NTP 101 Short Course

An Introductory Overview of Nuclear Science and Space Nuclear Power and Propulsion Systems

ENERGY COMPARISON

Chemical: combustion, reaction Natural: solar (PV, thermal), EM tethers Nuclear: radioactive decay, fission Advanced nuclear: fusion, antimatter

Process	Maturity	Reaction	Reaction Energy (eV)	Specific Energy (J/kg)	Specific Cost (\$/kg)
Combustion	Proven	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	4	106	10 ⁻¹ –10º (CH ₄) 10 ⁻¹ (O ₂)
Fuel Cell	Proven	$2H_2 + O_2 \rightarrow 2H_2O$	10.2	10 ⁷	10º (H ₂) 10 ⁻¹ (O ₂)
Radioisotope	Proven	$^{238}_{94}Pu ightarrow ^{234}_{92}U + {}^{4}_{2}He$	5.59 x 10 ⁶	1012	106
Fission	Proven	${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{147}_{57}La + {}^{87}_{35}Br + 2{}^{1}_{0}n + \gamma$	195 x 10 ⁶	10 ¹³	104 (X _F > 93%)
Fusion	Research	${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n$ ${}^{2}_{1}H + {}^{3}_{2}He \rightarrow {}^{4}_{2}He + {}^{1}_{1}p$	17.57 x 10 ⁶ 18.35 x 10 ⁶	1014	10 ³ (D) 10 ⁶ (³ He)
Antimatter	Research	$p + p^- \rightarrow \gamma$	1.05 x 10 ⁹	1016	10 ¹²

NUCLEAR = MISSION ENABLING

Fission 341 mL of ²³⁵U

L = 46.9 m OD = 8.4 m $M_{LOX} = 630 \text{ MT}$ $M_{H2} = 106 \text{ MT}$

Significantly extends mission capability by overcoming current technology limitations:

- Power → Reliable, robust, long-duration, power dense
- Logistics (consumables)
 - Food, water, oxygen
- Human Factors
 - µg atrophy
 - Psychological isolation
 - Radiation dose

Time dependant factors mitigated by rapid propulsion decreasing transit

Shielding decreases crew dose

RADIOSIOTOPE DECAY

Heat produced from natural alpha (α) decay

Service life activity (A) inversely proportional to isotope half-life $(t_{1/2})$

$$A(t) = A_o e^{-\left(\frac{\ln 2}{t_{1/2}}\right)t}$$

Radioisotope Half-life Comparison

RADIOISOTOPE POWER SYSTEMS

General Purpose Heat Source (GPHS)

²³⁸PuO₂ Pellet.

of Energy.

Courtesy Department

Fuel

Power

Mass

Size

PuO₂

250 W_{th} (BOM)

1.44 kg

9.3x9.7x5.3 cm

GPHS Stack. Courtesy Department of Energy.

GPHS-Radioisotope Thermoelectric Generator (RTG). Courtesy Department of Energy.

Multi-Mission RTG (MMRTG). Courtesy Department of Energy

Nuclide

238PU

²³⁹PU

240PU

241PU

242PU

wt %

83.6

14.0

2.0

0.4

0.1

Advanced Stirling Radioisotope Generator (ASRG). Courtesy Lockheed Martin

Power (W _e)	290	120	120
Efficiency (%)	6.6	6	24
GPHS Modules	16	8	2
Mass (kg)	54.4	43	27.1
Conversion	SiGe Thermoelectrics	SiGe Thermoelectrics	Stirling Convertors
Mission	Galileo x 2, Cassini x 3 Ulysses x 1, New Horizons x 1	Curiosity x 1 2016 Mars Rover x 1	Development

NTP = Mission Enabling I_{sp} = 880-900 seconds Leverage existing engine experience

"To extend and sustain human activities beyond LEO, rapid crew transit is required."

- NASA STMD Technology Roadmap

NUCLEAR THERMAL PROPULSION

Conventional rockets utilize propellant & oxidizer

NTP reactor uses nuclear fission to heat LH₂ propellant

NTP system diagram. Courtesy.

