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Abstract

Assimilation of surface geomagnetic observations and geodynamo models has
advanced very quickly in recent years. However, compared to advanced data
assimilation systems in meteorology, geomagnetic data assimilation (GDAS) is
still in an early stage. Among many challenges ranging from data to models is the
disparity between the short observation records and the long time scales of the
core dynamics. To better utilize available observational information, we have
made an effort in this study to directly assimilate the Gauss coefficients of both
the core field and its secular variation (SV) obtained via global geomagnetic field
modeling, aiming at understanding the dynamical responses of the core fluid to
these additional observational constraints. Our studies show that the SV
assimilation helps significantly to shorten the dynamo model spin-up process. The
flow beneath the core-mantle boundary (CMB) responds significantly to the
observed field and its SV. The strongest responses occur in the relatively small
scale flow (of the degrees L ≈ 30 in spherical harmonic expansions). This part of
the flow includes the axisymmetric toroidal flow (of order m = 0) and
non-axisymmetric poloidal flow with m ≥ 5. These responses can be used to
better understand the core flow and, in particular, to improve accuracies of
predicting geomagnetic variability in future.
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Introduction
Geomagnetic field observed at the Earth’s surface varies significantly in time: its

temporal scales range from minutes to geological time scales. Though it was first

noticed by mankind over 5000 years ago (Roberts, 1992), and its origin was sought

as early as 800 years ago (Dibner Library 1980), the modern theory that the geo-

magnetic field is generated and maintained by convective flow in the Earth’s outer

core (geodynamo) was originated from the seminal work of Larmor (1919). Success-

ful numerical simulation of the geodynamo was first carried out by Glatzmaier and

Roberts (1995), and then followed by Kageyama and Sato (1997), and by Kuang

and Bloxham (1997). Christensen et al (2010) provided a comprehensive summary

of numerical geodynamo solutions and their relevances to geomagnetic observations.

Assimilation of geomagnetic observations with numerical geodynamo models

started less than a decade ago. Sun et al (2007) and Fournier et al (2007) used

simplified magnetohydrodynamic (MHD) systems and synthetic data tested the
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applicability of assimilation of sparse magnetic data. Liu et al (2007) first used ob-

servation system simulation experiments (OSSEs) with a full dynamo and demon-

strated clearly that one could use assimilation of magnetic field at the surface to

estimate the dynamo state deep in the fluid core. Kuang et al (2008) published

the first working geomagnetic data assimilation system MoSST−DAS in which the

Gauss coefficients of various geomagnetic and paleomagnetic field models are as-

similated with their MoSST geodynamo model (Kuang and Chao, 2003; Jiang and

Kuang, 2008) for estimation of the core state and prediction of geomagnetic field.

Kuang et al (2009) then used this assimilation system and 100 years of the Gauss

coefficients from GUFM1 (Jackson et al 2000) and CM4 (Sabaka et al 2004) to un-

derstand the responses of the core state to surface geomagnetic observations, and

their implications to core state estimation and SV prediction. We refer the reader to

Fournier et al (2010) for a comprehensive review of the data assimilation algorithms

for geomagnetic data assimilation (GDAS) and some of the early results.

Rapid advances have occurred in multiple facets of GDAS. Several independent

assimilation systems have been developed to understand better the core dynamical

state. For example, Aubert and Fournier (2011), and Fournier et al (2011, 2013)

carried out OSSEs with synthetic observations and numerical dynamo models to

examine possibilities of core state determination. Aubert (2013, 2014) investigated

possibilities of inverting core state properties using the observed field and SV. In

addition to the sequential data assimilation systems mentioned above, there are

also efforts in developing GDAS systems based on variational data assimilation

techniques. For example, Li et al (2011, 2014) have been continuing their effort on a

new combined system of forward and adjoint systems. Encompassed application is

the contributions of assimilation results to international geomagnetic reference field

(IGRF) (Kuang et al, 2010), and efforts to determine field model error statistics

(Gillet et al, 2013).

Despite these advances, GDAS is still in an early stage similar to that of early

numerical weather prediction (NWP) (for a more comprehensive review, see, e.g.

Kalnay 2003). Many important questions are still to be fully answered, such as

comprehensive assessment of numerical dynamo system biases, observation and core

state covariances and error statistics, and the dynamic responses of dynamo state

to the observed geomagnetic field. The latter is of in particular importance to the

spin-up processes of the numerical models which, in turn, determine how fast and

how close the numerical solutions can be pulled to the true state of the core.

Concerns on the spin-up of the numerical models can be examined from the time

scales of the observed field and of the numerical models. Global field model results

from the past 400 years of geomagnetic data (e.g. Jackson et al, 2000; Sabaka et

al, 2004, 2015; Olsen et al, 2006, 2014) show that the typical time scales τl of the

degree l components (Stacy 1992; Hulot and Le Mouël 1994; Olsen et al 2006)

τl =

⎡
⎢⎣ ∑m (gml )

2
+ (hm

l )
2

∑
m (ġml )

2
+
(
ḣm
l

)2
⎤
⎥⎦
1/2

(1)

varies from over 1000 years for the dipole (l = 1) to less than 100 years for higher

degrees (see Figure 1). In (1), (gml , hm
l ) are the Gauss coefficients of the field, and
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(ġml , ḣm
l ) are their first order time derivatives, i.e. the Gauss coefficients of the SV.

Currently, the longest record for low degree (l ≤ 5) field coefficients is from the

paleo/archeo magnetic data (e.g. Korte et al, 2011; Nilsson et al, 2014). The high

quality coefficients for up to degree l ≤ 8 could be obtained from historical and

observatory data (Jackson et al, 2000). Very high quality coefficients for degrees

l ≤ 13 are obtained in the past 50 years with satellite magnetic data (Sabaka et

al, 2004, 2015; Olsen et al, 2006, 2014). In summary, the data record is no more

than 10 times of the typical time scales of the geomagnetic field. This brings the

very concern on whether the observational record is sufficient to spin up numerical

dynamo models. The model spin-up also has direct consequence on estimation of

the core state.

