∇2φ

] (5)

and

∂A

∂t
+ ν∇×∇×A = 0, (6)

where sub v signifies the dilatational viscosity. If we let A be a constant (the flow is irrotational)
and allow the temperature boundary condition of the fluid domain to vary, we find a simplified
form

c2∞∇2φ− ∂2φ

∂t2
+

[
2 +

μv

μ
+

γ − 1

Pr

]
ν∇2∂φ

∂t
= 2∇∂φ

∂t
· ∇φ+ (γ − 1)

∂φ

∂t
∇2φ. (7)

Equation 7 is the basis for a wide range of nonlinear propagation investigations and can be used to
accurately predict ‘weakly’ nonlinear propagation of waves.

Using Eqn. 7 we seek to derive the generalized Burgers’ equation. We assume that the flow
has the properties of a set of symmetries. These symmetries are cylindrical, spherical, and planar.
Also, we assume that k∞r >> 1, where k∞ = ωc−1∞ is the ‘linear’ wavenumber, ω is the radial
frequency, and c∞ is the ambient speed of sound. Using these assumptions Eqn. 7 simplifies to

∂u

∂t
+ c∞

∂u

∂r
+

γ + 1

2
u
∂u

∂r
+

jc∞u

2r
=

δ

2

∂2u

∂r2
, (8)

where j = 0, 1 or 2 for plane, cylindrical, or spherically symmetric (outgoing waves) solutions
respectively and δ is a group of viscous terms. Crighton [11] wrote this ‘generalized Burgers’
equation’ non-dimensionally and compactly as

∂W

∂Z
−W

∂W

∂Θ
=

δω

2c2∞
g(Z)

∂2W

∂Θ2
, (9)

where for j = 0, W = U , Z = R, and g(Z) = 1, for j = 1, W = R1/2U and Z = 2R1/2, and
g(Z) = Z/2, and for j = 2, W = RU , Z = lnR, and g(Z) = exp[Z]. Here, U = (γ + 1)u(2c∞)−1,
R = k∞r, Θ = ωτ , and τ is the retarded time. Unfortunately, the general solution of Eqn. 8
is unknown, let alone a proof of a solution’s existence. Recently some exciting exact bi-soliton
solutions have been proposed by Vladimirov and Maczka [14]. Crighton [11] summarizes some
specific earlier solutions of Eqn. 9. Let us temporarily focus our attention on solutions with planar
symmetry where the wave fronts are perpendicular to the x direction. We write Eqn. 7 or 8, after
integration with respect to time and differentiation with respect to x as
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∂u

∂t
+

(
c∞ +

γ + 1

2
u

)
∂u

∂x
=

1

2
δ
∂2u

∂x2
. (10)

This equation can be written in a more compact form by making a coordinate transform from
x to x − c∞t. Also, for reasons that will become apparent later, we are interested in solutions
of the generalized Burgers’ equation cast as a boundary value problem, that is a solution where
at some point in space the pressure is defined as a function of time. The waveform evolves from
this initial point in the direction of propagation. We also assume c∞φx ≈ −φt, the retarded time
is τ = t − xc−1∞ , and subsequently obtain an equation shown by Mendousse [15]. We write the
resultant equation of Mendousse [15] as a pressure perturbation using the relation p ≈ ρ∞c∞u and
find

∂p

∂x
− εp

∂p

∂τ
=

δ

2c3∞

∂2p

∂τ2
, (11)

where β = (γ + 1)/2 is the coefficient of nonlinearity, ε = β/ρ∞c3∞, and

δ = ν

(
4

3
+

μv

μ
+ (γ − 1)Pr−1

)
. (12)

Similar processes can be used to find equations for spherically and cylindrically symmetric
outgoing waves. These can be written in a general form as (containing an extra term relative to
Eqn. 11)

∂p

∂x
+m

p

r
− εp

∂p

∂τ
=

δ

2c3∞

∂2p

∂τ2
, (13)

where m = 0, 1/2, and 1 for plane, cylindrical, and spherical waves, respectively. Equation 13 can
be found more rigorously as shown by Lighthill [16]. Saxena et al. [17] wrote Eqn. 13 in a form
more amenable to numerical solution in the frequency domain

∂p̃

∂r
+m

p̃

r
+ (α+ iβ) p̃ =

iωε

2
q̃, (14)

where q̃ = p̃2, α is the atmospheric absorption coefficient, and β is the dispersion coefficient. The
tilde represents a Fourier transform. In certain circumstances Eqn. 13 can be solved analytically
for carefully chosen boundary conditions, and a subset of these solutions are described in the next
sections. In most cases of practical interest, Eqn. 13 must be solved numerically. The boundary
condition is typically based on a broadband pressure time history or spectrum. The boundary
condition is assumed to be periodic, and its connection with the source model will be discussed in
the next section.