Steady state full power density: MW/L

ROVER/NERVA (1955-1973): KIWI, NRX, PEWEE, NF, PHOEBUS

MISSION DESIGN & THRUST CLASS

- Human requirements drive design - 3 engine cluster, total 75-105 klb_f
- Engine Thrust Class
 NTP T/W not linear with engine size
- Total burn time
 - Lower with higher thrust engine
 - Impact engine duty cycle and reliability
- NTP cost not linear with thrust
 - Majority of cost in fuel development Smaller engine size = negligible cost impact
 - Subscale flight demos cannot be used to meet human rating requirements A second engine will have to be designed and drive up costs

NTP Thrust-to-Weight vs. Thrust. Courtesy CSNR.

Engine Thrust (klb)	Burns (no.)	Total Burn time 2033 (min)	Total Burn time 2033 (min)
25	4	101	92
35	4	73	59
	Сои	irtesv L. Koss	

PARALLEL DEVELOPMENT PLAN

ENGINE COMPONENTS

Engine Systems

- Reactor Neutronic Analysis
- Power Balance

Reactor

- Fuel
- Tie-tubes
- Reflector Rings & Control Drums
- Injectifold
- Bottom plate
- Internal Shield

Thrust Chamber Assembly

- Pressure Vessel
- Regen Nozzle & Nozzle Extension

Turbopump

Propulsion Stage

- Lines, Ducts, Valves
- Thrust Vector Control
- Controller
- Distance truss

Neutronic Model Parametric Model

Integrated Component Models

FUEL DEVELOPMENT

FUEL DEVELOPMENT

Compact Fuel Element Environmental Tester

Sample heated to 2900 K

Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

University & DOE Reactor Facilities

Radiation Interactions

THE ATOM

The Atomic Model $\binom{A}{Z}X$

- Atomic number (Z): number of protons in the nucleus.
- Neutron number (N): number of neutrons in the nucleus.
- Mass number (A=Z+N): protons & neutrons in the nucleus.

Isotope

- Nuclei with the same Z but different A
- Hydrogen $\binom{1}{1}H$, Deuterium $\binom{2}{1}H$, Tritium $\binom{3}{1}H$

Type of

Decay

β⁺

β⁻ α Fission

82

Proton

Neutron

Stable Nuclide Unknown

IONIZING RADIATION

RADIOACTIVE DECAY

Parent-decay, daughter-production plot

Radioactivity

- Unstable nuclei decay to reach the lowest energy (ground) state.
- Each radioisotope decays at a unique exponential rate.

Units

- 1 Becquerel (Bq) = 1 disintegration/second
- 1 Curie (Ci) = 3.7 x 10¹⁰ disintegrations/second

• Half-Life $(t_{1/2})$

 The time required for a quantity of radioactive material to be reduced by half of the original activity

$$- A(t)_{Parent} = A_0 e^{-\left(\frac{\ln 2}{t_{1/2}}\right)t}$$

$$- A(t)_{Daughter} = A_o \left[1 - e^{-\left(\frac{\ln 2}{t_{1/2}}\right)t} \right]$$

NEUTRON INTERACTIONS

Fission

- Overcome binding energy to induce a nucleus to split
- Fissile: fission with slow (thermal) neutron
 233U, 235U, 239Pu, 241Pu, 237Np
- Fissionable: fission with fast neutrons
 232Th, ²³⁸U, ²⁴⁰Pu (and fissile ²³⁵U)
- Microscopic Cross Section (σ)
 - Probability a reaction will occur
 - Dependent on incident neutron energy, nucleus, temperature
 - Units: cm^2 or barns (1 b = $10^{-24} cm^2$)
 - Fission, scatter, radiative capture

Macroscopic Cross Section (Σ)

- $\sum = N\sigma$ (atoms/cm)
- N = Atomic Density (atoms/cm³)

Radiation Protection

DOSE COMPARISONS

Average radiation dose in the United States

Normal Activity Doses

Activity	Dose
Commercial Air Flight	0.238-0.66 mRem/hr
Head x-ray	78 mrem bone marrow 1500 mrem skin
Abdominal x-ray	535 mrem bone marrow 1700 mrem skin
Tobacco use	8 mrem/yr
Contraction of the local division of the loc	

Common Natural Radionuclides					
Nuclide	Source	Reaction	Exposure		
³ H (Tritium)	Cosmogenic	¹⁴ N(n,T) ¹² C ¹⁶ O(n,T) ¹⁴ N	Internal		
¹⁴ C	Cosmogenic	¹⁴ N(n,p) ¹⁴ C	Internal		
⁴⁰ K, ⁸⁷ Rb	Primordial	long $t_{1/2}$	Internal		
²²² Rn, ²²⁰ Rn	Primordial Decay	²³⁸ U & ²³² Th	External		