How could we improve geomagnetic data assimilation systems within the observa-

tional limit? There are several areas for improvements. For example, improvements

in global geomagnetic field modeling are needed since the Gauss coefficients from

various field models have been used in most of the previous GDAS studies. Cur-

rently there are many field models covering different epochs (e.g. Jackson et al,

2000; Korte et al, 2011; Gillet et al 2013; Olsen et al, 2014; Sabaka et al, 2015). A

unified field model covering the longest possible period could certainly reconcile dif-

ferences in these models, and thus help greatly GDAS systems. There is an ongoing

effort on constructing a unified global field model of the past millennium (private

communication with Korte). The field model error statistical information of such

unified field models, such as those in Gillet et al (2013), is also necessary for GDAS.

Improvement in the assimilation algorithms could also help data utilization. Some

efforts were made by Kuang et al (2010) in which a subset of the Gauss coefficients

(of lower degrees) with much longer records are assimilated first to speed up the

model, followed by assimilating those of higher degrees for the past 100 years.

Tangborn and Kuang (2015) showed, via a set of experiments, that such assimilation

methodology can have positive impact on core state, and improve accuracies of

predicting the subset of the Gauss coefficients not assimilated. Another example

is employment of ensemble Kalman Filtering (EnKF) approach (Evensen, 1994).

Fournier et al (2011, 2013) used OSSEs to show the potential to speed up the

transfer of information from geomagnetic data to the core state. But such speedy

transfer depends on model errors (that are in general very large due to limitations of

numerical dynamo models) not considered in their studies. It should also point out

that GDAS is computationally very expensive. Such expense needs to be considered

in the algorithm improvement.

Another improvement is on exploiting and utilizing further geodynamic informa-

tion embedded in surface geomagnetic measurements. An immediate candidate for

such exploitation is the geomagnetic secular variation (SV), described by the first

order time derivative (ġml , ḣm
l ) of the Gauss coefficients since, as we will describe in

the next section, they provide additional constraints on the core flow beneath the

CMB, and on the radial variation of the magnetic field. The former is not new, as

there is a long history of, started from Roberts and Scott (1965), core flow inver-

sion from observed SV at the Earth’s surface via the “frozen-flux” approximation

(in which the Ohmic dissipation beneath the CMB is ignored). However, this ap-

proximation comes with the price: the core flow cannot be uniquely inverted (e.g.
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Roberts and Scott 1965; Backus 1968). Thus additional constraints on core flow

properties are necessary in such core flow inversion studies (for more complete re-

views, please read, e.g., Holme, 2007; Kuang and Tangborn, 2011). If the Ohmic

dissipation is retained (no “frozen flux” approximation), then the observed SV im-

poses the constraints on the radial variation of the field in the core, as the latter is

part of the magnetic induction. Since both field advection and Ohmic dissipation

are included in geodynamo modeling, both kinds of constraints can be examined in

MoSST−DAS or any other GDAS system without mathematical difficulties.

Therefore, a natural expansion of data utilization in GDAS is to assimilate both

the field and its SV, so that the embedded geodynamic constraints can be used to

make more optimal analysis, thus speeding up the transport of information from

the surface geomagnetic observations to the dynamical state in the outer core. Since

the SV is not included in the state vector of numerical geodynamo models, it will

be connected through a non-linear observation operator, H, which transforms the

model state space to the observations space. Obviously H will depend on, among

others, fundamental physical properties of the magnetic field.

It should be pointed out here that assimilating the rate of change of geodynamic

observables has been routinely used in numerical weather prediction (NWP). For

example, precipitation rate, measured from a variety of satellite instruments is as-

similated, despite not being a state variable in a GCM (Hou et al, 2000). It should

also be pointed out that, in addition to core flow inversion (Roberts and Scott,

1965), there are also attempts to invert core dynamical state with both the surface

observations and the dynamo models (Aubert, 2013, 2014). The latter will benefit

the SV assimilation.

In this paper, we describe in detail the results from our recent effort on assimila-

tion of both the field and its SV. These results, from a series of experiments, will

demonstrate the improvement in prediction, and knowledge on core flow responses

to the SV assimilation. The results also provide valuable information for further

development in this direction.

This paper is organized as follows: the numerical model details and the mathe-

matical formulation for SV assimilation will be given in the next section. Followed

are the experimental results we have with this assimilation approach. Discussions

and plans for further improvements are presented in the last Section.

Mathematical Description
The mathematical formulation for SV assimilation depends on the numerical geody-

namo models and the assimilation algorithms, in addition to the physics controlling

the time variation of the magnetic field. In this section, we provide the mathemati-

cal methodologies used in MoSST−DAS employed in this study (Kuang et al, 2008;

Sun and Kuang, 2015). But, with some modifications, they can be applied to other

GDAS systems.

Dynamo State Vector and Geomagnetic Observation

MoSST−DAS utilizes the MoSST core dynamics model for time integration of the

magnetic field (Kuang et al, 2008; Sun and Kuang, 2015). In this system, the state
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vector x

x = (v,B, δ�)
T

(2)

includes the velocity field v and the density anomaly δ� in the outer core ri ≤ r ≤ rc

(ri and rc are the mean radii of the ICB and CMB, respectively); and the magnetic

field B in the outer core, the electrically conducting inner core r ≤ ri and the D”-

layer rc ≤ r ≤ rd (rd is the mean radius at the top of the layer). The superscript

“T” in (2) implies the transpose. The solid mantle above the D”-layer rd ≤ r ≤ rs

(rs is the mean radius of the Earth’s surface) is electrically insulating. The whole

system is defined in the reference frame fixed with the solid mantle.