We survey a numerical method for the solution of Eqn. 13. The approach is heavily based upon
the methods developed by Lee et al. [18] and Saxena [19]. First, the Fourier transform and square of
the Fourier transform of a pressure time history are calculated (boundary condition). It is assumed
that the pressure time history (derived from a ‘source spectrum’ with random phase) is periodic
in time. An explicit second order Runge-Kutta spatial marching technique is used to propagate
the waveform in the radiation direction. The real and imaginary parts of p̃ and q̃ are advanced in
space at each discrete step. After each spatial step marched, a filter window is applied to remove
numerical noise, and the complex atmospheric absorption and dispersion as a function of frequency
are applied. Also, a Lanczos filter as described by Duchon [20] is applied at each spatial step to
help minimize the Gibbs phenomenon. The complex coefficients of atmospheric absorption and
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dispersion are calculated using the method of Bass et al. [21, 22]. When the waveform integration
reaches the observer, the inverse Fourier transform of p̃ is performed to recover the pressure time
history.

2.2 The Fay Solution

We now examine certain limited solutions for finite-amplitude wave propagation. Fay [23] derived
an equation of motion using physical arguments for the perturbation of a gas in a single spacial
dimension and time. It can easily be shown that the equation of motion that Fay [23] considered
is based upon Eqn. 2 with certain assumptions. These assumptions include the flow varying in
one spatial dimension, varying in time, the dependent variables are small in fluctuation, that
fluctuations in u >> ρ, viscosity is a constant, and additionally that the boundary condition
of temperature is fluctuating. Fay did not explicitly use an assumption regarding temperature
fluctuations at the boundary, but it is required here to obtain Fay’s governing equation from the
Navier-Stokes equations. Multiplying the resultant equation by a differential dx to give a volume
per unit length x, yields Fay’s governing equation

ρ∞
∂u

∂t
dx = −∂p

∂x
dx+

4

3
μ
∂2u

∂x2
dx. (15)

Fay [23] assumes that compression is adiabatic

p

p∞
=

(
ρ

ρ∞

)γ

, (16)

which implies for the one-dimensional problem

p

p∞
+ 1 =

(
∂y

∂x

)−γ

, (17)

where y is the distance of a particle from a ‘resting plane’ of reference at time t. Assuming that
c2∞ = γp∞ρ−1∞ , Fay focuses on a solution of the resulting equation

c2∞
∂2y

∂x2
=

∂y

∂x

γ+1 [∂2y

∂t2
− 4μ

3ρ∞
∂

∂t

(
∂2y

∂x2

)]
. (18)

Fay [23] assumes that the solution is periodic and y = x+ F , where F is a Fourier series with
coefficients that are dependent on x. After substituting the relation between y and F into Eqn. 18
and assuming that ∂F/∂x can be represented as a Fourier series, Fay finds the solution for ∂F/∂x
and its Fourier coefficients. The solution of Eqn. 18 in terms of ∂F/∂x is

∂F

∂x
= log

[
16μω

3ρ∞(γ + 1)c2∞K1,1

]

− 8μω

c2∞ρ∞ (γ + 1)

n=∞∑
n=1

sinn (ωt− ωx/c∞)

sinhn
[
log

[
16μω

3c2∞ρ∞(γ+1)K1,1

]
+ 2xμω2

3ρ∞c3∞

] (19)

where K1,1 is an arbitrary coefficient that can be set to match a periodic boundary condition. Note
that ∂F/∂x is the ratio of the change in volume relative to specific volume in the undisturbed
medium, thus

p = p∞

[(
∂y

∂x

)−γ

− 1

]
= −p∞γ

[
∂F

∂x
−

(
γ + 1

2!

)(
∂F

∂x

)2

+ ...

]
. (20)
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Using this relation and Eqn. 19 yields

p

p∞
=

32

3

μω

c2∞ρ∞

(
γ

γ + 1

) n=∞∑
n=1

sinn (ωt− ωx/c∞)

sinhn
[
log

[
16μω

3ρ∞(γ+1)c2∞K1,1

]
+ 2xμω2

3c3∞ρ∞

] . (21)

Equation 21 represents the Fay [23] solution of Eqn. 15 that is derived after many simplifications
from the Navier-Stokes equations. Blackstock [24] writes Eqn. 21 in a simplified form

p

p∞
=

n=∞∑
n=1

2Γ−1

sinh [n(1 + σ)Γ−1]
sinn(ωt− kx), (22)

where Γ groups the coefficients involving nonlinearity relative to dissipation and σ is the non-
dimensional propagation distance normalized by the shock pressure

σ =
x

x
=

p∞βkx

ρ∞c2∞
. (23)

2.3 The Fubini Solution

Another limited solution for finite-amplitude wave propagation is now presented that was proposed
by Fubini [25]. It was brought to the attention of the larger acoustic community through the work
of Westervelt [26]. Fubini used a unique approach and sought a solution of the non-conservative
one-dimensional momentum equation without viscous effects in Lagrangian form

∂2ξ

∂t2
+

∂ξ

∂t

∂2ξ

∂x∂t
= −1

ρ

∂p

∂x
, (24)

where a is a function of x only and x = a + ξ. Here, ξ is the displacement of the particle at
position a at time t. The problem is solved with the boundary condition u(0, t) = uo sin[ωt]. The
solution approach is straightforward, and Fubini [25] used the approach of Earnshaw [27] and wrote
a closed-form solution for u as a binomial series. After retaining the first two terms of the binomial
series the solution of Eqn. 24 is

u(x, t) = uo sin

[
ωt− ωx

c∞

(
1− βuc−1

∞
)]