Scenario	Dose (Rem)	Dose (mSv)
Average U.S. annual whole-body dose	0.36	3.6
NRC annual occupational total effective whole-body dose limit	5	50
No observable effects	< 25	250
Possible temporary blood effects	~25	~250
NRC annual total occupational skin dose limit	50	500
Onset of radiation sickness - acute exposure	50-100	500-1000
NCRP astronaut career total whole-body dose limit	100	1000
Death (L _{50/60}) – acute exposure	300-450	3000-4500
Death (100%)	1000	10,000

ALARA

As Low As Reasonably Achievable (ALARA) - Cumulative dose kept ALARA considering technology, cost, etc.

M	Principle	Operating Rule	Method	
Time	Dose rate proportional to time spent in radiation.	↓ Time = ↓ dose rate	 Train to perform tasks quickly. Perform tasks outside the radiation field when possible. Never loiter. 	K
Distance	Dose rate inversely proportional to the distance squared from a source (↑Lx2 = ↓Dx4).	↑ Distance = ↓ dose rate	 Keep away from sources. Use long-handled tools. Use remote manipulators. 	
Shielding	Appropriate shielding between you & radiation source decreases intensity.	↑ Shielding = ↓ dose rate	 Keep sources in shielded containers (glove boxes, hot cells, pigs, etc.) Use portable shielding & PPE. 	Remote manipulators within a hot cell.

RADIATION SHIELDING

Shield has the potential to dominate reactor mass

γ-ray attenuation

_ ↑Z materials: W, Pb, dU

$$I(t) = I_o e^{-\left(\frac{\mu}{\rho}\right)_s \rho t}$$

Neutron attenuation
_____Z materials: H, Li, B, H₂O, LiH

 $I(t) = I_o e^{-\sum_s t}$

Distance boom and integrated vehicle radiation mitigation concept. Courtesy J. Caffrey

Distance Truss

- Rx-vehicle separation
- $1/r^2 \text{ law } (\uparrow L_{\text{boom}} = \downarrow M_{\text{shield}})$

Nuclear Materials

ENRICHMENT & SNC Categories

Fuel enrichment (X_F)

 $X_F = \frac{Mass \ of \ 235_U}{Mass \ of \ 238_U} \ (\%)$

- Natural Uranium (natU) - 0.711%
- Depleted Uranium (dU) - 0.2%

Low Enriched Uranium (LEU)

- <20%
- Light Water Reactor (LWR) 3-5%
- NTP target 19.75% for affordability

High Enriched Uranium (HEU)