The velocity field v and the magnetic field B are decomposed into the poloidal

and toroidal components, with the scalars described via spherical expansions

(v,B)
T
= ∇×

[
(Tv, Tb)

T
1r

]
+∇×∇×

[
(Pv, Pb)

T
1r

]
, (3)

(Pv, Tv, Pb, Tb, δ�)
T
=

LM∑
0≤m≤l

(vml , ωm
l , bml , jml , ϑm

l )
T
Y m
l (θ, φ) + C.C., (4)

where 1r is the unit radial vector, θ is the co-latitude, φ is the longitude, Y m
l are

the fully normalized spherical harmonic functions of degree l and order m, LM is

the truncation order, and C.C. implies the complex conjugate part. P and T in (3)

are called the poloidal and toroidal scalars. It is therefore convenient to write

x = (xv,xω,xb,xj ,xρ)
T
, (5)

where the subsets are defined with the relevant spectral coefficients in (4), e.g.,

xb = {bml (rk) | 0 ≤ rk ≤ rd; 0 ≤ m ≤ l ≤ LM}T (6)

for the poloidal magnetic field. (5) and (6) can be different for other dynamo models.

In geomagnetic field modeling, geomagnetic measurements are used to obtain the

magnetic field Bo originated from the core (simply called the geomagnetic field

hereafter) that is described as

Bo = −∇Ψ, (7)

Ψ = rs

Lo∑
0≤m≤l

(rs
r

)l+1

(gml cosmφ+ hm
l sinmφ)Pm

l (θ) (8)

where Pm
l is the Schmidt normalized associate Legendre polynomial of degree l and

order m, (gml , hm
l ) are the Gauss coefficients (slightly different from the standard

notation), and Lo is the maximum degree (Lo ≤ 13 in general). Since these Gauss

coefficients (gml , hm
l ) are provided by different field models over the past 10000

years (e.g. Jackson et al, 2000; Korte et al, 2005, 2011; Gillet et al, 2013; Olsen et

al, 2014; Sabaka et al, 2015), they are used as the “observations” in our study.
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By (3), (4), (7) and (8), we can obtain the relationship between (gml , hm
l ) in (8)

and bml in (4) via the radial component Br of the magnetic field B

Bo
r = −∂Ψ

∂r
=

Lo∑
0≤m≤l

(l + 1)
(rs
r

)l+2

(gml cosmφ+ hm
l sinmφ)Pm

l (θ)

= − L̂

r2
Pb =

LM∑
0≤m≤l

l(l + 1)

r2
b
m(o)
l Y m

l + C.C. (9)

With the definitions of Y m
l and Pm

l , (9) requires that

b
m(o)
l (r) =

r2s
l

(rs
r

)l
Gm (gml − ihm

l ) , Gm =

[
2π(1 + δm0)

2l + 1

]1/2
(10)

for rd ≤ r ≤ rs. The spectral coefficients of the SV are the time derivatives of (10):

ḃ
m(o)
l (r) =

r2s
l

(rs
r

)l
Gm

(
ġml − iḣm

l

)
for rd ≤ r ≤ rs, (11)

where (˙) means the time derivative.

SV and Core State

Geomagnetic observations only provide the time series of (gml , hm
l ). The SV co-

efficients (ġml , ḣm
l ) are actually derived. Assimilation of the SV thus raises two

major concerns: could the SV be approximated as “instantaneously” measured,

and whether it is redundant to the assimilation of the field?

Answers to the first concern depend on the significance of numerical errors in SV

calculation. Consider, for example, a central difference scheme is used,

ġml (t) =
gml (t+ δt)− gml (t− δt)

2δt
.

Then the relative numerical error is of order

εn = O
[
(τo/τl)

2
]

where τo is the typical time intervals of data series, and τl, defined in (1), is the

typical time scales of the observed geomagnetic field. In general, τo ≤ 1month in the

field models using modern observatory and satellite data (e.g. Sabaka et al, 2004,

2015; Olsen et al, 2006, 2014), while τl ≤ 70 years (see Figure 1). Thus εn ≈ 10−6,

which leads to an order 10−4 nT/year error in SV. On the other hand, the external

field is several tens of nT at the Earth’s surface (Sabaka et al, 2015), and changes on

the solar cycle (∼ 11 years) and shorter time scales. Thus, εn is negligible compared

to those arising from, e.g. separation of the external and the internal magnetic

signals. One could then argue that both the field and its SV are “concurrently”

measured.

The redundancy is not an issue because the observed SV brings different knowl-

edge of the core state x compared to the observed field. To see this, let us consider
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the magnetic induction of the poloidal magnetic field beneath the impenetrable and

“free-slip” CMB (r = r−c )

ḃml = − r2

l(l + 1)
[∇h · (vhBr)]

m
l + η

[
∂2

∂r2
− l(l + 1)

r2

]
bml , (12)

and in the D”-layer

ḃml = ηd

[
∂2

∂r2
− l(l + 1)

r2

]
bml . (13)

In (12), the subscript “h” implies the horizontal components of the velocity field v,

and η is the magnetic diffusivity of the outer core fluid; ηd in (13) is the magnetic

diffusivity of the D”-layer (η ≤ ηd in general). These two equations show clearly

that the observed ḃ
m(o)
l will impose the constraint on v, and on the non-potential

part of the poloidal field.