, (25)

where β = ωu∞(c2∞Mak)
−1 and Ma is the acoustic Mach number. It is desirable to change the

form of Eqn. 25 to something more convenient for our purposes. The term uu−1∞ is expanded as a
series

u

u∞
=

∞∑
n=1

Bn sinn(ωt− kx), (26)

where

Bn =
1

n

∫ 2π

0

u

u∞
sin[n(ωt− kx)]d(ωt− kx). (27)

Using conservation of momentum in an Eulerian framework, Fubini [25] showed a simplified
form

Bn =
2

nσ
Jn [nσ] , (28)
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where Jn are the Bessel functions of the first kind of order n. Using the relation p = ρ∞c∞u and
combining Eqn. 26 and 28, the solution can be written

p

p∞
=

∞∑
n=1

2

nσ
Jn[nσ] sinn (ωt− kx) (29)

that is also shown by Blackstock [24]. The solutions for weakly nonlinear planar wave propagation of
Fay [23] and Fubini [25] (Eqns. 21 and 29) are very different because they are particular solutions of
the Navier-Stokes equations given greatly different assumptions. In the next section Blackstock [24]
reconciles these differences.

2.4 The Blackstock Bridging Function

Blackstock [24] examined the solutions of Fay [23] and Fubini [25] in an attempt to reconcile their
differences. The Fay and Fubini solutions are not accurate in a range of σ = 1 to σ ≈ 3.5, that
is the transition region from the continuous solution to a discontinuous solution. Blackstock [24]
‘bridged this gap’ between the two solutions by using ‘weak shock theory,’ where progressive wave
relations are used to describe continuous sections of the waveform between shocks (discontinuities
in the solution). Unlike other attempts to find more general solutions, the approach does not
directly make use of the generalized Burgers’ equation or its variations. Using weak shock theory
the governing equations are

u = g(φ), (30)

where u is the particle velocity, g is a function, and φ represents the wave emission time. An
equation is created that relates the difference of wave emission time with source time

τ = φ− (βc−2
∞ )g(φ). (31)

The system of equations is closed by defining an equation that governs the wave path and
amplitude of each shock wave

dt′s
dx

= −1

2
βc−2

∞ (ua + ub), (32)

where subscripts a and b represent quantities just preceding and following the shock front and a
prime denotes evaluation at the retarded time. Equations 30 through 32 are a system of equations
based on weak shock theory, and these equations are solved directly for u after eliminating φ by
substitution. Like Fay [23] and Fubini [25], the solution is sought as a boundary value problem
by specifying u(0, t) = uo sin[ωt] for t >> 0. A transcendental equation for the shock amplitude
results, and the solution process follows that of Fubini almost exactly as shown in the previous
section, where a Fourier series is proposed. After many straightforward mathematical operations
are performed as shown by Blackstock [24], an expression for p is obtained

p(x, t) = po

∞∑
n=1

Bn sin [nωτ ] , (33)

where po represents the initial wave amplitude at x = 0. Equation 33 is the Blackstock bridging
function (BBF). The coefficients Bn are
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Bn =
2

n(1 + σ)
+

2

nπσ

π∫
Φsh

cos [n (Φ− σ sinΦ)] dΦ, (34)

where n is the harmonic number and Φsh is the Earnshaw phase variable. Coefficients Bn are
evaluated with a numerical integration technique. Here, Φsh satisfies

Φsh = σ sinΦsh (35)

and is transcendental. Generally it must be evaluated numerically.

2.5 Acoustic Radiation Source Modeling using the Acoustic Analogy

We have now obtained a general equation for the propagation of weakly nonlinear acoustic radiation
(Eqn. 13) and a highly accurate analytical solution (Eqn. 33) to validate more general numerical
solutions. Here, we seek to predict the broadband source spectrum for use with the developed
propagation theory using the same set of governing equations. We apply the partial derivative
operator on Eqn. 1 with respect to time and apply the divergence operator on Eqn. 2. Subtracting
the modified continuity equation from the divergence of the momentum equation, then adding the
difference of the double divergence of the pressure and the double divergence of the density scaled
by the speed of sound to both sides of the resulting equation and simplifying yields Lighthill’s [8]
acoustic analogy

∂2ρ

∂t2
− c2∞

∂2ρ

∂xi∂xi
=

∂2Tij

∂xi∂xj
, (36)

where Tij is the Lighthill stress tensor (see Lighthill [8] for details and discussion). The Green’s
function of Eqn. 36 is governed by

∂2g

∂t2
− c2∞

∂2g

∂xi∂xi
= δ (x− y) δ (t− τ) , (37)

where g(x;y, t; τ) is the Green’s function, x is an observer location, y is a source location, and δ is
the Dirac delta function. It can easily be shown that the solution of Eqn. 37 in three-dimensional
space is

g(x;y, t; τ) =
δ
(
t− τ − |x− y|c−1∞

)
4π|x− y| (38)

and in the frequency domain

g (x,y, ω) =
exp [−ikr]