- >20%
- Significant safeguards and expense
- Most space reactor concepts: ~93%

Isotope M (kg) $235 \cup (X_F > 20\%)$ > 5 Category I $233 \cup$ > 2 Strategic $239 P \cup$ > 2 Specialized facilities $239 P \cup$ > 2 Strategic $235 \cup +2.5(233 \cup +239 P \cup)$ > 2 High Cost Isotope M (kg) Category II $235 \cup (X_F > 20\%)$ > 1 Mod. Strategic $233 \cup$ > 0.5 Mod. Strategic $239 P \cup$ > 0.5 Mod. Strategic $235 \cup +2(233 \cup +239 P \cup)$ > 1 Mod. Strategic $235 \cup (X_F > 20\%)$ > 10 Mod. Strategic $1235 \cup (X_F > 20\%)$ > 0.015 Category III $233 \cup$ > 0.015 Low strategic $239 P \cup$ > 0.015 Low strategic $233 \cup$ > 0.015 Low strategic $235 \cup +233 \cup +239 P \cup$ > 0.015 Low strategic $235 \cup (10\% < X_F < 20\%)$ 1 < M < 10	Los Constanting of the loss of		
$235 \cup (X_F > 20\%)$ > 5 Category I $233 \cup$ > 2 Strategic $239 P \cup$ > 2 Specialized facilities $239 P \cup$ > 2 Strategic $235 \cup +2.5(233 \cup +239 P \cup)$ > 2 High Cost Isotope M (kg) Category II $235 \cup +2.5(233 \cup +239 P \cup)$ > 1 Mod. Strategic $233 \cup$ > 0.5 Mod. Strategic $239 P \cup$ > 0.5 Mod. Strategic $235 \cup +2(233 \cup +239 P \cup)$ > 1 Mod. Strategic $235 \cup (X_F > 20\%)$ > 10 Mod. Strategic Isotope M (kg) Mod. Strategic $235 \cup (10\% < X_F < 20\%)$ > 0.015 Category III $233 \cup$ > 0.015 Low strategic $239 P \cup$ > 0.015 Low strategic $233 \cup$ > 0.015 Low strategic $235 \cup +233 \cup +239 P \cup$ > 0.015 Low strategic $235 \cup (10\% < X_F < 20\%)$ 1 < M < 10	Isotope	M (Kg)	
2^{33} U > 2 Strategic 2^{39} PU > 2 Specialized facilities 2^{35} U + 2.5(2^{33} U + 2^{39} PU) > 2 High Cost Isotope M (kg) Category II 2^{35} U (X_F > 20%) > 1 Mod. Strategic 2^{39} PU > 0.5 Mod. Strategic 2^{35} U (X_F > 20%) > 10 Mod. Strategic 2^{35} U ($10\% < X_F < 20\%$) > 10 Strategic Isotope M (kg) Category III 2^{35} U ($10\% < X_F < 20\%$) > 10 Strategic Isotope M (kg) Category III 2^{35} U ($X_F > 20\%$) > 0.015 Category III 2^{35} U ($X_F > 20\%$) > 0.015 Category III 2^{35} U ($X_F > 20\%$) > 0.015 Cotegory III 2^{35} U ($10\% < X_F < 20\%$) > 0.015 Cotegory III 2^{35} U ($10\% < X_F < 20\%$) > 0.015 Cotegory III 2^{35} U ($10\% < X_F < 20\%$) > 0.015 Cotegory III 2^{35} U ($10\% < X_F < 20\%$) > 0.015 Cotegory III 2^{35} U ($10\% < X_F < 20\%$) > 0.015 Cotegory III	²³⁵ U (X _F > 20%)	> 5	Category I
$239P\cup$ > 2 Specialized facilities $235\cup+2.5(^{233}\cup+^{239}P\cup)$ > 2 Specialized facilities Isotope M (kg) Category II $235\cup(X_{F}>20\%)$ > 1 Mod. Strategic $239P\cup$ > 0.5 Mod. Strategic $235\cup+2(233\cup+239P\cup)$ > 1 Mod. Strategic $235\cup(10\% > 10 Mod. Strategic Isotope M (kg) Category III 235\cup(10\% > 10 Mod. Strategic Isotope M (kg) Category III 235\cup(10\% > 0.015 Category III 235\cup(X_{F}>20\%) > 0.015 Category III 235\cup(10\% > 0.015 Category III 235\cup(10\% > 0.015 Lower Cost 235\cup(10\% > 0.015 Lower Cost 235\cup(10\% 1 < M < 10$	233၂	> 2	Strategic
