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NASA Environmental Barrier Coating System 
Development • 

- Advanced environmental barrier coatings for SiC/SiC CMC combustor and 
turbine vane component technologies being developed for reduced cooling and 
NOx emission and will be demonstrated 

Next generation high pressure turbine blade environmental barrier coatings with 
advanced CMCs 

CMC 
Instability 
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Multipoint 
Injection 

Low emission combustor 

.. . . . . 

EBC coated 

Advanced core technologies - HPT first stage 
CMC vane with significantly reduce cooling 

requirements 
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NASA Environmental Barrier Coating System 
Development • 

• Emphasize temperature capability, performance and durability for next generation 
turbine engine systems 

• Increase Technology Readiness Levels for component system demonstrations 
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Environmental Barrier Coating Development: Challenges 
and Limitations • 

Current EBCs limited in their temperature capability, water vapor stability 
and long-term durability 

Advanced EBCs also required higher strength and toughness 
• In particular, resistance to combined higher heat flux, engine higher 

operating pressure, combustion environment and creep-fatigue loading 
interactions 

EBCs need improved erosion, impact and calcium-magnesium-alumino­
silicate (CMAS) resistance 

EBC-CMC systems need advanced processing for realizing complex 
coating compositions, architectures and thinner turbine coating 
configurations for next generation high performance engines 
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Environmental Stability of Selected Environmental Barrier • 

~ 
I 

N 

Coatings Tested in NASA High Pressure Burner Rig 

EBC stability evaluated on SiC/SiC CMCs in high velocity, high pressure 
burner rig environment 
Stability gaps exist for future high bypass, high operating pressure ratio 
engines Temperature, oc 
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Outline • Advanced EBC systems for next generation environmental 
barrier coating development 

Processing techniques for advanced EBCs 
• Plasma Spray- Physical Vapor Deposition (PS-PVD) and Plasma Spray 

-Thin Film (PS-TF) processing 
• Electron Beam - Directed Vapor Deposition (EB-DVD) and/or Electron 

Beam - Physical Vapor Deposition (EB-PVD) 

Advanced environmental barrier coating systems for CMC 
airfoils and combustors 
• NASA ESC systems 
• Current turbine and combustor ESC coating development 

emphasis 
• Major development testing results 

• Cyclic test 
• Water vapor, creep and fatigue 

Summary and future directions 
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Advanced Environmental Barrier Coating Systems for Si­
Based Ceramic Matrix Composites • 

Focus on high stability Hf02 layer with graded interlayer, environmental barrier 
and advanced bond coat developments 
• Alternating Composition Layered Coatings (ACLCs) and nano-composite 

coatings 
• BSAS, alloyed mullite and rare earth (RE) silicate EBCs 
• Processing approaches being developed for vapor deposition, plasma spray 

addressing high stability nano-composite systems 

lnterlayer: compositional layer graded system 
RE doped mullite-Hf02, and/or rare earth silicate EBCs _.._.. 

~!!.!..!:..!!:.!!:..L!~~!..!:.!:.!!~~!!.!..!:..!~~I--- Ceramic composite bond coats 

SiC/SiC CMC 

IJ Hf02 and Hf02 composites 

I D Doped mullite t Increased dopant RE/Transition 
l~cr~ased +. with ACLC I metal concentrations & increased 
SI/SI02 activity (Hf rich bands) AI/Si ratio 

Doped mullite, Hf02/Si (SiC/Si3N4) composite bond coat 
(High temperature capable with self-healing) 
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Plasma Sprayed-Physical Vapor Deposition (PS-PVD) and 
Plasma Sprayed- Thin Film (PS-TF) Processing of 

Environmental Barrier Coatings 
• 

- NASA PS-PVD and PS-TF coating processing using Sulzer technology 
- EBC is being developed for next-generation SiC/SiC CMC turbine airfoil coating processing 

• High flexibility coating processing - PVD and/or splat coating processing at lower pressure 
(at -1 torr) 

• High velocity vapor, non line-of-sight coating processing for complex-shape components 
• Emphasis on fundamental process understanding and powder composition developments 

NASA hybrid PS-PVD coater system - A Flagship 
plasma Spray coating system 

High enthalpy plasma vapor stream for efficient and 
complex thin film coating processing 
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Electron Beam - Directed Vapor Deposition (EB-DVD) and 
Electron Beam - Physical Vapor Deposition (EB-PVD) • 

- An advanced Electron Beam Vapor (EB-DVD) approach developed by Directed Vapor 
Technologies, Inc (DVTI) 

- Flexible in multi-component coating processing and composition controls 
- Progress made in advanced bond coat, EBC and some top coat developments of 

environmental barrier coating systems 
- Significant processing advancement in co-deposition and multi-component coating 

developments with current NASA EBC compositions for high Technology Readiness Levels 
(TRLs) EBC component processing 

- Collaborative work also in the EBC top coat development with Penn State University 
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The Advanced 3000°F SiC/SiC CMC Turbine Vane Coating • 
Systems 

Advanced high toughness multi-component Hf02/Zr02 based systems designed 
and incorporated into turbine environmental barrier coatings for improved 
stability and toughness 
Multi-component composition and processing systems being optimized for 
environmental barrier for SiC/SiC CMCs 
Advanced composite coatings with interface engineering approaches have been 
explored 
Modeling continues to be emphasized for advanced nano-composites 