The latter, i.e. (13), implies that, at the top of the D”-layer (r = rd), one could

use a purely potential field b
m(p)
l to match the observed field b

m(o)
l . However, b

m(p)
l

can not recover the observed ḃ
m(o)
l since

∂2b
m(p)
l

∂r2
− l(l + 1)

r2
b
m(p)
l = 0.

Therefore, SV assimilation is not redundant to the field assimilation.

Indeed, our earlier assimilation results in Figure 3 demonstrate clearly that as-

similation of b
m(o)
l could not reduce the differences between the forecast SV ḃ

m(f)
l

and the observed SV ḃ
m(o)
l , called (O-F) of the SV, although that of the field is

reduced very rapidly in the first few analysis cycles, a strong indication for the need

of SV assimilation.

New Assimilation Approach

We have been using the sequential assimilation approach in MoSST−DAS (e.g.

Kuang et al, 2008; Sun and Kuang, 2015). It can be summarized as follows: at the

analysis time ta when the observation y is made, a new initial condition xa (called

the “analysis”) is made from the forecast xf and the observation y, future forecast

for t > ta can then be made with the following initial value system:

∂xf

∂t
= M

(
xf
)
, xf (ta) = xa. (14)

If there is a linear observation operator H that projects x to the observation space

(where y is defined), then the analysis xa is of the form

xa = xf +K
(
y −Hxf

)
(15)

K = PfHT
(
HPfHT +R

)−1
(16)

whereK is called the gain matrix, Pf andR are the error covariances of the forecast

xf and of the observation y, respectively. (15) is obtained to minimize the error
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|H · (xt − xa)|2 between the analysis xa and the truth xt. In our previous studies,

Pf is calculated from an ensemble of xf (Sun et al, 2007; Sun and Kuang, 2015), or

with some empirical formulations (Kuang et al, 2009; Tangborn and Kuang, 2015).

The process is repeated again at the next analysis time ta + Δt (Δt is called the

“analysis cycle”).

If only the observed field is assimilated, then

y =
{
b
m(o)
l (rd)

∣∣∣0 ≤ m ≤ l ≤ Lo

}T

≡ yb. (17)

By (2) and (5), H is linear and very simple

H = (0,0,Hb,0,0)
T
, (18)

where Hb corresponds to the subset xb, and has only non-zero entries for bml (rd)

with 0 ≤ m ≤ l ≤ Lo. If the observed SV is also assimilated, then

y =
(
yb,yḃ

)T
(19)

yḃ ≡
{
ḃ
m(o)
l (rd) | 0 ≤ m ≤ l ≤ Lo

}T

, (20)

However, by (12) and (13), transformation between yḃ and xf is a differential-

functional projection and is denoted as H (xf
)
. One could of course construct an

independent projection system which evaluates H (xf
)
directly (e.g. Kalnay, 2003).

Alternatively, a linearization approximation H(xf ) ≈ H ·xf could be made so that

(15) can still be used.

There are different means to linearize H(xf ). In our current study, we create an

effective observed field b̃
m(o)
l defined in the D”-layer that matches both b

m(o)
l and

ḃ
m(o)
l . In this approach, b̃

m(o)
l comprises of a potential field that accounts for b

m(o)
l ,

and a non-potential field that accounts for ḃ
m(o)
l :

b̃
m(o)
l (r) =

(rd
r

)l
b
m(o)
l (rd) +

1

2ηd
(r − rd)

2
ḃ
m(o)
l (rd) for rc ≤ r ≤ rd. (21)

Obviously, at the top of the D”-layer r = rd,

b̃
m(o)
l = b

m(o)
l ,

∂b̃
m(o)
l

∂r
=

∂b
m(o)
l

∂r
= − l

rd
b
m(o)
l ,

˙̃
b
m(o)

l = ḃ
m(o)
l .

The relative errors of (21) are, via the Taylor expansion, of order [(rd − rc)/rc]
3.

For a 20 km layer thickness, it is smaller than 10−6. (21) allows us to extend the

surface observations to the CMB. The observation vector y is now of the form

y =
{
b̃
m(o)
l (ri) | 0 ≤ m ≤ l ≤ Lo; rc ≤ ri ≤ rd

}T

≡ y
˜b. (22)

The observation projection is again linear:

H (xf
)
= H · xf (23)
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with H defined in (18). However, Hb now includes non-zero entries on all grid points

in the D”-layer rc ≤ ri ≤ rd.

We can use this approach to further construct an effective observed velocity field

ṽo beneath the CMB (r = r−c ). Since ḃml is continuous across r = rc the CMB, by

(12), (13) and (21), we have

− r2c
l(l + 1)

[
∇h ·

(
ṽo
hB̃

o
r

)]m
l
+ η

[
∂2

∂r2
− l(l + 1)

r2c

]
b̃
m(o)
l =

˙̃
b
m(o)

l (rc)

= ḃ
m(o)
l (rd)

[
1− l(l + 1)

2r2c
(rc − rd)

2

]
(24)

Obviously, (24) is an under-determined system, since both b̃
m(o)
l and ṽo are unknown

at r−c . But one can find the “best-fit” ṽo and b̃
m(o)
l via minimizing the following

difference

min
ṽo,˜b

m(o)
l

∣∣∣∣ ˙̃bm(o)

l (rc) +
r2c

l(l + 1)
[∇h · (vhBr)]

m
l − η

[
∂2

∂r2
− l(l + 1)

r2c

]
bml

∣∣∣∣
2

. (25)

If the effective observed velocity field ṽo(r−c ) is included, then the observation vector

y is

y =
(
yṽ, yω̃, y˜b

)T
(26)

where yω̃ includes, as shown in (3) and (4), the spectral coefficients ω̃
m(o)
l of ṽo

at r−c . Again, the linearized observation projection (23) is achieved. However, H

includes additional subsets:

H = (Hv,Hω,Hb,0,0)
T
, (27)

where Hv and Hω include only non-zero entries for ṽ
m(o)
l and ω̃

m(o)
l at r = r−c ,

respectively.