$235 \cup +2.5(233 \cup +239 \cup)$ > 2 High Cost Isotope M (kg) Category II $235 \cup (X_F > 20\%)$ > 1 Mod. Strategic $233 \cup$ > 0.5 Mod. Strategic $239 \cup 235 \cup +2(233 \cup +239 \cup 2)$ > 1 Mod. Strategic $235 \cup (10\% < X_F < 20\%)$ > 10 M (kg) Isotope M (kg) Category III $235 \cup (10\% < X_F < 20\%)$ > 10 M (kg) $235 \cup (X_F > 20\%)$ > 0.015 Category III $235 \cup (X_F > 20\%)$ > 0.015 Low strategic $233 \cup$ > 0.015 University Reactor $235 \cup +233 \cup +239 \cup 0$ > 0.015 Low strategic $235 \cup (10\% < X_F < 20\%)$ 1 < M < 10	²³⁹ PU	> 2	Specialized facilities Guards & Guns
IsotopeM (kg) $^{235}\cup(X_{F} > 20\%)$ > 1 $^{233}\cup$ > 0.5 $^{239}P\cup$ > 0.5 $^{235}\cup+2(^{233}\cup+^{239}P\cup)$ > 1 $^{235}\cup(10\% < X_{F} < 20\%)$ > 10IsotopeM (kg) $^{235}\cup(X_{F} > 20\%)$ > 0.015 $^{235}\cup(X_{F} < 20\%)$ > 0.015 $^{235}\cup(10\% < X_{F} < 20\%)$ > 0.015	²³⁵ U+2.5(²³³ U+ ²³⁹ Pu)	> 2	High Cost
$235 \cup (X_F > 20\%)$ > 1Mod. Strategic $233 \cup$ > 0.5 $239 P \cup$ > 0.5 $239 P \cup$ > 0.5 $235 \cup +2(233 \cup +239 P \cup)$ > 1 $235 \cup (10\% < X_F < 20\%)$ > 10 $X_F < 20\%$ IsotopeM (kg)Category III $235 \cup (X_F > 20\%)$ > 0.015 $233 \cup$ > 0.015 $239 P \cup$ > 0.015 $235 \cup +233 \cup +239 P \cup$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ > 0.015	Isotope	M (kg)	Category II
$233 \bigcup$ > 0.5 $239 P_{\cup}$ > 0.5 $235 \bigcup + 2(233 \bigcup + 239 P_{\cup})$ > 1 $235 \bigcup (10\% < X_F < 20\%)$ > 10 Isotope M (kg) $235 \bigcup (X_F > 20\%)$ > 0.015 $233 \bigcup$ > 0.015 $233 \bigcup$ > 0.015 $239 P_{\cup}$ > 0.015 $239 P_{\cup}$ > 0.015 $235 \bigcup + 233 \bigcup + 239 P_{\cup}$ > 0.015 $235 \bigcup (10\% < X_F < 20\%)$ 1 < M < 10	²³⁵ U (X _F > 20%)	> 1	Mod Strategic
$239P_{U}$ > 0.5 $235U+2(233U+239P_{U})$ > 1 $235U(10\% < X_F < 20\%)$ > 10IsotopeM (kg) $235U(X_F > 20\%)$ > 0.015 $233U$ > 0.015 $239P_{U}$ > 0.015 $235U+233U+239P_{U}$ > 0.015 $235U(10\% < X_F < 20\%)$ 1 < M < 10	233၂	> 0.5	Mod. Sindlegie
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	²³⁹ Pu	> 0.5	
$235 \cup (10\% < X_F < 20\%)$ > 10IsotopeM (kg) $235 \cup (X_F > 20\%)$ > 0.015 $233 \cup$ > 0.015 $239 P \cup$ > 0.015 $235 \cup +233 \cup +239 P \cup$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ $1 < M < 10$	²³⁵ U+2(²³³ U+ ²³⁹ Pu)	> 1	
IsotopeM (kg) $235 \cup (X_F > 20\%)$ > 0.015 $233 \cup$ > 0.015 $233 \cup$ > 0.015 $239 P \cup$ > 0.015 $235 \cup +233 \cup +239 P \cup$ > 0.015 $235 \cup (10\% < X_F < 20\%)$ $1 < M < 10$	²³⁵ U (10%< X _F <20%)	> 10	
$2^{35} \cup (X_F > 20\%)$ > 0.015 $2^{33} \cup$ > 0.015 $2^{39} P \cup$ > 0.015 $2^{35} \cup +2^{33} \cup +2^{39} P \cup$ > 0.015 $2^{35} \cup (10\% < X_F < 20\%)$ 1 < M < 10	Isotope	M (kg)	يلك كر الم
$233U$ > 0.015 Low strategic $239PU$ > 0.015 Lower Cost $235U + 233U + 239PU$ > 0.015 Lower Cost $235U + (10\% < X_F < 20\%)$ 1 < M < 10	²³⁵ U (X _F > 20%)	> 0.015	Category III
$239PU$ > 0.015Lower Cost $235U+233U+239PU$ > 0.015 $235U$ (10%< X_F <20%)	233U	> 0.015	Low strategic
$^{235}U + ^{233}U + ^{239}PU$ > 0.015 $^{235}U (10\% < X_F < 20\%)$ 1 < M < 10	²³⁹ PU	> 0.015	Lower Cost
235 U (10% < X_F < 20%) 1 < M < 10	²³⁵ U+ ²³³ U+ ²³⁹ Pu	> 0.015	
	²³⁵ U (10%< X _F <20%)	1< M < 10	
$2350 (0.711\% < X_F < 10\%) > 10$	²³⁵ U (0.711%< X _F <10%)	> 10	

