NTP 101 Short Course

An Introductory Overview of Nuclear Science and Space Nuclear Power and Propulsion Systems

ENERGY COMPARISON

 Chemical: combustion, reaction Natural: solar (PV, thermal), EM tethers Nuclear: radioactive decay, fission Advanced nuclear: fusion, antimatter

NUCLEAR = MISSION ENABLING

Fission 341 mL of 235 U

 $L = 46.9$ m OD = 8.4 m $\mathsf{M}_{\mathsf{LOX}}$ = 630 MT M_{H2} = 106 MT

Significantly extends mission capability by overcoming current technology limitations:

- Power Reliable, robust, long-duration, power dense
- . Logistics (consumables)
	- Food, water, oxygen
- **H**uman Factors
	- μg atrophy
	- –Psychological isolation
	- Radiation dose

Time dependant factors mitigated by rapid propulsion decreasing transit

> Shielding decreases crew dose

RADIOSIOTOPE DECAY

Heat produced from natural alpha $\overline{(\alpha)}$ decay

Service life activity (*A*) inversely proportional to $\mathsf{isotope}$ half-life $(t_{1/2})$

п

$$
A(t) = A_o e^{-\left(\frac{\ln 2}{t_{1/2}}\right)t}
$$

Radioisotope Half-life Comparison

RADIOISOTOPE POWER SYSTEMS

General Purpose Heat Source (GPHS)

Fuel PuO $_{\rm 2}$

Size

Power 250 W_{th} (BOM) Mass 1.44 kg

9.3x9.7x5.3 cm

 238 PuO $_2$ Pellet. *Courtesy Department*

of Energy.

п

GPHS Stack. *Courtesy Department of Energy.*

GPHS-Radioisotope Thermoelectric Generator

Nuclide wt %238Pu 83.6 239Pu 14.0 240P_U 2.0 241Pu 0.4242Pu 0.1

HS-Radioisotope Thermoelectric Generator [18] Multi-Mission RTG (MMRTG). The Madvanced Stirling Radioisotope Generator
(RTG). Courtesy Department of Energy. Courtesy Department of Energy [ASRG]. Courtesy Lockheed Martin

Power (W_e)	290	120	120
Efficiency (%)	6.6	$\ddot{\delta}$	24
GPHS Modules	16	8	$\overline{2}$
Mass (kg)	54.4	43	27.1
Conversion	SiGe Thermoelectrics	SiGe Thermoelectrics	Stirling Convertors
Mission	Galileo x 2, Cassini x 3 Ulysses x 1, New Horizons x 1	Curiosity x 1 2016 Mars Rover x 1	Development

NTP = Mission Enabling I_{sp} = 880-900 seconds Leverage existing engine experience

"To extend and sustain human activities beyond LEO, rapid crew transit is required."

*-*NASA STMD Technology Roadmap

NUCLEAR THERMAL PROPULSION

Conventional rockets utilize propellant & oxidizer

\blacksquare NTP reactor uses nuclear fission to heat LH $_2$ propellant

r.

Tio Tubos
franitinie) Regen.
Chamber:
No zzle SOV - propellant tank shutoff v. **ICV** - nozzle control valve **CEC1/** - sunnort olompatic ordinal vol-**Radiativ
Noszle
Extensio**

NTP system diagram. C*ourtesy.*

п Steady state full power density: MW/L

ROVER/NERVA (1955-1973): KIWI, NRX, PEWEE, NF, PHOEBUS

MISSION DESIGN & THRUST CLASS

- Human requirements drive design 3 engine cluster, total 75-105 klb $_f$
- Engine Thrust Class NTP T/W not linear with engine size
- e
Se Total burn time

Service Service

- Lower with higher thrust engine
- Impact engine duty cycle and reliability
- П NTP cost not linear with thrust
	- Majority of cost in fuel development Smaller engine size = negligible cost impact
	- Subscale flight demos cannot be used to meet human rating requirements A second engine will have to be designed and drive up costs

NTP Thrust-to-Weight vs. Thrust. *Courtesy CSNR.*

PARALLEL DEVELOPMENT PLAN

ENGINE COMPONENTS

Engine Systems

- Reactor Neutronic Analysis
- Power Balance

Reactor

П

П

I.