Effective Observation Error Covariance

Since the gain matrix K in (16) depends on the observation error covariance R, we

need to determine the effective error covariance R̃ for b̃
m(o)
l which can be calculated

from those of the Gauss coefficients gml and hm
l . In this section, we only describe a

formal procedure without going into the details.

In geomagnetic field modeling (Jackson et al, 2000; Sabaka et al, 2004; Korte and

Constable, 2005; Olsen et al, 2006; Gillet et al, 2013), the Gauss coefficients, e.g.

gml , can be described in general as

gml = ST (t) ·αlm, (28)

where S is the vector describing deterministic, model specific base functions in the

time domain, e.g. B-spline functions, and α is the coefficient vector which describes

the observation error statistics.
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For illustrative purpose, we use the simplest error statistics for our derivation.

Assume that geomagnetic observations (and thus α) are unbiased, and with known

error covariances:

αlm = αt
lm + εα, 〈εα〉 = 0,

〈
εαε

T
α

〉
= Cα, (29)

where αt
lm ≡ 〈αlm〉 is the truth (expectation) and Cα is the observation error

covariance matrix of αlm. Thus, by (28),

gml = g
m(t)
l + εg, g

m(t)
l = ST ·αt

lm, εg = ST · εα,〈
ε2g
〉
= ST ·Cα · S ≡ Rlm

g .
(30)

Similar formulation applies to hm
l as well. By (10) and (30), we have

b
m(o)
l (r) = b

m(t)
l (r) + εb(r), (31)

b
m(t)
l (r) =

r2s
l

(rs
r

)l
Gm

(
g
m(t)
l − ih

m(t)
l

)
, (32)

εb(r) =
r2s
l

(rs
r

)l
Gm (εg − iεh) (33)

This leads to

〈εbε∗b〉 =
(
r2s
l

)2 (rs
r

)2l
G2

m

[(
Rlm

g

)2
+
(
Rlm

h

)2]
(34)

One can use this equation to evaluate the covariance at any location in the mantle,

including r = rd the top of the D”-layer. If S in (30) is replaced by Ṡ, then we can

obtain the covariance Rlm
ġ of the SV,

Rlm
ġ = ṠT ·Cα · Ṡ,

and therefore the variance of ḃ
m(o)
l

ḃ
m(o)
l (r) = ḃ

m(t)
l (r) + εḃ(r), (35)

〈
εḃε

∗
ḃ

〉
(r) =

(
r2s
l

)2 (rs
r

)2l
G2

m

[(
Rlm

ġ

)2
+
(
Rlm

ḣ

)2]
. (36)

The full error covariance of b̃
m(o)
l (r) can then be determined from (21), (34) and

(36).

Results
In this study, we focus only on (22), i.e. assimilation of the effective observed field

b̃
m(o)
l which matches both the observed field b

m(o)
l and the observed SV ḃ

m(o)
l at the

top of the D”-layer, mainly for two goals: to explore improvements of the assimila-

tion system with the observed SV, such as the model spin-up process and rms of the

observed minus forecast (O-F) of the magnetic field; and to understand responses

of the core state x to the observed SV, in particular changes of the velocity field v
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beneath the CMB. Both are critical for determination of the effective velocity field

ṽ in (25), and thus for implementation of the more comprehensive observation (26).

We consider only the observations for the time period 1900−2000 simply because

modern observatory and satellite data provide very high quality (gml , hm
l ) and (ġml ,

ḣm
l ). These coefficients are from GUFM1 (Jackson the al, 2000) for 1900-1962 and

CM4 (Sabaka et al, 2004) for 1962-2000. We also set Lo = 8, lower than the highest

degrees of the two models. For our research purposes, we carry out three distinct

experiments:

Case I: Free-running model (no assimilation)

Case II: Assimilation of b
m(o)
l with (17)

Case III: Assimilation of b̃
m(o)
l with (22)

(37)

Except the differences in the data y in analysis, everything else is identical in

the experiments, including the original initial state at 1900. The analysis cycle is

Δt = 5years. By this design, we can identify exactly the causes of changes in the

dynamo state x: the differences between the solutions of Case I and Case II are due

to assimilation of the observed field b
m(o)
l , and the differences between the solutions

of Case II and Case III are due to the assimilation of the observed SV ḃ
m(o)
l . These

allow us to understand clearly the responses of the core state to surface observations,

and their dynamical consequences.

We use a modeled observation error covariance, since the actual error covariances

of the field models are not yet available. The model error covariance R is assumed

diagonal, with the diagonal elements defined as

Rlm = |εR(l)bml |2 , εR(l) = ε0(t) + [ε1(t)− ε0(t)]
l − 1

Lo − 1
, (38)

where ε0 and ε1 decreases linearly in time: ε0 decreases from 0.01 in 1900 to 0.001

in 2000, and ε1 decreases from 0.3 in 1900 to 0.1 in 2000. These imply that the

relative errors in (38) decreases in time, but increases with the degree l.

We would like to point out here that Gillet et al (2013) provided a global field

model which includes a full error covariance of the Gauss coefficients. This model

and any future model with specified error statistic knowledge are more appropriate

for GDAS. However, we conjecture that (38) is sufficient for our current objectives.