Reactor Physics

NEUTRON LIFE CYCLE

Stable fission chain reaction

Neutron production, leakage and absorption rates balanced Reactor power proportional to neutron population

6-Factor Formula

 $k_{\infty} = \eta p \varepsilon f$ $k_{eff} = k_{\infty} P_{NL}^F P_{NL}^T$ $\eta = \text{thermal } n \text{ production factor} = \frac{n \text{ produced in thermal fission}}{thermal n \text{ absorptions in fuel}} = \frac{\nu \Sigma_{fission}}{\Sigma_{abs}^{Fuel}}$ resonance escape probability: $\frac{fraction}{resonance} of fast n that escape}{resonance} = \frac{n \, downscatter \, to \, thermal \, energies \, from \, above \, thermal \, (TDSCT)}{total \, fast n \, absorptions + TDSCT}$ total fast n absorptions + TDSCT to thermal energies $\epsilon = fast fission factor = \frac{total fission n produced from fast & thermal fission$ fission n produced from thermal fission **Typical Thermal** Reactor (235U) f = thermal utilization factor = $\frac{\text{thermal } n \text{ absorptions in fuel}}{\text{total thermal } n \text{ absorptions}} = \frac{\Sigma_{abs}^{Fuel}}{\Sigma_{abs}^{System}}$ $k_{\infty} = 1.04$ $k_{eff} = 1.00$ *n* = 1.65 p = 0.87 $P_{NL}^{F} = \text{fast non-leakage probability} = \frac{fast n source - fast n leakage}{fast n source}$ $\epsilon = 1.02$ f = 0.71 P_{NL}^{T} = thermal non-leakage probability = $\frac{TDSCT}{-thermal n \, leakage}$ $P_{NL}^{F} = 0.97$ **TDSCT** $P_{NL}^{T} = 0.99$

REACTOR CORE COMPOSITION

Fuel

- Enrichment, density, shape: ²³⁵U, 19.75%
- Moderator
 - Low mass number material to slow neutrons: graphite, Be, H₂
 - Fuel-to-moderator ratio: $\frac{N_F}{N_M}$
- Coolant
 - Remove heat, moderate, supplement reactor control with H₂ flow rate
- Structural materials
 - Maintain core geometry: support plates, spacer grids, tie tubes
 - Low neutron absorption cross section materials: Zircaloy, AI, Inconel, SS, ¹⁸⁴W
- Control elements
 - Absorbs neutrons to control multiplication
 - High neutron absorption cross section materials: B, B₄C, Cd, Gd, Hf
- Reflector
 - Scatters leaking neutrons back into the core
 - Low neutron absorption cross section materials: Be, BeO, graphite
 Pressure Vessel
 - Core and cooling containment: Al, Inconel, SS

REACTOR GEOMETRY

Reflected core = \downarrow critical size (mass)

Insulation to prevent heat loss is analogous to reflectors to prevent neutron leakage from the reactor core.

Bare vs. reflected critical assemblies. k_{∞} will not change since dependent on fuel composition and not geometry.

Reflected reactor geometry core cross-section

REACTOR KINETICS & CONTROL

Short-term transients (s, m, hr): start-up, maneuvering, shut-down Long-term transients (d, w, m): fuel BU from BOL to EOL Neutron population control = reactor control

- Control drums: vary neutron population with absorber (vary f)
- Coolant flow: harden spectrum with lower coolant flow rate (vary f)

Rotating Control Drum: B₄C Absorber

Be Reflector

Control Drives @ 0°: Subcritical

Control Drives @ 180°: Critical or Super Critical

Reactivity

The measure of neutron multiplication deviation from unity

$$\rho = \frac{k_{eff} - 1}{k_{eff}}$$

- Units (relative to β): If $\rho = \beta \rightarrow \1 of reactivity (²³⁵U reactor: \$0.4 is $\rho = 0.4\beta = \$0.4$) ρ depends on neutron flux (φ) and thus Rx power $\Delta T_{core} = \Delta V_{Matls} = \Delta density = \Delta C_{atom} = \Delta \Sigma_{a,s} = \Delta reaction rate = \Delta \varphi = \Delta \rho$

DELAYED NEUTRONS

Prompt Neutrons

- Born at fission
 - 98-99% of neutron population
- Short lifetime $(l = 10^{-4} \text{ s})$
- Difficult to control (T = 0.1 s)

Delayed Neutrons

- Born from fission product radioactive decay
- 1-2% of neutron population
- Longer lifetime (l = 0.6 80 s)
- Controllable (T = 10 s)
- $-\beta$ = delayed neutron fraction

β_{U235}	0.0065
β_{PU239}	0.002

²³⁵U thermal fission delayed neutrons. Courtesy of Duderstadt & Hamilton.