П

- **Fuel**
- Tie-tubes
- Reflector Rings & Control Drums
- Injectifold
- Bottom plate
- Internal Shield

Thrust Chamber Assembly

- Pressure Vessel
- Regen Nozzle & Nozzle Extension

Turbopump

Propulsion Stage

- Lines, Ducts, Valves
- Thrust Vector Control
- **Controller**
- Distance truss

Neutronic Model Parametric Model

FUEL DEVELOPMENT

FUEL DEVELOPMENT

Compact Fuel Element Environmental Tester

Sample heated to 2900 K

Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

University & DOE Reactor Facilities

Radiation Interactions

THE ATOM

π The Atomic Model $\binom{A}{Z}$

- Atomic number (*Z*): number of protons in the nucleus.
- Neutron number (*N*): number of neutrons in the nucleus.
- Mass number (*A=Z+N*): protons & neutrons in the nucleus.

Isotope

- Nuclei with the same *Z* but different *A*
- –Hydrogen $(\frac{1}{1}H)$, Deuterium $(\frac{2}{1}H)$, Tritium $(\frac{3}{1}H)$

Type of

Decay

IONIZING RADIATION

RADIOACTIVE DECAY

Parent-decay, daughter-production plot

Radioactivity

- Unstable nuclei decay to reach the lowest energy (ground) state.
- – Each radioisotope decays at a unique exponential rate.

п Units

- 1 Becquerel (Bq) = 1 disintegration/second
- 1 Curie (Ci) = 3.7×10^{10} disintegrations/second
- п \blacksquare Half-Life $(t_{1/2})$
	- –The time required for a quantity of radioactive material to be reduced by half of the original activity

$$
- A(t)_{parent} = A_o e^{-\left(\frac{\ln 2}{t_{1/2}}\right)t}
$$

$$
- A(t)_{Daughter} = A_o \left[1 - e^{-\left(\frac{\ln 2}{t_{1/2}}\right)t} \right]
$$

NEUTRON INTERACTIONS

Г Fission

- Overcome binding energy to induce a nucleus to split
- Fissile: fission with slow (thermal) neutron 233U, 235U, 239Pu, 241Pu, 237Np
- Г Fissionable: fission with fast neutrons 232Th, 238U, 240Pu (and fissile 235U)
- T. ■ Microscopic Cross Section (σ)
	- Probability a reaction will occur
	- Dependent on incident neutron energy, nucleus, temperature
	- $-$ Units: cm² or barns (1 b = 10⁻²⁴ cm²)
	- Fission, scatter, radiative capture

\blacksquare Macroscopic Cross Section (∑)

- $\Sigma = N\sigma$ (atoms/cm)
- N = Atomic Density (atoms/cm³)

Radiation Protection

DOSE COMPARISONS

Average radiation dose in the United States

Normal Activity Doses

ALARA

As Low As Reasonably Achievable (ALARA) Cumulative dose kept ALARA considering technology, cost, etc.

RADIATION SHIELDING

Shield has the potential to dominate reactor mass

γ-ray attenuation – ↑ *Z* materials: *W, Pb, dU*

 $\mathcal{C}^{\mathcal{C}}$

$$
I(t) = I_o e^{-\left(\frac{\mu}{\rho}\right)_s \rho t}
$$

r. Neutron attenuation ↓ *Z* materials: *H, Li, B, H ²O, LiH*

> $I(t) = I_o e$ $-\sum_{\mathcal{S}} t$

п Distance Truss

- Rx-vehicle separation
- ∴1/r² law (↑ L_{boom} = ↓ M_{shield})

Distance boom and integrated vehicle radiation mitigation concept. C*ourtesy J. Caffrey*

Nuclear Materials

ENRICHMENT & SNC Categories

Fuel enrichment (X_F)

 $\begin{equation} X_F = \frac{Mass\; of\; 235 y}{Mass\; of\; 238 y} \; (\%) \end{equation}$

- Natural Uranium (natU) 0.711%
- Depleted Uranium (dU) 0.2%

п Low Enriched Uranium (LEU)

- $< 20\%$
- Light Water Reactor (LWR) 3-5%
- NTP target 19.75% for affordability