4πr
, (39)

where r is a vector from source to observer. We now can write the closed form solution of Eqn. 36 as
the spectral density of far-field pressure using the theory of Green’s functions following the approach
of Miller [9], but with some important differences. We assume that the observers (from a cross-
spectral point of view) are at the same position, that the flight stream Mach number is zero, and
that near-field and mid-field terms are negligible in the far-field. The Green’s functions that share
the same observer but differing source positions within the jet exhaust plume are approximated by
a phase change and g(x;y, ω)∗ = g(x;y,−ω), where superscript ∗ denotes the complex conjugate.
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The density is converted to pressure. We arrive at an equation for the spectral density, S, of
acoustic pressure in the far-field that is similar to Eqn. 1.11 of Ffowcs Williams [28]

S(x, ω) =

∞∫
−∞

∞∫
−∞

rirjr
′
lr

′
m

c4∞r2r′2
g (x,y, ω) g∗

(
x,y′, ω

)

× ∂4

∂τ4
Rijlm(y,η, τ) exp

[
−iω

(
τ +

r

c∞
− r′

c∞

)]
dτdηdy,

(40)

where the prime denotes an alternate source position. The subscripts i, j, l, andm imply summation
from one to three. We have obtained an equation that is a double volumetric integral over the source
and an integral over the retarded time. We require a model for the two-point cross-correlation of
the Lighthill stress tensor Rijlm. Here, we adopt a simplified form from Miller [9]

∂4

∂τ4
Rijlm(y,η, τ) =

4Aijlmu4

π1/2l8s

(
3l4s − 12l2s(ξ − uτ)2 + 4(ξ − uτ)4

)
× exp

[−|ξ|
uτs

]
exp

[−(ξ − uτ)2

l2s

]
exp

[−η2

l2sy

]
exp

[−ζ2

l2sz

]
,

(41)

where Aijlm is a coefficient matrix, l is the turbulent length scale in the axial (subscript s) and
radial directions (subscript sy and sz), u is the axial averaged velocity component, η = η(ξ, η, ζ)
is a vector from source vectors y to y′, and τs is a turbulent time scale. This model is carefully
chosen to both be integratable analytically and capture trends of measurement of turbulent jets in
the range of 0.5 ≤ Mj ≤ 1.5. Using the proposed model for Rijlm, the integration of τ in Eqn. 40
can be performed. After simplifying we obtain

S(x, ω) =

∞∫
−∞

∞∫
−∞

rirjr
′
lr

′
m

c4∞r2r′2
g (x,y, ω) g∗

(
x,y′, ω

)
Aijlm

lsω
4

u
exp

[−iξω

u

]
exp

[−|ξ|
uτs

]

× exp

[−η2

l2sy

]
exp

[−ζ2

l2sz

]
exp

[−l2sω
2

4u2

]
exp

[−iω(r − r′)
c∞

]
dηdy.

(42)

Let us now examine the volumetric integral involving η. The term gg∗ exp[−iω(r − r′)c−1∞ ] is
approximated as gg∗(y), thus removing its dependence on η and is removed from the integrand of
η. This approximation is valid as long as x is in the far-field. Using the same far-field argument,
we also note that the rirjr

′
lr

′
m term is no longer dependent on η. The prime notation can now be

dropped. The integrals involving the cross-stream variation can be directly evaluated. The term
Aijlm represents coefficients of the fourth order two-point cross-correlation of the stress tensor. We
propose a model for Aijlm that is considerably simplified from Miller [9]

Aijlm = Pfσ
1/2A2

ijSy, (43)

where σ is a function that is dependent on the Mach number and frequency of the acoustic radiation

σ = exp

[
−
(
ln[St]− ln

[
7

100
+

13

100
(1−Mj)

])2(
1 +

3

5
(Mj − 1)

)
σ4
f

]
. (44)

The function σf is
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σf =

⎧⎨
⎩

[(1−McMj)
2+(βsMcMj)

2]1/2

[(1−McMjr1/r)2+(βsMcMj)2]1/2
for McMj < 1

βsMcMj

[(1−McMjr1/r)2+(βsMcMj)2]1/2
for McMj ≥ 1.