- 80 s)	Group	t _{1/2} (s)	Decay Constant λ _i (s ⁻¹)	Energy (keV)	Yield (n/fission)	Fraction B _i
action	1	55.72	0.0124	250	0.00052	0.000215
	2	22.72	0.0305	560	0.00346	0.001424
	3	6.22	0.111	405	0.00310	0.001274
	4	2.30	0.301	450	0.00624	0.002568
	5	0.610	1.14		0.00182	0.000748
	6	0.230	3.01	-	0.00066	0.000273
					0.0158	0.0065

REACTOR PERIOD

Reactivity-Period Chart. Courtesy of Dugan.

Reactor Period

Time required for Rx power to change by "e" (2.718)

 $- T = \frac{l}{k-1}$

- As $k \to 1$, T $\to \infty$ (time independent neutron population)
- T inversely proportional to ρ : $\uparrow \rho = \downarrow T$, $\downarrow \rho = \uparrow T$ (desirable)

Example:

- k = 1.001
- $l = 10^{-4} s$ (thermal), $10^{-7} s$ (fast)

$$T = \frac{l}{k-1} = 0.1 \ s$$

$$- \frac{N(t)}{N_o} = e^{\left(\frac{k-1}{l}\right)t} = e^{10t} \rightarrow$$

For $t = 1 \ s \rightarrow e^{10} = 22,000$ prompt neutrons/sec

Avoid reactor prompt critical & supercritical

- Prompt critical ($\rho > \beta$) Super critical ($k 1 > \beta$)
- Delayed neutrons not needed to sustain reaction
- T will be very short (this should never occur)

REACTIVITY INSERTION

Reactor Power Changes

- Prompt jump/drop: Initially behaves as if there are no delayed neutrons.
 - Delayed neutron hold back effect: As delayed neutron population increases there is a transition.
- Stable Period: As $T \rightarrow$ asymptotic the Rx behaves as if there are no prompt neutrons and delayed neutrons control the Rx.

insertion. Courtesy Duderstadt & Hamilton.

¹³⁵Xe variation with reactor power level. Image courtesy of Duderstadt & Hamilton.

TEMPERATURE REACTIVITY FEEDBACK

Temperature Reactivity Feedback Coefficient

- $\alpha_T = \frac{\Delta \rho}{\Delta T}$
- 1. Nuclear: $\Delta T = \Delta \sigma$ (Doppler broadening) = resonance absorption
- 2. Density: $\Delta T = \Delta V_{Matls} = \Delta density = \Delta C_{atom} = \Delta mean free path = \Delta P_{NL}$

Fuel & Moderator Feedback Coefficients

$$\alpha_{T,Fuel} = \frac{\Delta \rho}{\Delta T_{Fuel}}$$

$$\alpha_{T,Mod} = \frac{\Delta p}{\Delta T_{Mod}}$$

Stability

- Positive α_T : $\uparrow T = \uparrow \rho = \uparrow P = \uparrow T = unstable reactor (avoid)$
- Negative α_T : $\uparrow T = \downarrow \rho = \downarrow P = \downarrow T = stable reactor (design requirement)$

NEUTRON POISONS

Fission product decay

Produces daughter nuclides with large σ_{abs} Proportional to reactor power and operating time ¹³⁵Xe and ¹⁴⁹Sm burnout at start up induce a positive reactivity insertion

fission
$$\rightarrow {}^{135}_{51}Sb = \frac{\beta^{-}}{1.7 s} {}^{135}_{52}Te = \frac{\beta^{-}}{19.2 s} {}^{135}_{53}I = \frac{\beta^{-}}{6.58 hr} {}^{135}_{54}Xe = \frac{\beta^{-}}{9.17 hr} {}^{135}_{55}Cs = \frac{\beta^{-}}{2 \cdot 10^{6} yr} {}^{135}_{56}Ba (stable)$$

fission
$$\rightarrow {}^{149}_{60}Nd \ \frac{\beta^{-}}{2 \ hr} {}^{149}_{61}Pm \ \frac{\beta^{-}}{54 \ hr} {}^{149}_{62}Sm \ (stable)$$