Advanced 2700°F Zr02 
turbine EBC top coating 

Advanced Zr02 - ytterbium · 
silicate composite coating (APS) 
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Advanced Multi-Component Turbine Environmental • Barrier Coatings are being Developed 
The emphasis is placed on turbine environmental barrier coating compositions, 
phase and thermomechanical stability 
Strong interest in highly stable oxide-silicate and composites 
Aiming at better understanding the phase stability and solid-state reaction 
kinetics of multi-phase systems 

Reaction kinetics of Hf02-

Si bond coat systems 
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NASA Advanced Multi-Component EBCs and Bond Coats 
Being Processed and Developed at DVTI 

The initial durability is being demonstrated 

• 
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EBC Processing using Plasma Spray-Physical Vapor 
Deposition (PS-PVD) • 

- Demonstrated vapor-like coating deposition for thermal barrier and environmental 
barrier coating applications using Sulzer processed powders 

• Advanced powders developed/being developed under NASA programs using NASA 
specifications 

Initial properties being evaluated 
• Potentially high stability (thermodynamically) processing as EB-DVD/PVD 
• Potential issue with relatively less-stable systems such as silicates due to phase 

separations 

' I . . . 

50 um I 
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Laser Heat Flux Thermal Gradient Tests of Some EB-DVD and . 
PS-PVD/PS-TF Systems 

Coating stability on SiC/SiC is being evaluated 
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The Yb2Si05/Yb2Si20 7 EBC Delamination Crack Propagation • 
Tests under Heat Flux Thermal Gradient Test Conditions 

Penney-shaped crack initially size 1.5 mm in diameter, tested in air at 1350 ° C 
Crack propagated from 1.5 mm to 7.5 mm 60, 1 hr cyclic testing 
Possible Si02 loss acclerated crack propagation :-;::--:;;;=;::~~~~~ 
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Laser Heat Flux Thermal Gradient Tests of Some APS and 
Hot-Pressed EBC Systems 

RE silicate- Zr02 systems tested in 1482 ° C 
Delamination propagation observed 
Non soluble phases of ytterbium silicate and Zr02 
Loss of silica in rare earth silicate 
Porous Zr02 phase retained after testing 
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Laser Heat Flux Thermal Gradient Tests of Some Advanced • 
with Hf02-RE-Silicate EB-DVD Systems 

The EBCs demosntaretd for 50, 1 hr cycles at the coating surface temperature of 
near 1700 ° C without failure 
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Laser Heat Flux Thermal Gradient Tests of Some Directed 
Vapor EB-PVD Directed Vapor - Plasma Sprayed Systems 

The coatings showed excellent high temperature stability 
Effect of rare earth and Si dopants studied 
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Advanced Ballistic Impact Resistant Turbine Coating 
Technologies Processed at Directed Vapor EB-PVD or EB­

PVD 
• 

Experience learnt from impact resistant TBC development will help the advanced 
EBC developments 
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Advanced Ballistic Impact Resistant Turbine EBC Systems 
Experience learnt from impact resistant TBCs will help the 
advanced impact resistant EBC developments 
Advanced EBCs on par with best TBCs 
Promising in helping protect CMCs 
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The Long-Term Durable CMC Coating System Testing 
under High Heat Flux Conditions 

Coating surface creep strain 1-2°/o 

GenII CMC, 7.35x !0"8 Is; 15 ksi 
Tsurface =-2500°F 

Gern I CMC 4.10x!0"8 Is; 10 ksi Tinterface=-2350° 
Tsurface = - 2500°F Tback=-2200°F 

800 1000 1200 

Time, hours 

Microstructures after 1000 hr, 1482°C 
(2700°F), 103 MPa (15 ksi) testing 

• 
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Advanced NASA EBCs Tested in Laser Heat Flux Biaxial Test • 
Fatigue Rig 

1600° C EBC maximum temperature, 3hz, I million cycles- 100 hot hr each test 
EBCs survived the tests 
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Advanced NASA EBCs Tested in Fatigue Loading 

Surface cracking observed 
Compositions can play critical role in the durability 

Coating Surface creep fatigue 
strains 6-9% 

Coating Surface creep fatigue 
strains 1.5-2.2 o/o 

• 
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The EBC Subelement Stability Demonstrated in High Heat • 
Flux and High Velocity - High Pressure Burner Rig 

NASA coating systems demonstrated in component testing: laser heat flux rig 
testing 

High heat flux testing CMC Vane and tube Segments (2700°F) 
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The EBC Subelement Stability Demonstrated in High Heat • 
Flux and High Velocity - High Pressure Burner Rig -

Continued 
Initial DVTI processed NASA coating systems demonstrated in component 
testing: high pressure burner rig testina . 

lurb1ne 
Pressure Tap or 
Thermocouple Access 

High Pressure Burner Rig Tested CMC 
2.5 Tube Sections (50hr, 2650°F, 10 atm) 

Combustor 
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Summary and Future Directions • 
• Advanced high temperature turbine and combustor CMC environmental barrier 

coatings being developed using advanced EBC compositions and processing 

Demonstrated feasibility to process advanced EBC systems using APS and EB­
DVD approaches 
Demonstrated uniqueness of each processing methods and processing scale-up 
capability for components 
Creep and fatigue durability demonstrated 
Have better understanding of EBC degradation 
Achieved higher temperature capability, better environmental stability and thermal 
- mechanical stress and impact resistance of the coating systems 

Continue the coating composition and architecture developments to achieve 2700-
30000F (1482-1650°C) capability in thin coating configurations for both CMC 
combustor and turbine EBCs 
Develop robust processing for APS, EB-DVD, PS-PVD/PS-PVD and EB-PVD 
Support component coating development and modeling 
Further develop advanced testing approaches to ensure prime-reliant EBC 
systems 
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