(45)

This form is selected to capture fifth power convective amplification effects as proposed by
Ffowcs Williams [28]. The first coefficient of Aij is

a11 =

{ [
1 + (βsMcMj)

2
]1/2

[(1−McMjr1/r)2 + (βsMcMj)2]
1/2

}5/2

(46)

and all others are approximately 1/3. The form of the coefficient a11 is chosen based on the model
of Ffowcs Williams [28], and βs = 10−1 is a constant. The convective Mach number coefficient is
Mc = 0.70. Recall that the convective Mach number, as discussed by Petitjean et al. [3], plays an
important role in nonlinear propagation of jet noise. The equivalent spatial source distribution is
modeled by the term Sy in Eqn. 43 as

Sy = k2maxρ
2

(
1 +

St−3

200

)
exp

⎡
⎣−5

2
ln

[
y1DjSt

1/10

yc

]2
⎤
⎦ , (47)

where kmax is the maximum effective turbulent kinetic energy in the jet plume. Extensive numerical
simulations suggest that kmax is approximately

kmax = kfM
5/2
j TTRPr+Prt(1−erf[2M2

j ]), (48)

where Erf is the error function, kf = 3× 103 is a constant, Pr = 0.72 is the Prandtl number, and
Prt = 0.90 is the turbulent Prandtl number. The total temperature ratio (TTR) is the plenum
stagnation temperature divided by the ambient static temperature. The axial turbulent length scale
is approximated as lsD

−1 = 1.07 (0.1028Mj + 0.0654) y1D
−1
j . The cross-stream turbulent length

scales, lsy and lsz, are one-third of ls. The turbulent time scale is a function of the local turbulent
length scale, τs = lsu

−1. The spatially varying time-averaged stream-wise velocity component and
temperature are approximated using the models of Lau et al. [29] and Lau [30]. These are dependent
on the jet core length and are estimated using the model of Tam [31]. These models are valid for
jets in the range of 0.40 < Mj < 1.5, but we will be exercising this model well outside its range
of validity in the following section. Using these models and assumptions, we simplify the spectral
density of pressure in the far-field as

S(x, ω) =
πω4

c4∞
g (x, ω) g∗ (x, ω)

∞∫
−∞

Aijlm
rirjrlrm

r4
lslsylsz

u
exp

[−l2sω
2

4u2

]

×
∞∫

−∞
exp

[−iξω

u

]
exp

[−|ξ|
uτs

]
dξdy1.

(49)

Equation 49 is used to make predictions of jet mixing noise in the far-field and is in an impor-
tant form. It shows that the spectral density from jet mixing noise in the far-field is a volumetric
integration that describes a source spectrum that is centered on a point that is approximated at
the nozzle exit. Note that the development of Eqn. 49 is considerably more empirical than other
approaches, but is beneficial to illustrate the proposed concepts. Equation 39 implies that the term
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gg∗ in Eqn. 49 is (16π2r2)−1 and that the energy decays according to spherical spreading. The re-
maining part of Eqn. 49 defines the jet mixing noise source spectrum. Now, in Eqn. 49 we discount
the term gg∗ and retain terms that define the source spectrum. In place of gg∗, we use an equiv-
alent expression obtained from the numerical solution of the generalized Burgers’ equation. The
boundary condition of the numerical implementation of the generalized Burgers’ equation is now
the broadband source spectrum defined by Eqn. 49. In essence, we have implemented an equivalent
form for gg∗. For low amplitude sources (source spectrum), the far-field spectral density predicted
using the modified approach is equivalent to that predicted with the more traditional approach.
High amplitude sources will cause the nonlinear term within the generalized Burgers’ equation to
be dominant, and in turn all the characteristics of nonlinear propagation will be apparent in the
predicted jet mixing noise spectrum. Furthermore, the effects of atmospheric absorption and dis-
persion are directly contained in the solution and not accounted for at a later point. Astute readers
will note that direct approaches to calculate a Green’s function with a Burgers’ like equation, such
as the collapsing sphere approach, will violate the principle of linear superposition. Also, unlike
other approaches to propagate broadband noise that start outside the source region, we propagate
the source spectrum from within its source volume of origin.

The implementation of Eqn. 49 is similar to that of Miller [9] but highly simplified due to lack of
a second observer. Here, the major difference is the integration of the generalized Burgers’ equation
and atmospheric effect numerical solvers. The integrals of Eqn. 49 are approximated numerically.

3 Results

The purpose of this section is to show solutions of equations previously developed graphically . First,
the Fay (Eqn. 21), Fubini (Eqn. 29), and BBF (Eqn. 33) are evaluated for plane wave propagation.
Their respective power spectral density (PSD) is calculated. We then compare solutions of the BBF
to measurement data from the Normal Incidence Tube (NIT). Numerical solutions of the generalized
Burgers’ equation (Eqn. 13) are compared with the BBF (Eqn. 33). The propagation of a jet mixing
noise pressure time history is demonstrated with the numerical solver. Finally, example predictions
for jet mixing noise far-field spectral density with nonlinear propagation effects are performed using
the newly proposed approach.