Poisc	on c	v _{Abs} (b)	t _{1/2} (hr)	$\rho_\infty \left(\frac{\Delta k}{k}\right)$	Peak buildup
135 54	Ke 2	2.7 x 10 ⁶	9.2	2.5 – 3.0	10-11 hrs. Decays
¹⁴⁹ 62S	'm 4	.1 x 104	53	0.4 - 0.6	10 days. No decay

¹³⁵Xe buildup and decay following shutdown. Courtesy Dugan. ¹⁴⁹Sm buildup following shutdown. Courtesy Dugan.

DECAY HEAT

Heat generation following shut-down

- Result of fission product decay
 - 6-7% of reactor power generated immediately after shutdown.
- Active cooling is required to keep core temperature within limits.

Reactor decay heat vs. time.

Failure to cool the reactor following shut-down

- Fuel damage
- --- Structural damage
 - Partial/full melt-down

OPERATIONAL ANALOGY

Airplane

Altitude (A)

Airspeed (V)Regulate and limit vehicle energy state (V_{stall}, V_{ne})

Vertical Velocity Indicator (VVI) Rate of altitude change

hrottle Setting (% max RPM) Adjust fuel flow to vary combustion rate (engine power)

> Multi-Engine Individual power worth

Breaking Distance Runway length to achieve full-stop

> **Dynamic Stability** Positive or negative

Excess Power Overcome induced/parasitic drag, adjust A

Reactor

Power (P)

Period (T)Regulate and limit reactor energy state (30 s ramp rate, -80 s shut down)

Neutron Multiplication Factor (k)Rate of criticality change

Control Drum Setting (degree) Adjust reactivity to vary reaction rate (reactor power)

> Multi-Drum Individual reactivity worth

Shut-Down Margin (SDM) How far from critical

Reactivity Temp. Feedback (α_T) Positive or negative

Excess Reactivity (ρ_{ex}) Overcome BU, $-\alpha_T$, Xe poison, adjust P level

RECOMMENDED READINGS

REFERENCES

- J. Angelo & D. Buden, "Space Nuclear Power," Orbit Book Co, Malabar, FL (1985).
- J. Turner, "Atoms, Radiation, and Radiation Protection," John Wiley & Sons, Inc, New York, NY (1995).
- R. Faw & J. Shultis, "Radiological Assessment: Sources and Doses," American Nuclear Society, IL (1999).
- G. Knoll, "Raditiation Detection & Measurement," John Wiley & Sons Inc, NY (2000).
- W. Callister, "Materials Science and Engineering an Introduction," John Wiley & Sons, Inc, New York, NY (1999).
- R. Bolt & J. Carroll, "Radiation Effects on Organic Materials," Academic Press, NY (1963).
- G. Was, "Fundamentals of Radiation Materials Science," Springer, NY (2007).
- B. Ma, "Nuclear Reactor Materials & Applications," Van Nostrand Reinhold Co, NY (1983).
- M. Kangilaski, "Radiation Effects Design Handbook: Structural Alloys," Batelle Memorial Inst., OH (1971).
- C. Hanks & D. Hamman, "Radiation Effects Design Handbook: Electrical Insulating Materials and Capacitors," Batelle Memorial Inst., OH (1971).
- **R.** Chochran & N. Tsoulfandis, "The Nuclear Fuel Cycle," American Nuclear Society, IL (1999).
- D. Orlander, "Fundamental Aspects of Nuclear Reactor Fuel Elements," Energy Research and Development Administration, TN (1976).
- J. Duderstadt & L. Hamilton, "Nuclear Reactor Analysis," John Wiley & Sons Inc, NY (1976).
- S. Glasstone & M. Edlund, "Nuclear Reactor Theory," Van Norstrand Co. Inc., NY (1952).
- E. Dugan, "Nuclear Reactor Analysis," Univ. of Florida course notes (2007).
- W. Vernetson, "Nuclear Reactor Operations," Univ. of Florida course notes (2007).
- NRC SNM Categories <u>http://www.nrc.gov/security/domestic/mca/snm.html</u>, (2013).
- NRC Radiation Areas <u>http://www.nrc.gov/about-nrc/radiation/protects-you/hppos/hppos066.html</u>, (2013).