High Enriched Uranium (HEU)

- –>20%
- –Significant safeguards and expense
- Most space reactor concepts: ~93%

Reactor Physics

NEUTRON LIFE CYCLE

Stable fission chain reaction

Ŧ

 Neutron production, leakage and absorption rates balanced Reactor power proportional to neutron population

6-Factor Formula

 $k_{\infty} =$ η $p\mathrel{\varepsilon} f$ $k_{eff} = k_{\infty} P_{NL}^F P_{NL}^T$ η = thermal *n* production factor = $\frac{n\,prod\limits_{i=1}^{n}\eta_{i}}{n\,prod\limits_{i=1}^{n}\eta_{i}}$ = $\frac{v\Sigma_{fission}}{\Sigma_{abs}^{Full}}$ $p =$ fraction of fast *n* that escape $\qquad \frac{n \: downstream \: constant \: to \: thermal \:energy \:energy} {total \: fast \: n \: absorption \: s + T D S C T}$ ε = fast fission factor = $\frac{total\ fission\ n\ produced\ from\ fast\ &\ thermal\ fission}{fission\ n\ produced\ from\ thermal\ fission}$ f = thermal utilization factor $=$ $\frac{1}{\pi} = \frac{\hbar v}{\hbar c}$ thermal nabsorptions $\frac{\Sigma_{abs}^{Fuel}}{\Sigma_{abs}^{Systen}}$ System
abs P_{NL}^F = fast non-leakage probability = $\frac{fast \ n \ source - fast \ n \ leaka \ ge}{fast \ n \ source}$ P_{NL}^T = thermal non-leakage probability = $\frac{TDSCT - thermal\ n\ leakage}{TDSCT}$ resonance escape probability: resonance absorption & slow to thermal energies **Typical Thermal Reactor (235U)** k_{∞} = 1.04 $k_{eff} = 1.00$ $n = 1.65$ $p = 0.87$ ε = 1.02 $f = 0.71$ $P_{NL}^F = 0.97$ $P_{NL}^T = 0.99$

REACTOR CORE COMPOSITION

Fuel

п

п

▬

- Enrichment, density, shape: 235U, 19.75%
- **Moderator**
	- Low mass number material to slow neutrons: graphite, Be, H_2
	- Fuel-to-moderator ratio: $\frac{N_F}{N_M}$

Coolant

- $\;$ Remove heat, moderate, supplement reactor control with H $_2$ flow rate
- Structural materials
	- Maintain core geometry: support plates, spacer grids, tie tubes
	- Low neutron absorption cross section materials: Zircaloy, AI, Inconel, SS, ¹⁸⁴W
- Control elements
	- Absorbs neutrons to control multiplication
	- High neutron absorption cross section materials: B , B_4C , Cd, Gd, Hf
- Reflector
	- Scatters leaking neutrons back into the core
	- Low neutron absorption cross section materials: Be, BeO, graphite Pressure Vessel
		- Core and cooling containment: Al, Inconel, SS

REACTOR GEOMETRY

\blacksquare Reflected core = \downarrow critical size (mass)

Insulation to prevent heat loss is analogous to reflectors to prevent neutron leakage from the reactor core.

r.

r.

Bare vs. reflected critical assemblies. $\,k_\infty\,$ will not change since dependent on fuel composition and not geometry.

Reflected reactor geometry core cross-section

REACTOR KINETICS & CONTROL

 Short-term transients (s, m, hr): start-up, maneuvering, shut-down Long-term transients (d, w, m): fuel BU from BOL to EOL Neutron population control = reactor control Control drums: vary neutron population with absorber (vary *f*) Coolant flow: harden spectrum with lower coolant flow rate (vary *f*)

Control Drives @ 0°: Subcritical

Control Drives @ 180°: Critical or Super Critical

Rotating Control Drum:B4C Absorber

Be Reflector

×۴ **Reactivity**

F.