3.1 Examination of the Fay, Fubini, and Blackstock Bridging Function

We have surveyed mathematically the relation between the Fay (Eqn. 21) and Fubini (Eqn. 29)
solutions and the BBF (Eqn. 33) with governing equations. Here, we will illustrate their physical
significance graphically. Figure 1 shows the amplitudes of the three solutions as a function of non-
dimensional distance from a sinusoidal boundary condition. The contribution of Fay (Eqn. 21) is
shown as a dashed line with squares, the contribution of Fubini (Eqn. 29) is shown as a dash-dot
line with triangles, and the BBF (Eqn. 33) is shown as a solid line. The amplitudes are normalized
with respect to the amplitude of the source at σ = 0. Recall that σ = xx−1. The amplitude is
calculated numerically by summing the Fourier coefficient magnitudes over all frequencies at each
spatial position. Due to the assumptions and method of solution of Fubini (Eqn. 29), the Fubini
solution is valid from 0 ≤ σ < 1. It immediately decays and approaches zero as the limit σ → ∞.
Fay, who sought stable waveforms, shows a valid solution for σ > 3.5 until viscous effects dominate
the dynamics of wave propagation. Within the region 1 ≤ σ < 3.5 neither the Fay or Fubini solution
are correct. The BBF bridges the two solutions and satisfies (at least to engineering accuracy) the
generalized Burger’s equation.
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We now examine the waveform of the BBF at various propagation distances. At the boundary
condition (σ = 0) the solution is known and is illustrated in Fig. 2. For example purposes we
select a frequency of 3000 Hz and an initial pressure amplitude of po = 496.07 Pa, which is 144.88
dB. The resultant wavenumber is 54.96 m−1. Ambient conditions are specified as ρ∞ = 1.213
kg m−3, c∞ = 343 m s−1, and β = 1.2. Based on this boundary condition the shock formation
distance is x = 4.362 m. The initial waveform, shown as a function of observer time, is presented
in Fig. 2(a). The PSD of the periodic boundary condition is shown in Fig. 2(b). Unsurprisingly,
the PSD contains only one non-zero discrete component.

The BBF is now evaluated at σ = 1, the shock formation location, and σ = 5.73, which is
well within the validity of the Fay solution. The boundary condition remains the same. These
waveforms are shown in Figs. 3(a) and 4(a). After the waveform is ‘shocked’ there are many
non-zero components in the PSD, as shown in Figs. 3(b) and 4(b).

These solutions are well known to acousticians well versed in the theory of finite amplitude
waves, however this review is conducted to illustrate important points relative to acoustic analogy
theory. Unlike infinitesimal acoustics, multiple non-zero frequency domain Fourier components
appear that are non-negligible that are due to propagation effects. Furthermore, the Gibbs phe-
nomenon appears when we restrict our mathematics to finite numerical approximations. Due to
these nonlinearities we are unable to use the principle of superposition that is central to the eval-
uation of an acoustic analogy with a volumetric source.

3.2 Comparison of the Blackstock Bridging Function with Measurement Data
of the Normal Incidence Tube

Measurement data of weakly nonlinear propagating plane waves is obtained from the NIT of NASA
Langley Research Center. Schultz et al. [32] discussed the NIT as part of a larger investigation.
The NIT is shown in Fig. 5(a). Six speakers are driven by a function generator and create plane
waves at specific frequencies and amplitudes. These carefully constructed waves propagate down
the circular tube and impinge on a liner sample. Normally, the NIT is used to measure the normal
incidence of various materials for use in aircraft engine liners. Here, a liner is selected that effectively
absorbs the entire wave thereby eliminating reflection. This liner would not normally be placed
in a flight vehicle because of its size and bulk. Figure 5(b) shows a simplified flow chart that
describes the operation of the NIT. A function generator creates a signal that is amplified and
subsequently drives the speaker array. The microphone signals are conditioned and captured with
a digital computer. These signals are then analyzed using digital spectral analysis. High pass filters
are utilized with cut-offs below the planar wave excitation frequency. A microphone is located near
the top of the NIT to measure the source and multiple ‘measurement’ microphones reside near the
liner. The reference and measurement microphones are used to capture near sinusoidal plane waves
for validation purposes.

We evaluate the BBF (Eqn. 33) and compare solutions with various measurements from the NIT.
Figure 6 shows three examples of these comparisons that are representative of a larger investigation.
The BBF is shown as a solid line and the measurement is shown as a dashed-dotted line. Three
comparisons are shown for 140.03 dB at 3000 Hz, 147.94 dB at 2000 Hz, and 144.88 dB at 3000
Hz, in Figs. 6(a), 6(b), and 6(c) respectively. Note the y-axis represents pressure in Pascal and the
x-axis represents retarded time. Generally, this theory and measurement are in agreement both in
magnitude and phase. The relatively short propagation distance within the NIT only allows for
waveforms that are minimally distorted by nonlinear propagation. This is not a major problem
because our focus is on jet mixing noise sources that are approximately 165 dB, that is near the
limit of weak shock theory. Based on these validations, we believe that the implementation of the
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BBF is correct. There is no reason to expect that larger propagation distances will deviate from
these results.