Responses of the Magnetic Field to SV Assimilation

The quantities used to understand the responses of the magnetic field are the (O-F)

of the radial magnetic field Br and its SV Ḃr. Instead of using traditional (O-F),

we prefer the following modified definition

(O-F)
2
B =

Lo∑
1≤l

⎧⎪⎨
⎪⎩
⎡
⎣ ∑
0≤m≤l

∣∣∣∣∣b
m(o)
l

b
0(o)
1

− b
m(f)
l

b
0(f)
1

∣∣∣∣∣
2
⎤
⎦
⎡
⎣ ∑
0≤m≤l

∣∣∣∣∣b
m(o)
l

b
0(o)
1

∣∣∣∣∣
2
⎤
⎦
−1
⎫⎪⎬
⎪⎭ (39)

at r = rd. Replacing bml by ḃml in (39), we have (O-F)Ḃ of the SV. This modified

(O-F) can tell us more accurately how close is the forecast to observation, because it

eliminates the effect of changes in magnitude of the individual spectral coefficients.
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Figure 2 are the (O-F)B and (O-F)Ḃ of Case II (dashed lines) and Case III (solid

lines). From this figure, we can observe clearly that their magnitudes in Case III

are approximately 30% smaller than those in Case II over the entire assimilation

period, demonstrating a substantial improvement in forecast accuracies with the

SV assimilation (21) and (22).

The SV assimilation also helps accelerate the dynamo model spin-up process. For

example, we can observe from Figure 2 that the time variations of (O-F)B are

nearly identical in both cases: they decay nearly monotonically over much of the

assimilation period before leveling off in the last 20 years (from 1980 to 2000). But

(O-F)Ḃ , as shown in Figure 3, are very different in the two cases: in Case II, it

increases first from 1900 to 1940; and only starts to decay continuously in the last

20 years. In Case III, however, (O-F)Ḃ decays almost monotonically in time, except

two small surges around 1940 and 1980. This implies that the dynamo core state

xf responds stronger to the SV assimilation. In other words, the SV assimilation

helps to accelerate the model spin-up process.

To better understand how do the forecasts b
m(f)
l and ḃ

m(f)
l respond to the obser-

vations yb in (17) and y
˜b in (22), we examine first the (O-F) for individual degrees.

In Figure 4 are (O-F)B for the degrees l ≤ 6. Improvements are clearly shown in

all 6 degrees, as all values are smaller in Case III than in Case II. But we can also

observe significant differences in individual degrees. For example, (O-F)B for the

odd degrees (l = 1, 3, 5) increase in magnitude from around 1980. But those for the

even degrees (l = 2, 4, 6) do not show either visible increases or increases far less

significant than those for the odd degrees.

As shown in Figure 5, the difference between the odd and even degrees of (O-F)Ḃ
is even more significant. There is still a strong surge in magnitude for l = 3 around

1980 in the both cases. But the reduction for l = 5 is minimal. In particular it

does not decay monotonically in time in either case. These differences may indicate

potential inconsistencies between the core dynamics of the model and the time

variation of the Gauss coefficients. We will discuss this again later in this paper.

Responses of the Velocity Field to SV Assimilation

Why does the dynamo model respond faster and stronger in Case III than in Case

II? We can find at least partial answers from the difference between the free-running

model solutions xM (Case I), and the forecasts xf in Cases II and III, in particular

the differences in the velocity field v beneath the CMB, because they are the direct

consequences of the magnetic induction (12). The knowledge is also very important

for obtaining the “effective” observed velocity field (25) for future studies.

Since in our geodynamo model, the CMB is impenetrable and is free-slip, the

radial velocity vr = 0 and, by (3) and (4), the horizontal velocity vh depends on

∂vml /∂r and ωm
l at r = rc. Therefore, it is very convenient to examine the following

two variables beneath the CMB:

v′r ≡ ∂vr
∂r

=

LM∑
0≤m≤L

l(l + 1)

r2c

∂vml
∂r

Y m
l (θ, φ) + C.C. (40)

ωr ≡ (∇× v)r =

LM∑
0≤m≤L

l(l + 1)

r2c
ωm
l Y m

l (θ, φ) + C.C., (41)
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where v′r is poloidal and describes the up-and-down welling, and ωr is toroidal and

describes the differential rotation. The rms differences (M-F) of these two variables

between the free-running model solutions (Case I) and the forecasts (Cases II and

III) can be used to quantify the responses of the core flow to the assimilation of

surface observations:

(M-F)vP
≡ ‖v′Mr − v′fr ‖2 =

⎡
⎣ LM∑
0≤m≤l

l2(l + 1)2

r4c

∣∣∣∣∣∂v
m(M)
l

∂r
− ∂v

m(f)
l

∂r

∣∣∣∣∣
2
⎤
⎦
1/2

(42)

(M-F)vT ≡ ‖ωM
r − ωf

r ‖2 =

⎡
⎣ LM∑
0≤m≤l

l2(l + 1)2

r4c

∣∣∣ωm(M)
l − ω

m(f)
l

∣∣∣2
⎤
⎦
1/2

(43)

In the above equations, ‖ · ‖2 is the L2−norm (or rms) over the CMB.

In Figure 6 are the non-dimensional (with the scaling factor 5 × 10−6 year−1 for

dimensional values) ‖v′r‖2 (red) and ‖ωr‖2 (blue) of the free-running model (Case I).

As shown in the figure, v′r increases slightly in magnitude in the assimilation period,

and ωr remains flat. But, the rms differences (M-F)vP (shown in Figure 7) and

(M-F)vT (shown in Figure 8) increase in time, i.e. a growing divergence between

the forecast state xf and the free-running model state xM .

From Figures 7 and 8, we can also observe that (M-F) of Case III (the solid lines)

are slightly larger than those of Case II (dashed lines), implying that xf moves away

from xM faster with the SV assimilation (22), another demonstration of improved

model spin-up with the SV assimilation. However, the differences are much less

significant than those of the magnetic field. This suggests the need for the effective

observed velocity field ṽo to increase further (M-F) of the velocity field, and thus

to expedite the model spin-up process.