Г

–

The measure of neutron multiplication deviation from unity

$$
\rho = \frac{k_{eff} - 1}{k_{eff}}
$$

Units (relative to β): If $\rho = \beta \rightarrow 1 of reactivity (²³⁵U reactor: \$0.4 is $\rho = 0.4\beta = 0.4) *ρ* depends on neutron flux (*φ*) and thus Rx power

 $\Delta T_{core}=\Delta V_{Matts}$ $\Delta A_{density}=\Delta C_{atom}=\Delta \Sigma_{a,s}$ Δ $reaction\ rate=\Delta \varphi=\Delta \rho$

DELAYED NEUTRONS

Prompt Neutrons

- Born at fission
	- 98-99% of neutron population
- Short lifetime $(l = 10^{-4} s)$
- Difficult to control $(T = 0.1 s)$

Delayed Neutrons

- Born from fission product radioactive decay
- 1-2% of neutron population
- Longer lifetime $(l = 0$
- Controllable $(T = 10)$
- $β =$ delayed neutron

235U thermal fission delayed neutrons. Courtesy of Duderstadt & Hamilton.

REACTOR PERIOD

Reactivity-Period Chart. Courtesy of Dugan.

Reactor Period

Time required for Rx power to change by "e" (2.718)

 $T = \frac{l}{k-1}$

Т,

- As $k \to 1$, $T \to \infty$ (time independent neutron population)
- *T* inversely proportional to *ρ*: *↑ρ=↓T, ↓ρ=↑T* (desirable)

Example:

- – $k = 1.001$
- $l = 10^{-4}$ s (thermal), 10^{-7} s (fast)

$$
-T=\frac{l}{k-1}=0.1 s
$$

$$
- \frac{N(t)}{N_o} = e^{\left(\frac{k-1}{l}\right)t} = e^{10t} \rightarrow
$$

–For $t = 1$ $s \rightarrow e^{10} = 22,000$ prompt neutrons/sec

Avoid reactor prompt critical & supercritical

- –Prompt critical ($\rho > \beta$) Super critical ($k - 1 > \beta$)
- –Delayed neutrons not needed to sustain reaction
- *T* will be very short (this should never occur)

REACTIVITY INSERTION

Reactor Power Changes

i.

- *Prompt jump/drop*: Initially behaves as if there are no delayed neutrons.
- *Delayed neutron hold back effect*: As delayed neutron population increases there is a transition.
- *Stable Period*: As T [→] asymptotic the Rx behaves as if there are no prompt neutrons and delayed neutrons control the Rx.

insertion. Courtesy Duderstadt & Hamilton.

¹³⁵Xe variation with reactor power level. Image courtesy of Duderstadt & Hamilton.

TEMPERATURE REACTIVITY FEEDBACK

Temperature Reactivity Feedback Coefficient

 α α γ $=$ $\frac{\Delta \rho}{\Delta T}$

–

–

- 1. Nuclear: $\Delta T = \Delta \sigma$ (Doppler broadening) = resonance absorption
- − $\;\;$ 2. Density: Δ $T=\Delta V_{Matts}$ = ∆ $density=\Delta {\cal C}_{atom}$ = ∆ $mean$ free $path=\Delta P_{NL}$

Fuel & Moderator Feedback Coefficients

$$
- \quad \alpha_{T,Full} = \frac{\Delta \rho}{\Delta T_{Fuel}}
$$

$$
- \quad \alpha_{T,Mod} = \frac{\Delta \rho}{\Delta T_{Mod}}
$$

Stability

- Positive α_T : ↑T = ↑ $p = \uparrow P = \uparrow T$ = unstable reactor (avoid)
- Negative α_T : ↑ T = \downarrow ρ = \downarrow P = \downarrow T = stable reactor (design requirement)

NEUTRON POISONS

Fission product decay

- Produces daughter nuclides with large σ_{abs} Proportional to reactor power and operating time 135Xe and ¹⁴⁹Sm burnout at start up induce a positive reactivity insertion

fission [→] ܾܵ ହଵ ଵଷହ ߚ 1.7 ݏ ହଶܶ݁ ଵଷହ ߚ ݏ 19.2 ܫ ହଷ ଵଷହ ߚ ݎ݄ 6.58 ܺ݁ ହସ ଵଷହ ߚ ݎ݄ 9.17 ݏܥ ହହ ଵଷହ ߚ ² · ¹⁰ ݎݕ ܤܽ ହ ଵଷହ ሺݐݏܾ݈ܽ݁ሻ

$$
\text{fission} \rightarrow \frac{149}{60}Nd \frac{\beta}{2\ hr} \frac{149}{61}Pm \frac{\beta}{54\ hr} \frac{149}{62}Sm \text{ (stable)}
$$

135Xe buildup and decay following shutdown. Courtesy Dugan. ¹⁴⁹Sm buildup following shutdown. Courtesy Dugan.