3.3 Comparison of the Numerical Propagation Solver with the
Blackstock Bridging Function

We have some confidence that the BBF is evaluated correctly using a numerical technique. We
attempt to gain additional confidence in the solution strategy of the generalized Burgers’ equation
by making extensive comparisons with numerical solutions of the BBF. Table 1 summarizes the
conditions examined. At the source position, σ = 0, the boundary condition p(0, t) = po sin [2πft]
is applied. Four values of po are chosen, 2.82843 Pa, 89.4427 Pa, 282.843 Pa, and 2828.43 Pa, that
result in tonal sound pressure level (SPL) of 100 dB, 130 dB, 140 dB, and 160 dB respectively. At
each SPL a frequency of 100 Hz, 1 kHz, 10 kHz, and 100 kHz are applied. For each combination
of frequency and wave amplitude, the planar shock formation distance is calculated using Eqn. 23.
Numerical solutions of plane wave propagation are calculated at three non-dimensional positions,
halfway to shock formation, σ = 1/2, at the shock formation, σ = 1, and three times the shock
formation, σ = 3. Comparisons of these numerical solutions are shown in Figure 7. In each subfigure
the y-axis is pressure in Pascal and the x-axis is retarded time, τ , in seconds. These figures are a
sampling of a larger validation database and are representative of all results. Figures 7(a) and 7(b)
have a boundary condition of 130 dB at 100 Hz and 1000 Hz. Note that the shock formation
distances at the lower frequencies in Figs. 7(a), 7(c), and 7(e) are much larger than the higher
frequencies of Figs. 7(b), 7(d), and 7(f). The numerical solution in the pre-shock region (σ < 1)
agrees very well with the BBF in magnitude and phase. In the post shock region (σ > 1) the Gibbs
phenomenon is apparent. This can be minimized or even almost entirely eliminated by increasing
the number non-zero Fourier coefficients, but doing so increases the amount of computer memory
used by the numerical solver significantly. Unfortunately, in some cases numerical error accumulates
for boundary conditions that are very high in amplitude and frequency. For example, in Fig. 7(f)
near τ ≈ 5 × 10−5 s and σ = 3, small oscillations occur in an ‘odd function fashion,’ centered
about zero. Extensive numerical evaluations using the developed approach have shown that these
spurious oscillations do not grow significantly except at extremely large distances. Overall, the
agreement between the developed numerical method for the evaluation of the generalized Burgers’
equation more than satisfactorily captures the trends of nonlinear propagation of tonal sources.

3.4 Propagation of a Broadband Spectrum

The developed mathematical approach requires that the source spectrum propagate from its lo-
cation of origin to observer in the far-field. Here, we propagate a measured broadband jet noise
spectrum from the near-field to the far-field to demonstrate the approach. Note that the phase of
each wavenumber component is unknown if only a power spectrum is available from measurement.
A random phase is assigned to each of the frequency components of the measured signal. This is
an important point as the developed prediction method is for spectral density and does not contain
phase. A high speed heated jet at Mj = 1.86 and TTR = 3.20 produces a waveform at the side line
location of one hundred nozzle diameters (R/D = 100). The measured (source) and propagated
(observer) spectrum are shown in Fig. 8(a), where ‘measured’ represents the processed spectrum
at R/D = 100. The propagated spectrum, found by numerical solution of the generalized Burgers’
equation (Eqn. 9), is also shown in Fig. 8(a) as the solid line with circles. The observer spectrum
is at R/D = 200, twice the distance of the measurement location relative to the source. At low
through mid frequencies a decrease of 20 log10 [2] ≈ 6.02 dB of sound power is predicted. This is
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consistent with the theory of linear acoustics. At high frequencies, simple spherical spreading is
not apparent and only approximately four dB of reduction in SPL is predicted. This is due to
the nonlinear term dominating atmospheric absorption and the transition of energy from lower
wavenumbers to higher wavenumbers. At low through mid frequencies, the same fine ‘peaks’ and
‘troughs’ are present in the spectrum at both field locations. These features are highly distorted
between field locations at high frequencies due to nonlinear propagation effects, atmospheric ab-
sorption (dissipation and dispersion), and energy transfer. At very high frequencies additional
energy is present due to the Gibbs phenomenon.

The time history of the spectrum can be compared with the use of the inverse Fourier transform.
The pressure time histories of these spectra are shown in Fig. 8(b), where the y-axis is the pressure
in Pascal and the x-axis represents time. Note that the observer time is not equal to the measured
time, and the propagated signal is translated by t − τ for the purpose of directly comparing the
waveform distortion. Observe wave steepening near certain measured time signals such as t ≈ 0.608
s or 0.6108 s. Figure 8(c) shows the details of the wave coalescence of one particular portion of
the pressure time history. At these times among many, the waves have coalesced into a shock that
exhibits a significant amount of overpressure. Lower amplitude waves, for example near t ≈ 0.6075
s, have only lost energy and not coalesced into a discontinuity. Waves with less energy are dominated
locally through the mechanisms of spherical spreading and atmospheric absorption, that are more
dominant than the nonlinear mechanisms present with the generalized Burgers’ equation. We offer
no further validation of this numerical approach because it is widely used by many investigators
(see for example Saxena et al. [17] or McInerny et al. [6]) to propagate both rocket and jet noise.