To aid the future study of determining the effective core flow from the observed SV

via (25), we need to understand better the details of (M-F), e.g. their distributions

in the spectral space defined by the spherical harmonic degrees l and orders m.

We shall pay special attention to their distributions in l, i.e. the summation of the

terms in (42-43) with 0 ≤ m ≤ l for a given degree l; and their distributions in m,

i.e. the summation of the terms in (42-43) with m ≤ l ≤ LM for a given order m.

Since, as shown in Figures 7 and 8, the differences between the two cases are very

small, we can focus only on Case III without loss of generality.

In Figure 9 is the distribution of (M-F)vP in the degree l, and in Figure 10 is

its distribution in the order m. From the figures we can find that (M-F)vP
varies

substantially in the spectral spaces. As shown in Figure 9, the differences for the

degrees 15 ≤ l ≤ 35 increase the fastest in time, and their magnitudes are the largest

at the end of the assimilation period, with the peak at l = 20. The differences are

much smaller and grows slower in time for the degrees l ≤ 5 and l ≥ 40. But, as

shown in Figure 10, the distribution in m is more broad band: the differences for

5 ≤ m ≤ 35 increase rapidly in time and reach comparable values in magnitude at

the end of the assimilation period. However, (M-F) for m ≤ 4 are very different:

they remain small and nearly unchanged throughout the entire assimilation. These

suggest that the responses of the poloidal velocity is dominantly non-axisymmetric

(m > 0).
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The distribution of (M-F)vT of the toroidal velocity, as shown in Figures 11

and 12, displays both similar and distinct characteristics. Its distribution in l is

very similar to that of (M-F)vP , except that it peaks at a higher degree l = 30.

But its distribution in m (Figure 12) is very different: the differences for m ≤ 20

remain comparable in both the magnitude and the time increasing rate. But they

decay rapidly for larger m. It should be pointed out in particular that, opposite to

(M-F)vP (in Figure 10), (M-F)vT of the axisymmetric toroidal velocity (m = 0)

remains very large, implying that the axisymmetric toroidal flow is very sensitive

to the surface observations.

Conclusions
In this study we have examined the consequences of assimilating the observed SV

on geomagnetic forecasts and on the responses of the dynamo core state. We argued

that, because geomagnetic data sampling frequencies are several orders of magni-

tude higher than those of the SV, the geomagnetic field and its SV are concurrently

measured. We further demonstrated that the observed SV provides unique knowl-

edge of the magnetic field and the velocity field in the core. Thus assimilations of

the observed field and of the observed SV are necessary and are not redundant.

In this study, we incorporate the observed SV into the observation vector y via

introducing the effective poloidal field b̃
m(o)
l (21) in the D”-layer, which is then used

in the sequential assimilation algorithm (15). We designed three experiments (37)

to identify the impact of SV assimilation: a free-running model dynamo simulation

(Case I); an experiment with the assimilation of the observed field (Case II), and an

experiment with the assimilation of both the observed field and its SV. The relative

(O-F) of the field and SV, defined in (39), at the top of the D”-layer are used to

measure the forecast accuracies; the (M-F) of the poloidal velocity field (42) and

of the toroidal velocity field (43) beneath the CMB are used to characterize the

responses of the core state to the SV assimilation.

The results of our experiments demonstrate clearly that the SV assimilation with

(21) improves significantly the geomagnetic forecast accuracies since, as shown in

Figures 2 and 3, both (O-F)B and (O-F)Ḃ in Case III are more than 20% smaller

than those in Case II. In particular, the improvements occur to all degrees, as

shown in Figures 4 and 5. The nearly monotonic decay in time of (O-F)Ḃ in Case

III (Figure 3) shows clearly that the SV assimilation accelerates the spin-up of the

dynamo model.

The improvement by the SV assimilation can be also seen from the differences

(M-F)vP and (M-F)vT between the free-running model state and those of the

assimilations. As shown in Figures 7 and 8, these differences grow rapidly in time,

showing an accelerated departure of the core state with assimilation from the free-

running model state. The differences in Case III are slightly larger than those in

Case II, further demonstrating the improvement brought by the SV assimilation,

though such increment is less significant that those in the (O-F) of the magnetic

field (Figures 2 and 3).

Our results have further implications. First, even with the help of (21), the dynamo

model is still not fully spun up. For example, though (O-F)Ḃ decreases monodically

in time, the SV forecast is still very far away from the observations, as (O-F)Ḃ ≈
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O(1) for all degrees (see Figure 5). This can be shown further by the continuously

growing differences (M-F)vP
and (M-F)vT between the forecast velocity field and

that of the free-running model (see Figures 7 and 8). In addition, the differences

at the end of the assimilation period are still very small, approximately 10% in

magnitude of the velocity field of the free-running model (Figure 6).

These suggest that much larger velocity differences (M-F)vP and (M-F)vT are

needed over a shorter assimilation period for expediting the model spin-up. Assim-

ilation of the effective observed velocity (25) could be an answer. However, as dis-

cussed earlier, (25) is an underdetermined system, since both v
(o)
h and b̃

m(o)
l (more

specifically, ∂2b̃
m(o)
l /∂r2) are unknown beneath the CMB. Thus, the responses of

vh to the SV assimilation, e.g. (M-F)vP (in Figures 9 and 10) and (M-F)vT (in

Figures 11 and 12) are needed to determine v
(o)
h . For example, as shown in the

two figures, the non-axisymmetric (m > 0) poloidal velocity vm′
l around the de-

gree l = 20, and the toroidal velocity ωm
l around the degree l = 30 and order

m ≤ 20 should be given more attention, as they are most sensitive to the surface

observations.