DECAY HEAT

Heat generation following shut-down

- Result of fission product decay
	- 6-7% of reactor power generated immediately after shutdown.
- Active cooling is required to keep core temperature within limits.

Reactor decay heat vs. time.

Failure to cool the reactor following shut-down

Fuel damage

–

×

- Structural damage
	- Partial/full melt-down

OPERATIONAL ANALOGY

Altitude (*A*)

Airspeed (*V*) Regulate and limit vehicle energy state $(V_{\text{stall}}$, $V_{\text{ne}})$

Vertical Velocity Indicator (*VVI*) Rate of altitude change

Throttle Setting (% max RPM) Adjust fuel flow to vary combustion rate (engine power)

> Multi-Engine Individual power worth

Breaking Distance Runway length to achieve full-stop

> Dynamic Stability Positive or negative

Excess PowerOvercome induced/parasitic drag, adjust A

Power (*P*)

Period (*T*) Regulate and limit reactor energy state (30 s ramp rate, -80 s shut down)

Neutron Multiplication Factor (*k*) Rate of criticality change

Control Drum Setting (degree) Adjust reactivity to vary reaction rate (reactor power)

> Multi-DrumIndividual reactivity worth

Shut-Down Margin (SDM) How far from critical

Reactivity Temp. Feedback $(\alpha_{\scriptscriptstyle T})$ Positive or negative

Excess Reactivity (*^ρex*) Overcome BU, $- \alpha_{T}$, Xe poison, adjust P level

RECOMMENDED READINGS

REFERENCES

- J. Angelo & D. Buden, "Space Nuclear Power," Orbit Book Co, Malabar, FL (1985).
- J. Turner, "Atoms, Radiation, and Radiation Protection," John Wiley & Sons, Inc, New York, NY (1995).
- R. Faw & J. Shultis, "Radiological Assessment: Sources and Doses," American Nuclear Society, IL (1999).
- G. Knoll, "Raditiation Detection & Measurement," John Wiley & Sons Inc, NY (2000).
- W. Callister, "Materials Science and Engineering an Introduction," John Wiley & Sons, Inc, New York, NY (1999).
- R. Bolt & J. Carroll, "Radiation Effects on Organic Materials," Academic Press, NY (1963).
- G. Was, "Fundamentals of Radiation Materials Science," Springer, NY (2007).

П

- B. Ma, "Nuclear Reactor Materials & Applications," Van Nostrand Reinhold Co, NY (1983).
- M. Kangilaski, "Radiation Effects Design Handbook: Structural Alloys," Batelle Memorial Inst., OH (1971).
- C. Hanks & D. Hamman, "Radiation Effects Design Handbook: Electrical Insulating Materials and Capacitors," Batelle Memorial Inst., OH (1971).
- ٠ R. Chochran & N. Tsoulfandis, "The Nuclear Fuel Cycle," American Nuclear Society, IL (1999).
- п D. Orlander, "Fundamental Aspects of Nuclear Reactor Fuel Elements," Energy Research and Development Administration, TN (1976).
- ш J. Duderstadt & L. Hamilton, "Nuclear Reactor Analysis," John Wiley & Sons Inc, NY (1976).
- ٠ S. Glasstone & M. Edlund, "Nuclear Reactor Theory," Van Norstrand Co. Inc., NY (1952).
- ٠ E. Dugan, "Nuclear Reactor Analysis," Univ. of Florida course notes (2007).
- ٠ W. Vernetson, "Nuclear Reactor Operations," Univ. of Florida course notes (2007).
- п NRC SNM Categories http://www.nrc.gov/security/domestic/mca/snm.html, (2013).
- п NRC Radiation Areas http://www.nrc.gov/about-nrc/radiation/protects-you/hppos/hppos066.html, (2013).