3.5 Example Predictions of Jet Mixing Noise Including Nonlinear Propagation
Effects

Now, the numerical method for the solution of the generalized Burgers’ equation with almost no
alteration will be combined with the source spectrum predicted with an acoustic analogy. Figure 9
shows example predictions from the newly developed approach. The jet operates at Mj = 1.86
and TTR = 3.20. Observers are located in the sideline direction of the jet at radial locations
R/D = 100, 140, 200, 240, and 300. The y-axis is SPL per unit St and the x-axis is Strouhal
number, and the former values have been normalized by uj and Dj . The solid line represents the
prediction using the newly developed approach at R/D = 100. This component of jet noise can be
interpreted as the contribution from the relatively incoherent turbulence. Other predictions that
include nonlinear propagation effects are variations of dashed lines and are labeled in the legend of
Fig. 9. These predictions are based on the source spectrum defined by Eqn. 49. To assess the effects
of nonlinear propagation relative to linear propagation, predictions using spherical spreading and
atmospheric absorption of Bass et al. [21,22] are shown in Fig. 9 as symbols. These linear acoustic
predictions are located at the propagation distance R/D = 100. For example, at R/D = 200,
the dash-dot-dash line is the prediction from the jet mixing noise propagated nonlinearly from the
source, and the triangles represent linear propagation using spherical spreading and atmospheric
absorption from the R/D = 100 prediction. Like the previous example shown for purely broadband
noise propagation, we observe a rise in high frequency energy and a generally consistent spherical
spreading rate at low and mid frequencies. Note that the peak SPL per unit St at R/D = 100 is
approximately 164 dB at St ≈ 0.25, that is considerably energetic. Numerical experiments with
this method with less intense acoustic radiation show traditional linear acoustic spreading and
atmospheric absorption, that is generally observed in almost all commercial jet noise measurements
and predictions. At high frequencies some of the energy is due to the Gibbs phenomenon. This
fictitious additional energy can be eliminated by including more non-zero harmonic components in
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the nonlinear propagation solver. Furthermore, these results are based upon a source model that is
developed for jet Mach numbers up to approximately 1.50, and the overall levels and scaling might
be misleading. To validate and refine this theory, a comprehensive experimental database of high
speed on-design jets must be created, with multiple observer points at various field positions. It is
hopeful that in the future such a database will be available to validate this newly developed theory.

4 Conclusion

An acoustic analogy is proposed that takes into account nonlinear propagation effects from the
source to observer. Propagation effects are captured by approximating the modulus squared of the
Green’s function of the wave equation with a numerical solution in a form of the generalized Burg-
ers’ equation. The numerical solution of the generalized Burgers’ equation is validated with the
use of the Blackstock bridging function and measurement data, that are in turn validated with the
Fay and Fubini solutions. A mathematical survey of the connection between the acoustic analogy
and equations governing propagation is shown based upon the Navier-Stokes equations. The source
model and approximation of the propagation mechanism are consistent with the governing equa-
tions. An example of the method based on simplified source models and the nonlinear propagation
numerical algorithm is shown for a high intensity on-design jet.

Validation data is limited for high intensity on-design jets. To fully validate and refine this
theory, a comprehensive experimental database of high speed on-design jet noise must be created,
with various field positions. This data would facilitate the creation of a more advanced source
model for the sound from compressible jet turbulence and help improve the connection between
the turbulent source and nonlinear propagation algorithms. It is hopeful that such a database will
become available to validate this newly developed theory.
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Table 1. Validation cases for the numerical propagation algorithm.

po (Pa) dB f (kHz) Shock Distance (m) σ1 σ2 σ2
2.82843 100 0.10 22801.5 0.5 1 3
2.82843 100 1.00 2280.15 0.5 1 3
2.82843 100 10.0 228.015 0.5 1 3
2.82843 100 100 22.802 0.5 1 3
89.4427 130 0.10 721.047 0.5 1 3
89.4427 130 1.00 72.105 0.5 1 3
89.4427 130 10.0 7.210 0.5 1 3
89.4427 130 100 0.721 0.5 1 3
282.843 140 0.10 228.015 0.5 1 3
282.843 140 1.00 22.802 0.5 1 3
282.843 140 10.0 2.280 0.5 1 3
282.843 140 100 0.228 0.5 1 3
2828.43 160 0.10 22.802 0.5 1 3
2828.43 160 1.00 2.280 0.5 1 3
2828.43 160 10.0 0.228 0.5 1 3
2828.43 160 100 0.023 0.5 1 3
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Figure 1. Comparison of harmonic amplitudes of the Fay [23], Fubini [25], and Blackstock [24]
bridging function relative to normalized propagation distance.
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Figure 2. Blackstock bridging function at propagation distance σ = 0.
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Figure 3. Blackstock bridging function at propagation distance σ = 1.
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Figure 4. Blackstock bridging function at propagation distance σ = 5.73.
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(a) (b)

Figure 5. a) Photograph and b) diagram of the Normal Incidence Tube. Courtesy of Brian Howerton
of NASA Langley Research Center.
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Figure 6. Comparisons between the Blackstock bridging function and measurement.
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Figure 7. Comparisons of the numerical solution of the generalized Burgers’ equation with the
Blackstock bridging function at various propagation distances σ.
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Figure 8. Example propagation of broadband jet noise in the sideline direction.
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