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NASA Environmental Barrier Coating System @
Development

— Advanced environmental barrier coatings for SiC/SiC CMC combustor and

turbine vane component technologies being developed for reduced cooling and
NO, emission and will be demonstrated

— Next generation high pressure turbine blade environmental barrier coatings with
advanced CMCs
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NASA Environmental Barrier Coating System
Development

* Emphasize temperature capability, performance and durability for next generation
turbine engine systems

* Increase Technology Readiness Levels for component system demonstrations
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Environmental Barrier Coating Development: Challenges @
and Limitations

Current EBCs limited in their temperature capability, water vapor stability
and long-term durability

Advanced EBCs also required higher strength and toughness

* In particular, resistance to combined higher heat flux, engine higher
operating pressure, combustion environment and creep-fatigue loading
interactions

EBCs need improved erosion, impact and calcium-magnesium-alumino-
silicate (CMAS) resistance

EBC-CMC systems need advanced processing for realizing complex
coating compositions, architectures and thinner turbine coating
configurations for next generation high performance engines




Specific weight change, mg/ cm’-h

Environmental Stability of Selected Environmental Barrier @
Coatings Tested in NASA High Pressure Burner Rig

EBC stability evaluated on SiC/SiC CMCs in high velocity, high pressure
burner rig environment

Stability gaps exist for future high bypass, high operating pressure ratio
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Outline @

— Advanced EBC systems for next generation environmental
barrier coating development

— Processing techniques for advanced EBCs
* Plasma Spray — Physical Vapor Deposition (PS-PVD) and Plasma Spray
— Thin Film (PS-TF) processing
¢ Electron Beam — Directed Vapor Deposition (EB-DVD) and/or Electron
Beam - Physical Vapor Deposition (EB-PVD)

— Advanced environmental barrier coating systems for CMC
airfoils and combustors
 NASA EBC systems
* Current turbine and combustor EBC coating development
emphasis

* Major development testing results
e Cyclic test
« Water vapor, creep and fatigue

— Summary and future directions




Advanced Environmental Barrier Coating Systems for Si- @
Based Ceramic Matrix Composites
 Focus on high stability HfO, layer with graded interlayer, environmental barrier
and advanced bond coat developments

* Alternating Composition Layered Coatings (ACLCs) and nano-composite
coatings

* BSAS, alloyed mullite and rare earth (RE) silicate EBCs

* Processing approaches being developed for vapor deposition, plasma spray
addressing high stability nano-composite systems
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Plasma Sprayed-Physical Vapor Deposition (PS-PVD) and @
Plasma Sprayed- Thin Film (PS-TF) Processing of
Environmental Barrier Coatings
— NASA PS-PVD and PS-TF coating processing using Sulzer technology
— EBC is being developed for next-generation SiC/SiC CMC turbine airfoil coating processing
* High flexibility coating processing — PVD and/or splat coating processing at lower pressure
(at ~1 torr) |

* High velocity vapor, non line-of-sight coating processing for complex-shape components

* Emphasis on fundamental process u_nderstanding and powder composition developments

—

Nozzle section view

(b) With initial powder feeding

2
- (b) Full powder feeding

NASA hybrid PS-PVD coater system — A"Flégship High enthalpy plasma vapor stream for efficient and
plasma Spray coating system complex thin film coating processing




Electron Beam - Directed Vapor Deposition (EB-DVD) and @
Electron Beam - Physical Vapor Deposition (EB-PVD)

— An advanced Electron Beam Vapor (EB-DVD) approach developed by Directed Vapor
Technologies, Inc (DVTI)

— Flexible in multi-component coating processing and composition controls

— Progress made in advanced bond coat, EBC and some top coat developments of
environmental barrier coating systems

— Significant processing advancement in co-deposition and multi-component coating
developments with current NASA EBC compositions for high Technology Readiness Levels
(TRLs) EBC component processing

— Collaborative work also in the EBC top coat development with Penn State University




The Advanced 3000°F SiC/SiC CMC Turbine Vane Coating @

Systems

Advanced high toughness multi-component HfO,/ZrO, based systems designed
and incorporated into turbine environmental barrier coatings for improved
stability and toughness

Multi-component composition and processing systems being optimized for
environmental barrier for SiC/SiC CMCs

Advanced composite coatings with interface engineering approaches have been
explored |

Modeling continues to be emphasized for advanced nano-composites

Advanced 2700°F Zr0, Advanced ZrO, - ytterbium
turbine EBC top coating silicate composite coating (APS)
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Advanced Multi-Component Turbine Environmental @
Barrier Coatings are being Developed

— The emphasis is placed on turbine environmental barrier coating compositions,
phase and thermomechanical stability

— Strong interest in highly stable oxide-silicate and composites

— Aiming at better understanding the phase stability and solid-state reaction
Kinetics of multi-phase systems

e
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Oxide-silicate nano-composites (bright areas are Hf- Reaction kinetics of HfO,-
and/or RE-rich phases; dark areas are silica-rich phases) Si bond coat systems
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NASA Advanced Multi-Component EBCs and Bond Coats
Being Processed and Developed at DVTI