An alternative answer could be the core states inverted from the surface obser-

vations and dynamo solutions, such as those of Aubert (2013, 2014). These can be

used as the analysis of the assimilation system. But cautions should be taken with

this approach. For example, the inverted velocity field beneath the CMB is actually

derived with the observed field and SV and the magnetic diffusion of the dynamo

state (Aubert 2014). This could potentially lead to dynamical inconsistencies, as

well as uncertainties in error statistics.

Our results also show several new features that may have implications to field

modeling and to core flow inversion. One new knowledge is from the time variation

of (O-F)Ḃ . As shown in Figure 5, (O-F)Ḃ of the odd degrees (l = 1, 3, 5) are

significantly different from those of the even degrees (l = 2, 4, 6): the values of

the even degrees decay nearly monotonically in time; but those of the odd orders

show either spikes (for l = 1, 3) during the assimilation, or even increase over time

(for l = 5). These even-odd degree disparities suggest inconsistencies between the

model and the observations. These inconsistencies could be entirely due to numerical

dynamo model which may include a magnetic induction different from those in the

Earth’s outer core, or may include some mechanisms resulting in different symmetry

properties of the core state. But the inconsistencies could also come from possible

biases in the field models that are not included in the observation error covariances.

For example, ionospheric ring current generated field (an external field component)

contributes dominantly to the Gauss coefficients of degrees l = 1, 3, 5, and varies

on time scales comparable to those of SV, e.g. the solar activity cycles (Sabaka et

al, 2015). Model biases exist if this part of the signals is not well separated from

those of the core field. This is potentially an area for application of geomagnetic

data assimilation.

The core fluid flow responses, i.e. the differences (M-F)vP and (M-F)vT between

the forecast velocity field vf
h and the vM of the free-running model (see Figures 9-

12), from our experiments could also help inversion of core flow from the observed

SV. For example, the different characteristics in (M-F)vP and (M-F)vT
suggest

that the poloidal velocity field and the toroidal velocity field could be treated sepa-

rately in the core flow inversion. It should be pointed out that purely toroidal core
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flow approximations were used in previous studies (e.g. Bloxham et al, 2002; Olsen

and Mandea, 2008). The strong responses of the high degree core flow (l ≈ 20 for

the poloidal flow and l ≈ 30 for the toroidal flow) to the observed SV (for l ≤ 8)

indicate that higher degree velocity field should be included in the core flow inver-

sion. For example, one would normally expect that, due to nonlinear effects, i.e.

the quadratic terms in Navier-Stokes equation and the induction equation, the core

flow up to the degrees twice as much as that of the SV should be sufficient for the

core flow inversion (as in Aubert, 2013). But our results show that time evolution

of the core flow leads to the strongest responses for the degrees more than triple of

the maximum degree of the SV. Therefore, inversion of time-dependent core flow

from the observed SV (up to degree 13) should include high degree (l > 40) spectral

coefficients.

Again we should point out that our results could be improved with more sophisti-

cated assimilation algorithms and field models with more accurate error statistics.

For example, we anticipate more accurate estimation of (O-F) for both the field

and the SV, and better assessment of the core state responses if a full ensemble

approach is used for the covariance Pf , and a more appropriate observation error

covariance, e.g. those determined by Gillet et al (2013), than (38) used in this study.

Regardless, our assimilation experiments have shown clearly the importance of SV

assimilation, and the improvements that the SV assimilation brought to forecast

accuracies and to model spin-up processes.
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Figures legends

Figure 1 The time scales τl (1) derived from CM4 for the period 1960-2000: the solid line is for
the dipole (l = 1), with τl ≈ 1500 years; the dashed line is for the non-dipolar components
(l ≥ 2), with τl ≈ 70 years.

Figure 2 The rms (O-F)B of the magnetic field in Case II (dashed line) and Case III (solid line).
In both cases, (O-F)B � 1 and decays monotonically after the first 3 analysis cycles, and then
levels off in the last 20 years. This shows the continuing improvement in the forecast accuracies.

In addition, the (O-F) results in Case III (with the assimilation of b
m(o)
l and ḃ

m(o)
l ) are in general

more than 20% smaller than in Case II (with only the assimilation of b
m(o)
l ), showing a clear

improvement in forecast accuracies.

Figure 3 Similar to Figure 2, but for (O-F)Ḃ of the SV. In Case II (dashed line),
(O-F)Ḃ = O(1) for much of the assimilation period before decays gradually in the last 20 years,

implying that there is no similarity between the forecasted SV ḃ
m(f)
l and the observed SV ḃ

m(o)
l .

But its magnitude is much smaller in Case III (solid line), and it decays monotonically in time,
indicating that the SV assimilation accelerates the spin-up process.
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Figure 4 The (O-F)B of the first 6 spherical harmonic degrees in Case II (dashed lines) and Case
III (solid lines).

Figure 5 Similar to Figure 4, but for (O-F)Ḃ .

Figure 6 The non-dimensional ‖v′r‖2 (red) and ‖ωr‖2/10 (blue) beneath the CMB r = r−c from
the free-running model solutions (Case I). The dimensional values can be obtained with the
scaling factor 5× 10−6 year−1.

Figure 7 The (M-F) of the poloidal velocity field v′r as defined in (42). The dashed lines are the
results without SV assimilation (Case II) and the solid lines are those with the SV assimilation
(Case III).

Figure 8 Similar to Figure 7, but for The (M-F) of the toroidal velocity ωr as defined in (43).

Figure 9 The distribution of (M-F)vP in spherical harmonic degrees l with the SV assimilation

(Case III).

Figure 10 Similar to Figure , but for the distribution of (M-F)vP in spherical harmonic orders m.

Figure 11 Similar to Figure 10, but for (M-F)vT .

Figure 12 Similar to Figure , but for (M-F)vT .