— The initial durability is being demonstrated

NDS-1450C 15.0kV 11.6mm x1.00k SE(L)
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EBC Processing using Plasma Spray-Physical Vapor @
Deposition (PS-PVD)
— Demonstrated vapor-like coating deposition for thermal barrier and environmental
barrier coating applications using Sulzer processed powders
* Advanced powders developed/being developed under NASA programs using NASA
specifications

— Initial properties being evaluated

* Potentially high stability (thermodynamically) processing as EB-DVD/PVD

 Potential issue with relatively less-stable systems such as silicates due to phase
separations

Splat/partial vapor Yb,Si,O-/

Vapor ZrO,-Y,0; coating
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Laser Heat Flux Thermal Gradient Tests of Some EB-DVD and @
PS-PVD/PS-TF Systems
— Coating stability on SiC/SiC is being evaluated

Thermal conductivity, W/m-K
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Thermal conductivity, W/m-K

The Yb,SiO;/Yb,Si,0, EBC Delamination Crack Propagation @
Tests under Heat Flux Thermal Gradient Test Conditions

Penney-shaped crack initially size 1.5 mm in diameter, tested in air at 1350° C
Crack propagated from 1.5 mm to 7.5 mm 60, 1 hr cycllc testing
Possible SiO2 loss acclerated crack propagation = 7
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Thermal conductivity, W/m-K

Laser Heat Flux Thermal Gradient Tests of Some APS and @

Hot-Pressed EBC Systems

RE silicate- ZrO, systems tested in 1482° C
Delamination propagation observed
Non soluble phases of ytterbium silicate and ZrO2
Loss of silica in rare earth silicate
Porous ZrO2 phase retained after testing
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Ytterbium Mono- and Silicate EBC tested in Laser High Heat
Flux Steam rig

— Observed mud flut cracking after 1400C test
— Loss of Silica observed after the testing

Thermal conductivity, W/m-K
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Laser Heat Flux Thermal Gradient Tests of Some Advanced @

with HfO2-RE-Silicate EB-DVD Systems

— The EBCs demosntaretd for 50, 1 hr cycles at the coating surface temperature of
near 1700° C without failure

Thermal conductivity, W/m-K
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Laser Heat Flux Thermal Gradient Tests of Some Directed
Vapor EB-PVD Directed Vapor — Plasma Sprayed Systems

— The coatings showed excellent high temperature stability
— Effect of rare earth and Si dopants studied

Thermal conductivity, W/m-K
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&

— Experience learnt from impact resistant TBC development will help the advanced

Advanced Ballistic Impact Resistant Turbine Coating
Technologies Processed at Directed Vapor EB-PVD or EB-

EBC developments
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A Zr-RE-Ti-Ta t' oxide systems
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Advanced Ballistic Impact Resistant Turbine EBC Systems @

— Experience learnt from impact resistant TBCs will help the

advanced impact resistant EBC developments

N—

— Advanced EBCs on par with best TBCsﬁ -

— Promising in helping protect CMCs
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The Long-Term Durable CMC Coating System Testing

under High Heat Fqu Condltlons
- Coating surface creep strain 1-2% - .

system
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Displacement, mm

Advanced NASA EBCs Tested in Laser Heat Flux Biaxial Test @/

Fatigue Rig

1600° C EBC maximum temperature, 3 hz, | million cycles ~ 100 hot hr each test
EBCs survived the tests
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Advanced NASA EBCs Tested in Fatigue Loading

— Surface cracking observed
— Compositions can play critical role in the durability
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The EBC Subelement Stability Demonstrated in High Heat @
Flux and High Velocity - High Pressure Burner Rig

- NASA coating systems demonstrated in component testing: laser heat flux rig
testing
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The EBC Subelement Stability Demonstrated in High Heat
Flux and High Velocity - High Pressure Burner Rig -

Continued
- Initial DVTI processed NASA coating systems demonstrated in component

testing: high pressure burner rig testing
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Summary and Future Directions

* Advanced high temperature turbine and combustor CMC environmental barrier
coatings being developed using advanced EBC compositions and processing

Demonstrated feasibility to process advanced EBC systems using APS and EB-
DVD approaches

Demonstrated uniqueness of each processing methods and processing scale-up
capability for components

Creep and fatigue durability demonstrated

Have better understanding of EBC degradation

Achieved higher temperature capability, better environmental stability and thermal
- mechanical stress and impact resistance of the coating systems

Continue the coating composition and architecture developments to achieve 2700-
3000°F (1482-1650°C) capability in thin coating configurations for both CMC
combustor and turbine EBCs

Develop robust processing for APS, EB-DVD, PS-PVD/PS-PVD and EB-PVD
Support component coating development and modeling

Further develop advanced testing approaches to ensure prime-reliant EBC
systems
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